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A Lightweight Heterogeneous Graph Embedding
Framework for Hotspot Detection

Haopeng Yan™, Ying Wang, Peng Gao
Xiaoming Xiong

Abstract—Hotspot detection is a crucial step in ensuring the
manufacturability of integrated circuits, as it seeks to identify
potential defects in the layout. Pattern matching methods have
been widely used to accelerate the detection of these defects.
However, they often struggle with complicated deviations. Image-
based machine learning methods were introduced to confront
this challenge, but they often involved distorted information
extraction and incurred significant runtime overhead. In this
article, we introduce a novel detection framework based on
the modified transitive closure graph (MTCG). By applying the
concept of MTCG, the layout can be accurately modeled as a
heterograph. The embeddings of these heterographs are extracted
using an optimized lightweight 3-hop message-passing graph neu-
ral network (GNN) and subsequently utilized for classification.
Furthermore, a dynamic edge transformation method based on
the properties of MTCG is proposed for data augmentation.
The proposed method is evaluated with datasets from ICCAD
2012 and ICCAD 2019, demonstrating outstanding performance
in recall and false alarm, along with a significantly decreased
inference time.

Index Terms—Graph learning, hotspot detection, modified
transitive closure graphs (MTCGs).

I. INTRODUCTION

DVANCES in technology have led to an increase in

the complexity and scale of designs, prompting the
adoption of various resolution enhancement techniques in
the lithography process. Despite the contributions of these
techniques, process variations inevitably lead to significant
deviations of certain patterns during their transfer to wafers.
Pattern-distorted regions, termed lithography hotspots, indicate
potential layout issues after physical design. Although lithog-
raphy simulation is a reliable solution, its time-consuming
nature imposes significant limitations on the design process,
leading to a longer turn-around time.
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Fig. 1.

To accelerate the lithography process, the hotspot detection
technique is introduced. Traditional hotspot detection relied
on pattern matching, where patterns within the layout were
searched and compared with predefined hotspot patterns.
However, this approach was inherently limited to handling
fixed patterns. A hotspot detector leveraging modified transi-
tive closure graph (MTCG) [1], [2], was capable of identifying
hotspots with rotation, mirroring, and combinations of differ-
ent hotspot patterns, extracting crucial design rules for hotspot
region matching. However, the above pattern matching-based
method could not classify patterns that were not present
in the hotspot library. For example, the testing dataset of
ICCAD 2012 competition [3] contained some hotspot samples
that were not included in the given library. ICCAD2019
benchmarks [4] were proposed for conducting evaluations to
assess the robustness of the detector against false alarm and its
ability to identify samples that deviate from the distribution of
the training data. Fig. 1 illustrates the task conducted in this
article using the aforementioned datasets.

Machine-learning-based detectors were introduced to solve
those pitfalls. A method [5] was proposed to initially cluster
hotspot regions based on density and topology types, extract
diverse complicated information from these regions using
MTCG, and subsequently classify them with a support vector
machine. Advancements in computer vision have led to the
application of numerous great ideas and techniques to hotspot
detection [6], [7], [8], [9]. Unlike previous methods that
directly used images as input, a hotspot detector [10], [11]
utilized discrete cosine transform (DCT) for feature extrac-
tion. With the rise of deep learning, convolutional neural
networks (CNNs) enhanced by attention mechanisms have
been applied to hotspot detection [12], [13]. The success
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of CNNs in this field has further motivated the exploration
of more advanced neural architectures [14], [15]. Given the
effectiveness of graph neural networks (GNNs), a GNN-based
hotspot detector [16] was proposed to leverage the geometric
features of polygons. Feature processing is crucial in machine
learning methods, especially in hotspot detection. Computer
vision-based approaches either converted layouts into images
or extracted multiscale feature maps based on process nodes.
An existing GNN method decomposed layout polygons into
multiple vertically aligned rectangles, using their geometric
attributes as node features. Different edge types and features
were assigned on the basic of the relationships between the
rectangles and the process nodes. However, incorporating
various edge and node features can degrade the inference
efficiency of the model. Using a large language model (LLM)
for hotspot detection was a novel approach. Polygons in a
layout were encoded according to their category, position, and
shape, transforming the layout into a 1-D textual representa-
tion. Subsequently, the LLM was employed to classify the text
representation of the layout clip, offering a novel alternative
solution [17]. However, similar to other encoding methods,
this approach still relied on prior knowledge to handle polygon
categories.

Another challenge for machine-learning-based hotspot
detectors is the imbalance within datasets, where hotspot
regions constitute only a small fraction of the available
training data. Training models directly with raw data result
in performance degradation or bias toward predicting one
class predominantly. Previous studies have typically addressed
this issue by oversampling hotspots within the layout. In
computer vision, data augmentation methods, such as rotation
and mirroring, were commonly used to enhance the original
dataset [18]. The method based on MTCG offers a more effi-
cient solution. It can model layouts as heterogeneous directed
graphs, incorporating diverse edge types, which facilitates data
augmentation by manipulating edge directions and types. This
approach enables the reuse of partial information in MTCG
during feature extraction, thereby reducing processing time.

Building on previous research, we propose a lightweight
GNN-based hotspot detector. This method constructs a hetero-
graph representation of the layout via MTCG, incorporating
both topological structures and geometric features with-
out requiring prior knowledge. By effectively integrating
information from polygons and white spaces, our method
enhances the representation of layouts. In the embedding
stage, a three-stage message-passing approach is adopted,
ensuring a balance between computational efficiency and
model performance. The main contributions of this article are
as follows.

1) In contrast to previous single-graph approaches, we

propose an end-to-end hotspot detection framework with
a dual-graph layout representation based on improved
MTCG, facilitating lossless layout clip representation
and effective geometric feature extraction.

2) Building on the dual-graph representation, we propose

a lightweight incremental GNN to model polygon rela-
tionships in the layout, utilizing progressively extracted
embeddings to preserve local geometric features.
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3) Leveraging MTCG properties, specialized data aug-
mentation techniques are proposed to mitigate data
imbalance on benchmarks.

4) Experimental results show that our method achieves
higher recall at nearly all false alarm levels while
significantly reducing inference time. A detailed analysis
further validates the robustness and performance of the
approach.

The remainder of this article is organized as follows.
Section II introduces the background to hotspot detection,
GNN, and MTCG. In Section III, we present a method for
transforming layouts into heterographs and extracting graph
embeddings. In Section IV, various performance metrics of
the model are compared and analyzed. Section V provides a
comprehensive summary.

II. BACKGROUND
A. Problem Formulation

The problem of hotspot detection is defined as follows:
identifying and extracting hotspot samples from a given set of
layout clips, effectively isolating the specific hotspots within
the input clips. The performance of the detector is usually
evaluated by recall and false alarm. The definitions of these
metrics are as follows.

Definition 1 (Recall): The ratio of correctly predicted
hotspots among the set of actual hotspots [3]

#TP
Recall = ————. (D
#TP + #FN

Definition 2 (False Alarm): The number of incorrectly pre-
dicted nonhotspots [3]

FalseAlarm = #FP. 2)

B. Graph Neural Network

Hotspot detection is related to the graph classification task,
which involves acquiring representations from layouts mod-
eled as heterographs. Heterographs are graphs characterized by
different node types and edge types, which facilitate the inte-
gration of data with diverse attributes. The message-passing
neural network (MPNN) is an efficient type of heterogeneous
GNN. leveraging MPNN, the heterogeneous GNN effectively
captures and propagates information across the different types
of edges and nodes, enabling comprehensive and context-
aware learning within heterographs.

MPNN contains a message passing and a readout steps.
Fig. 2 illustrates the process of message passing. After the
message passing, global features are read out from each type
of node. Given a heterograph G(V, E), N, denotes a subset
of nodes which is neighboring to the node v, N, € V, e,
represents a edge from node w to node v. The message-
passing mechanism in MPNNs is performed as follows: after
initialization, the information of node v, its neighboring nodes
N,, and the incoming edges of node v are passed into a
message function named M,, represented by

mit =" My(K, s ) (3)

weN,,

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:04:17 UTC from |IEEE Xplore. Restrictions apply.



YAN et al.: LIGHTWEIGHT HETEROGENEOUS GRAPH EMBEDDING FRAMEWORK

7777777777777 an = A r 8
g Ay =dggrCi O, AggA(
Ao =Aggr( | mg,mg) | v Az A3,47) 9
my,my,ma,my) | M8 9 | e \\\7
ST I 3
1,/ } 7 my } ’1 A \\
v ik S S / N 7
[ Mty m7 \> Q A 0 |
\ !
,,,,,,, \iinf :7 \TE //————~————1 \ Az tonds /
| my 3 ] 13 g 1 3 3.
i ax T ! 4 4>>2 S— 6
42 = Aggr( s | A3 = Ag997(me)
[ my,ms) 5
,,,,,,,,,,,,, ) 5
(@) (b)

Fig. 2. Example of MPNN involves a message passing across multiple types
of nodes and edges. (a) In the 1-hop message passing, nodes 0, 2, 3, and 7
receive messages from their neighbors and aggregate them to generate new
features A. (b) In the 2-hop message passing, node O receives information
from nodes 1, 2, 3, and 7, and aggregates it to produce new features o.

where m{,‘“ denotes the message generated, and 4, represents
the hidden state during the ¢-step of message passing on
node v. The result of M, is then aggregated. The next step
involves updating the nodes with a node update function Uy,
defined in

K+ = U,(h;, mg“) )
which incorporates both the aggregated messages and the
current state of the node to generate an updated state represen-
tation. The nodes gather and integrate information from their
neighbors through several iterations of message generation
and updating. After completion of these iterations, a readout
function R [19], defined as

$=R(hl|v € G) 5)

extracts the feature y from the nodes in the graph, where T
represents the number of message-passing iterations.

C. Maximum and Attention Aggregation

Maximum aggregation could effectively captures geometric
information [20]. For a target node i with neighbors Nj,
maximum aggregation could be defined as

MAX(X;) = max(x1, X2, ...,Xpn) (6)

where max is the element-wise maximum operation of each
feature vector xj, Xj is the features of ;.

Inspired by [21], we incorporate the self-attention mech-
anism to aggregate information from neighboring nodes. It
computes the hidden states of the node features in

Fx) = WO (oW Oxi + b)) + 5@ .

where W and W® are learnable parameters, b and 5
are biases, and o is the activation function. Attention scores
«a for the features of each node are calculated by applying the
softmax operation to the hidden states

exp(F(xi))

= 8
> exp(F(xi)) ®
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Fig. 3. Transformation between layout clip and MTCG. (a) Original layout
clip. (b) Original layout is divided vertically and horizontally into rectangular
areas, which can be mapped as nodes. (c) Rectangles are projected vertically
and horizontally, forming edges between overlapping neighboring projections.
Each layout is represented by a pair of graphs as (c).

The features of the neighboring nodes are aggregated with
attention scores as weights to generate the new feature for
node i

ATTN(X;) = Z ;X 9)
ieEN;

D. Modified Transitive Closure Graph

Layouts can be represented as MTCG [1], an extension
of the transitive closure graph (TCG) [22], which preserves
the complete geometric information of the original layout.
The MTCG method partitions polygons and white spaces
within layouts into multiple rectangles, creating a dual-graph
that encompasses geometric information for both types of
regions. It defines geometric relationships for each rectangle
within the divided regions. Fig. 3 illustrates an example of
a transformation. Initially, the polygons are partitioned along
their vertical or horizontal edges to generate rectangles. When
partitioning white spaces within the layout, the process ensures
that the partitions respect the boundaries of adjacent polygons
and the layout itself.

In partitioned layouts, rectangles can be connected by
horizontal or vertical edges. In horizontally connected layouts,
the process always starts from the left side and proceeds
toward the right side. If the rectangle a shares a vertical
border with the rectangle b, a directed edge ab is established
to represent the horizontal connection between these two
rectangles. In contrast, if there is no shared vertical border
between the rectangles, no edges are formed between them.
The same procedure is applied for the vertically connected
layout. By incorporating these directed graphs, we can obtain
the MTCG representation for the layout, encapsulating the
geometric information and relationships between the various
regions within the layout. MTCG generated graphs are denoted
Vey, Hey, Hep, and Ve, as shown in Figs. 3(c) and 6(a). In
the name Vcj, the capital letter denotes the direction of the
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TABLE I
NODE FEATURES OF HETEROGRAPH
Notation Definition
\ Width of rectangle
h Height of rectangle
W Width of 1-hop neighbor information
H Height of 1-hop neighbor information
w Width of 2-hop neighbor information
n Height of 2-hop neighbor information
df The geometric features of the nodes after 2-hop propagation
ar The geometric features of the nodes after 3-hop propagation
af The global numerical and area features of the graph

partition being performed. Specifically, V represents vertical
partitioning, while H represents horizontal partitioning. The
subscript indicates the type of edges within the partitioned
layouts. Similarly, Hc,, Hcp,, and Ve, follow the same conven-
tion. Using only Hcy, and Vc,, or Ve, and Hc,y, is sufficient to
characterize the layouts [2].

III. MTCG-GNN-BASED HOTSPOT DETECTOR

This section details the proposed graph embedding frame-
work and the data augmentation strategy. The overall process
is as follows.

1) MTCGs are extracted from layouts and converted
into heterographs. To incorporate more geometric
information, we introduce boundary and polygon nodes
into these dual-graphs. The widths and heights of rect-
angles are used as features for the corresponding nodes.

2) These heterographs are updated with a lightweight 3-hop
GNN to extract local features. Combined with the
global features derived from the MTCGs, the layout
embeddings are generated.

3) Building on the properties of the directed and heteroge-
neous nature of the MTCG representation, we propose
a data augmentation method specifically designed for
layout representations in MTCG.

A. Represent Layouts With Heterographs

As illustrated in Fig. 1, the layouts provided by the bench-
marks of ICCAD 2012 and ICCAD 2019 consist of the
core area where the hotspot may potentially occur along
with the surrounding context. Polygons within the core area
serve as the fundamental criterion to assess the presence of
a hotspot in the layouts. In the proposed method, Vc;, and
Hc, are utilized to represent the original layouts. Their edge
types are orthogonal to the partitioning direction, allowing
a better representation of the geometric relationships within
the layouts. In the case of partitioned figures, each rectangle
is represented as a node in the heterograph. The properties
associated with the rectangles within the subgraph, such
as width and height shown in Table I, are extracted and
utilized as the features for the corresponding node in the
heterograph.

Fig. 3 shows the transformation from dual-graph to hetero-
graph, the rectangles generated from polygons in the layout
are labeled V?, while those from white spaces are labeled as
V5. The directed connections between V2 and V* are denoted
by E, where the superscript indicates the type of edge. In this
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case, E" represents horizontal connections, while EY is used
to represent vertical connections. To achieve a comprehensive
integration of information from the dual-graph, the polygon
nodes V? and the boundary nodes V¢ are introduced. The
purpose of VP is to record the connection relationship of
V? from the dual-graph that originally belongs to the same
polygon through the aggressive connection EP. The nodes
of MTCGs may lack incoming edges to connect with other
nodes, particularly along the boundaries of the MTCGs. To
facilitate synchronous update of the features for these nodes
during the message-passing step and identify the nodes near
the boundary, V4 is introduced. The widths and heights of
V4 are initialized to 0, while features of V” can be omitted.
Inspired by the density-based features presented in [23], for
each graph, the geometric features of the nodes are extracted,
the total area of the block and space nodes is calculated, along
with the combined area of both types and the ratios of area of
each type to the total area. Regarding the node count features,
including the number of block and space nodes, the total
number of nodes, and the ratios of each type to the total node
count. The features for the number of horizontal and vertical
connections are also extracted in a similar manner. These three
types of features are concatenated to form the global feature
representation of the graph, denoted as gf, which is defined
as follows:

es = #HE" + #EY
ns = #V0 + #V*
[oh wpw  HE" H#EY
ec = |#E" , #E", es, —,
L es es
[oob ey HVD #VS
nc = |#V°, #V° ns, —
L ns ns
[ , A(VE) A
ac = | A(V?), A(V"), ACelip), AV A0
A(clip)  A(clip)

of = ec || nc || ac (10)

where # represents the number of edges or nodes, A indicates
the area of the rectangle corresponding to the node, and A(clip)
denotes the area of the entire layout clip. The above graphs
and global features collectively form the initial heterograph
representation of the layout.

B. Graph Embedding

The preceding steps yield heterograph representations of
the layouts, consisting of four types of nodes and three
types of edges. Among them, V2, V*, and V¢ possess initial
features w and h, which denote the width and height of the
nodes corresponding to the original components, respectively.
However, these features alone are insufficient, as lithography
hotspots often result from interactions between adjacent poly-
gons. Therefore, we propose extracting three-stage neighbor
information along different edge types to capture node neigh-
bor information more comprehensively, as illustrated in Fig. 4.

1-hop neighbor information involves fusing the features of
node i and its neighbors N;. If ¢;; € E" and J € Nj, the widths of
node i and node j are concatenated and passed through a shared
MLP to generate a new feature W, which is stored on the
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Fig. 4. Overview of the proposed framework. The update mechanisms for horizontal and vertical edges in the figure are similar. Horizontal edges are updated
based on w, modifying the attributes W, w, ar, while vertical edges are updated based on &, modifying the attributes H, n, ar.

edge e;;. These edge features W are subsequently aggregated to
node i using (9). For e;; € E” and j € N;, height information is
used to generate the new feature H through a similar process.

2-hop neighbor information involves the fusion of the
features of node i and its neighbors N; based on the 1-hop
neighbor information. The transformation process is similar to
that of 1-hop neighbor information, with w and % replaced by
W and H. In addition, for ¢;; € E" and Jj € Nj, the h feature
of the node i is included in the calculations. For e;; € EV and
J € Nj, the w feature of node i is incorporated. By applying (6)
to the edge features, the 2-hop neighbor information @ and 7
is generated.

3-hop neighbor information concatenates the node features
w, h, W, and @ of node i and node j € N; into vectors if
ejj € E" while the node features w, h, H, and n are combined
into vectors if e;; € E¥, which are then transformed into hidden
states with an MLP. Subsequently, the hidden states of node i
and node j are concatenated and passed through another MLP
to determine their relationship. The new feature for node i is
derived using (6) on the generated hidden states.

The update process for three-stages message passing is
shown in Algorithm 1. In the heterograph, updates for 1-hop
and 2-hop involve the V? and V*, and the node features
are updated along the horizontal and vertical connections.
Using all node features in message passing can increase
model inference time and hinder the ability of the model to
learn key features. Therefore, in the 1-hop stage, only the
width or height features of node i and its neighbors N; are
incorporated into message passing. The 1 x 1 features of
node i and N; are paired to generate higher-dimensional hidden
states. After computing the hidden states of node i and its
neighbors N;, the information is aggregated. To maximize
the retention of geometric information from node i and its

neighbors, attention-weighted aggregation is introduced as the
aggregation function in the 1-hop stage, ensuring that all
neighbor information contributes to the computation of new
features. This serves as the foundation for subsequent feature
learning. Based on the features generated in the 1-hop stage,
the 2-hop stage further updates the features by incorporating
additional information. For example, if ¢;; € E" and JEN;, h
contributes to the update by being concatenated with W; and
W;, whereas if e;; € E”, w is used in the update. After these
two stages, the features are expanded to higher dimensions.
To further explore the relationships between nodes, a 3-hop
message-passing mechanism is proposed. It is divided into
two steps: updating the information of nodes and passing
information between the node and its neighbors. After the two-
stage incremental feature update, different MLPs are used to
convert the concatenated geometric feature vectors in V¥ and
V? into hidden states df representing the complete relationship
between nodes and their neighbors in higher dimensions.
Similarly, to learn more accurate internode relationships, the
generated high-dimensional features are propagated between
nodes once more, resulting in the generation of features ar.
Global max pooling is used to transfer the ar features of V?
to their corresponding V”. Polygon features ar”, representing
the geometric information of all polygons in the layout, are
generated by applying the global maximum pooling to ar of
all polygon nodes VP. For V¥, which do not correspond to
polygons in the layout, global maximum pooling is applied
directly to ar to generate the features ar’. These features,
combined with the global features gf illustrated in (10), form
the graph embedding of original layout.

In Fig. 5(a) and (b), we use principal component analysis
(PCA) to reduce the dimensionality of the embeddings learned
by the CNN method and the proposed GNN method for
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ICCAD12, Wasserstein distance: 2.29

ICCAD19-1, Wasserstein distance: 4.16
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ICCAD19-2, Wasserstein distance: 3.56
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Fig. 5. Embeddings of hotspots obtained from the trained model on the training set and testing set, visualized after applying PCA. The Wasserstein distance
is employed to quantify the difference between the distributions of embeddings. (a) Embedding from the CNN model [24]. (b) Embedding from our method.

visualization. We employ the Wasserstein distance [25] to
quantify the distributional differences of hotspots between the
training and testing data

1
Wy, v) = inf E(IX-YIP)r, p=1 1D
Yov

where the infimum is taken over pairs of 2-D embeddings X
and Y marginally distributed as w and v, respectively. The
CNN method can gather embeddings more densely, aligning
the distribution of the training and test data in ICCAD
2012-28 more effectively. However, for ICCAD 2019-1, which
requires robust generalization, the CNN method maps the
training data into a relatively constrained space, failing to
achieve satisfactory results for test data that deviate from
the training distribution. For simplicity, only the clip2 test
case from ICCAD2019-2 was used for visualization. The
ICCAD 2019-2 dataset tests the model’s ability to detect fine-
grained differences accurately. The CNN method, constrained
by information loss during feature generation, demonstrates
limited capability in effectively capturing these distinctions.
With the improved MTCG representation and the proposed
GNN structure, our method effectively captures the geometric
features of layouts without loss. It disperses layouts with
different characteristics into distinct regions in the embedding
space rather than clustering them together, thereby signif-
icantly enhancing detection accuracy and generalization on
more challenging datasets.

C. Data Augmentation

ICCAD 2012 [3] and ICCAD 2019 [4] both suffer from
the issue of class imbalance. The training data predominantly

consists of nonhotspot areas, while hotspot areas represent
a minority within the datasets. In machine learning method-
ologies, an imbalanced dataset may lead models to exhibit a
tendency to predict input data as the majority class. Therefore,
the introduction of data augmentation techniques is necessary
to mitigate this imbalance by increasing the number of samples
from the minority class. As mentioned in Section II-D, two
dual-graphs can be generated from the same layout. While Vcy,
and Hc, represent the original layout, Hc, and Vc, provide
an alternative representation to augment the minority class.
Inspired by data augmentation techniques in computer vision,
such as rotating or mirroring images [26], similar approaches
can be applied to the proposed heterograph transformation
method to generate additional heterograph representations
from the existing two dual-graphs. This is achieved by flipping
the direction of the edges, swapping the type of edges, and
simultaneously employing them. It can be applied to both
Hc, and Vcy,, as well as Hcp and Ve,. The results of data
augmentation are shown in Fig. 6, where different graph
representations of the same layout are generated.

The proposed data augmentation method extracts different
heterograph representations from the original layout, rather
than generating heterographs from rotated or mirrored layouts.
This approach not only effectively utilizes existing graph
information, reducing the time required to generate additional
data, but also leverages the two pairs of dual-graphs generated
by MTCG, improving the diversity of graph representations. In
addition to employing the aforementioned data augmentation
techniques, oversampling has been introduced to equalize
the number of hotspots and nonhotspots in the training
dataset.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:04:17 UTC from |IEEE Xplore. Restrictions apply.



YAN et al.: LIGHTWEIGHT HETEROGENEOUS GRAPH EMBEDDING FRAMEWORK

Algorithm 1: Update Feature

Data: Graph G(V, E); features of node i: w;, h;; neighbor
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TABLE II
BENCHMARK INFORMATION
Training Set Testing Set
Benchmark —re—a s T #0S  #NES
ICCAD 2012-28 | 1204 17096 | 2524 13503
ICCAD 2019-1 1001 14621
1ccaD 20192 | 47 17785 | 64310 65503
TABLE 111
HOTSPOT DETECTION RESULT COMPARISON
Dataset Method Recall (%) # FA FA (%) Time (s)
TCAD 21 [29] 99.4 2660 19.7 1.4°
DATE’22 [16] 98.4 1731 12.8 3.2b
ICCAD  TCAD’22 [13] 98.8 1099 6.5 19.3%
2012-28  DATE’23 [15] 96.2 880 9.7 7.5°
DAC’24 [17] 98.5 1132 8.4 9.9%
Ours 99.0 783 5.8 2.12
TCAD 21 [29] 80.9 365 25 3.8
ICCAD TCAD’22 [13] 69.1 443 3.0 9.3b
2019-1  DATE™23 [15] 91.6 1257 8.6 8.3b
Ours 91.3 1222 8.4 2.62
TCAD21 [29] 89.8 54974 83.9 3147
ICCAD TCAD’22 [13] 95.2 54391 83.0 112.4%
2019-2  DATE’23 [15] 90.5 54973 83.9 44.90
Ours 94.6 53579 81.8 29.82

nodes of i: N;

Result: Updated node features ar
1S < Vbuvs,
2 for i € S do
3 for j € N; do
4 if ¢; € E" then
5 | Wi < ATTN(F([w;, wj]), Wi);
6 else if e;; € E” then
7 | Hi < ATIN(F((hi. ly). Hy):
g8 fori € S do
9 for j € N; do
10 if ¢; € E" then
u | w;j < MAX(F([hi, W;, Wj]), 0p);
12 else if e;; € E” then
13 | i < MAX(F([wi, Hi, Hj]), ni);
14 for i € S do
15 for j € N; do
16 if ¢ € E" then
17 dfi < F([wi, hi, W, wil);
18 df; < F([wj, hj, W;, wj]);
19 else if e;; € E” then
20 L dfi < F(lwi, hi, H;, ni]);
21 dfi < F([wj, by, Hj, n;]);
22 arj < MAX(F(ldf;, df;]), ary);
23 for i € VP do
24 for j € N; do
25 L ari < MAX(arj, ar;);

03

~

b)

03

(d)

Fig. 6. Data augmentation with MTCG. (a) Other pair of dual-graphs
extracted by MTCG, Hcy,, and Vcy. (b) Flipping directed edges of Hcy, and
Vey. (c) Modifying the edge types of Hcy and Vey. (d) Modifying both the
direction and edge types of Hcy, and Vc,. For simplicity, the polygon nodes
are omitted, as they share the same connectivity as the original data.

IV. EXPERIMENT
The proposed method is tested with the ICCAD 2012 [3]
and ICCAD 2019 [4] benchmarks. One case at the 32-nm

technology node and four cases at the 28-nm technology node
are included in the ICCAD 2012 benchmark. To fully evaluate

*The testing results for Recall and FA of the literature methods are derived
from the data reported in their respective papers.

“Inference time measured on the Nvidia A100 platform.

bInference time reported in their respective papers.

the performance of the model, all 28-nm cases from ICCAD
2012 are consolidated into one, denoted as ICCAD 2012-28.
The ICCAD 2019 benchmark comprises one training dataset
and two testing datasets. Benchmark statistics, including the
number of hotspot regions (#HS) and nonhotspot regions
(#NHS), are described in Table II. Conversion of layout files
into the required heterographs is facilitated by a C4++ program
with the libtorch library. The GNN model is implemented
with Pytorch [27] and DGL [28]. Feature extraction, model
training, and evaluation are conducted on a Linux machine
with a 2.4-GHz CPU and an Nvidia A100 40-GB graphic card.

A. Result Comparison

The performance of the proposed method and several state-
of-the-art approaches are summarized in Table III, outlining
the experimental results across the ICCAD 2012-28 and
ICCAD 2019 benchmarks. In the results comparison, we
present four key metrics: 1) Recall (%), which represents
the probability of correctly detecting hotspots in the testing
data; 2) #FA, the number of nonhotspot samples in the testing
data incorrectly identified as hotspots; 3) FA (%), the ratio of
incorrectly identified nonhotspot samples to the total number
of nonhotspot samples; and 4) Time (s), the inference time
of the model on the entire testing dataset. For the ICCAD
2012-28 benchmark, comparative results are provided for the
graph-based method DATE’22 [16], attention-based method
TCAD’22 [13], binary residual network TCAD’21 [29], neural
architecture search method DATE’23 [15], and LLM-based
method DAC’24 [17]. For the ICCAD 2019 benchmark,
comparative results from DATE’23, TCAD’22, and TCAD’21
are included, DATE’22 and DAC’24 did not provide test
results on the ICCAD 2019 dataset. The proposed method
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Fig. 7. Adjusting the classification threshold allows obtaining the recall of the model at different false alarm for intuitive comparison of different methods.

The black dashed lines intersect at the recall and false alarm depicted in Table III. The gray area delineates the boundary encompassing multiple training

results.

achieves 99.0% recall in the ICCAD 2012-28 dataset while
maintaining the lowest false alarm among the compared
methods, at 783. For the ICCAD 2019 dataset, the results in
ICCAD 2019-1 indicate that the proposed method outperforms
TCAD’22 and is comparable to DATE’23, while achieving
the shortest inference time. In ICCAD 2019-2, the proposed
method achieves a performance comparable to TCAD’22, with
high recall at relatively low false alarms.

As different studies report varying recall and false alarm
rates, comparing model performance becomes less intuitive,
we adjust the classification threshold to achieve consistent
recall performance across varying false alarm rates. By
adjusting thresholds to generate different performance points,
False Alarm—Recall curves are fitted to these points, and the
performance of models from previous studies are plotted on
the same figure. Visual comparison of recall at equal false
alarm rates can be made by drawing lines perpendicular to
the x-axis passing through the performance points of previous
models. Hotspot detection requires maximizing recall while
minimizing false alarm. In other words, the closer the points
are to the top-left corner, the more effective the method. As
shown in Fig. 7, the curve of the proposed method is posi-
tioned to the upper left of most points compared to the other
methods, indicating that the proposed method demonstrates
relatively superior performance in various false alarm levels.

The proposed method consistently achieves a higher recall
in the ICCAD 2012-28 dataset at the same false alarm level
compared to the previous methods. Compared to the previous
graph learning method DATE’22, a recall improvement of
more than 1% is observed at the same false alarm level.
This improvement can be attributed to the more accurate use
of both local and global features in the proposed method.
The introduction of diverse types of nodes, such as block
and space nodes, facilitates a more effective representation
of features across various local regions. The proposed GNN
model processes different features, such as node width and
height, according to edge types, enabling more precise capture
of local features. Additionally, the proposed global features
facilitate more refined clustering of the layout, thereby enhanc-
ing the generalization of the model. The ICCAD 2019-1
dataset primarily tests the accuracy of the model to predict
truly never-seen-before (TNSB) data [4]. The performance of
the proposed method on this dataset is comparable to that

of TCAD’22 and DATE’23 but slightly weaker than that of
TCAD’21. The ICCAD 2019-2 dataset primarily tests the
ability of the model to classify layouts with densely distributed
state spaces [4]. The proposed method outperformed both
TCAD’21 and DATE’23. Although the performance points of
TCAD’22 are located slightly to the upper left of the cyan
average performance curve, they fall within the gray area that
represents the error range, indicating that the performance of
TCAD’22 is comparable to the proposed method. This can
largely be attributed to the proposed 3-hop GNN, which accu-
rately captures local features, while the multilevel aggregation
does not significantly impact the quality of the final learned
graph embedding.

B. Runtime Analysis

Most of the compared works used inference time as a
metric to evaluate model performance. Similarly, the inference
time is utilized as an indicator of the performance of the
proposed model in Table III. To further analyze the runtime
composition of the proposed method, this section presents the
time consumption of each step in the end-to-end process, from
GDS and OAS file input to the determination of whether each
clip is a lithography hotspot. It comprises several parts: gen-
erating the MTCG for each layout and extracting information,
converting the extracted information into heterographs, loading
the heterographs into memory, and the inference time.

The runtime analysis is shown in Fig. 8. The process
of generating MTCG and extracting adjacency matrices and
node features of heterographs is implemented in C++ with
multithreaded optimization, resulting in relatively low time
consumption: approximately 1.9 s for ICCAD 2012, 2.1 s for
ICCAD 2019-1, and 22.3 s for ICCAD 2019-2. This aligns
with the trend of linear growth relative to dataset size. DGL
APIs are invoked in the Build stage to generate heterographs
using this information, a process that can be parallelized.
After generation, the heterographs are merged into larger
heterographs in the Merge stage for parallel evaluation. In
addition to the aforementioned time overhead, we measure the
total inference time required to process all test data that have
been loaded into memory. Observably, the runtime primarily
revolves around invoking DGL APIs to generate heterographs.
To further reduce the end-to-end runtime, benefiting from
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Runtime Analysis Under Different Processing
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Fig. 8. Analysis of runtime on the testing benchmarks. The runtime on the
larger ICCAD 2019-2 dataset is approximately 10x that of the other datasets.

the lightweight nature of the model, multiple models can
be instantiated simultaneously on the experimental GPU.
Leveraging multiprocessing for heterograph generation and
model inference can further optimize the end-to-end runtime.
In the multiprocessing runtime, the maximum time taken by
each stage in each process is selected as the runtime for that
stage.

C. Ablation Study

To more accurately evaluate and verify the robustness of the
proposed method, ablation experiments are conducted from
two perspectives: 1) model structure and 2) data augmentation
methods. The ablation experiments for the model structure
are further divided into those that target the GNN and
those that focus on the features received by the classifier.
Ablation experiments are conducted, as illustrated in Fig. 9,
to validate the proposed model. These experiments remove
specific components to assess their impact. Compared to the
proposed method, Fig. 9(a) uses only 2-hop message passing,
omitting the step of transmitting df between the nodes and
their neighbors. In Fig. 9(b), gf of the graph is removed to
verify its effectiveness. Fig. 9(c) combines Fig. 9(a) and (b),
removing both 3-hop message passing and gf to investigate
the mutually reinforcing relationship between these two types
of features. Fig. 9(d)—(f) removes different parts of the global
graph features individually to compare their effectiveness. The
ablation experiments described above are referred to as remove
3-hop (RT), remove global features (RG), remove both 3-hop
and global features (RTG), remove polygon features (RP),
remove space features (RS), and remove both polygon and
space features (RPS), respectively.

In addition to the aforementioned ablation experiments
on the proposed method, the effectiveness of the proposed
data augmentation methods is further validated. The data
augmentation methods used are categorized into three types:
1) multiple dual-graphs; 2) modification of the heterograph
structure; and 3) oversampling. The corresponding ablation
settings for these three methods are as follows: 1) using Hc,
and Vcj, dual-graph as the original data, also Hcj, and Ve,
dual-graph as the augmented data, and oversampling applied
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Fig. 9. Ablation experiment setup. (a) 3-hop message passing is removed, and
df is used as the higher-order node feature. (b) Global graph features gf are
removed. (c) Both 3-hop message passing and gf are removed. (d) Polygon-
type nodes are removed. (e) Space-type nodes are removed. (f) Only gf is
used.

as augmentation techniques on both dual-graphs; 2) only the
dual-graph He, and V¢, are used as training data, with edge
direction reversal, edge type modification, and oversampling
as augmentation techniques; and 3) using Hc, and Vcj, dual-
graph with only oversampling. The results from these three
approaches demonstrate that the proposed data augmentation
methods can effectively address data imbalance issues and
enhance the generalization capabilities of the model. The abla-
tion experiments described above are referred to as both pair
and oversampling (BPO), single pair and full augmentation
(SPA), and single pair and oversampling (SPO), respectively.

To directly compare the proposed method with the results
from the ablation experiments, the classification thresholds of
methods are adjusted to fix the recall. The false alarm and
inference times are then compared, as presented in Table IV.
The results indicate that in all ablation settings, the false alarm
increases, demonstrating the effectiveness of each component
of the proposed method.

When the 3-hop convolution is removed in RT, there is a
significant increase in false alarms, underscoring the importance
of the 3-hop convolution. However, it is also time-consuming,
with the 3-hop convolution accounting for 23%-42% of the
inference time. After the removal of global features in RG,
the impact on the false alarm for ICCAD 2012-28 and
ICCAD 2019-2 is smaller than in RT, but the is opposite to
ICCAD 2019-1. This suggests that the introduction of global
features enhances the generalization ability of model without
significantly affecting inference time. The removal of both
3-hop convolution and global features in RTG has an even more
pronounced impact on performance. RP, which does not pass
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TABLE IV
EXPERIMENT RESULTS OF ABLATION
Benchmarks ICCAD 2012 ICCAD 2019-1 ICCAD 2019-2
Recall(%) FA(%) #FA Time(s) | Recall(%) FA(%) #FA Time(s) | Recall(%) FA(%) #FA Time(s)
Origin 5.8 783 2.1 8.3 1222 2.6 81.8 53579 29.8
RT 14.6 1966 1.6 9.4 1380 1.5 85.6 56109 16.8
RG 8.4 1131 2.3 9.7 1415 2.5 84.2 55193 28.6
RTG 11.8 1598 1.2 10.9 1588 1.2 86.0 56328 15.4
RP 5.9 798 2.3 8.7 1268 2.5 85.1 55797 31.2
RS 9.0 12.1 1629 24 13 10.8 1587 2.6 946 84.7 55499 29.3
RPS 79.1 10678 <0.1 76.7 11219 <0.1 95.3 62443 <0.1
BPO 13.4 1817 2.6 9.0 1309 2.5 82.2 53844 31.5
SPA 6.4 865 2.6 8.5 1246 2.6 84.0 55032 29.2
SPO 8.7 1175 24 8.8 1287 2.9 82.6 54138 29.3
ICCAD 2012-28 ICCAD 2019-1 ICCAD 2019-2
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Fig. 10. Ablation experiment result. (a) Ablation experiments on the GNN architecture. (b) Ablation experiments on the classifier. (c) Ablation experiments

on training data.

polygon node features to the classifier, has little effect on the
results for ICCAD 2012 and ICCAD 2019-1 but significantly
affects ICCAD 2019-2, where the model needs to identify
minor layout differences accurately. The results of RS show
that the features of space nodes also have a substantial impact
on the performance of model. If only global features are used,
the false alarm rises to an unacceptable level, further proving
the effectiveness of the proposed graph embedding model.

In the ablation experiments for the proposed data augmen-
tation method, BPO achieves a balance between hotspot and
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nonhotspot data in the training set by incorporating both Hcy,
and Ve, dual-graph and applying oversampling. SPA uses
Vcp, and Hce, dual-graph as training data, employing edge
direction reversal, edge type modification, and oversampling
for data augmentation. SPO only utilizes Vc;, and Hc, dual-
graph, with oversampling as the augmentation method. Fig. 10
presents the False Alarm—Recall curves for different ablation
settings in various datasets. Fig. 10(a) illustrates the ablation
experiments on the GNN architecture. With the exception of
RG on ICCAD 2012-28, which partially overlaps with the
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proposed method in the upper left corner, all other curves lie
below it, further validating the effectiveness of the proposed
GNN structure. Fig. 10(b) shows the ablation experiments for
the features received by the classifier. Similarly, the majority
of ablation experiment results fall below the curve of the
proposed method. The results shown in Fig. 10(c) are also
similar. For the ICCAD 2012 dataset, the comparison between
the origin method and BPO, as well as between SPA and
SPO, indicates that the proposed methods of edge reversal and
edge type modification significantly impact the trained model.
For the ICCAD 2019-1 test data, the effect of the training
data on model performance is not substantial. However, for
the ICCAD 2019-2 test data, using both V¢, and Hc, dual-
graph alongside Hcj, and Ve, dual-graph as training data more
accurately captures the subtle differences in the layout.

V. CONCLUSION

This article introduces a method utilizing MTCG that
converts layouts into heterographs, while simultaneously
extracting global features to enhance model generalization.
The resulting heterographs are processed with an efficient
incremental message-passing GNN to learn embeddings and
perform classification. In addition, data augmentation tech-
niques leveraging the MTCG structure are proposed to mitigate
data imbalance issues within the benchmarks. The experimen-
tal results demonstrate the superior performance of our method
on the ICCAD 2012 benchmark, achieving 99.0% recall with
only 783 false alarms. We further evaluate the generalization
of our detector by the ICCAD 2019 benchmark, yielding sat-
isfactory results. Moreover, our method significantly reduces
inference times on both benchmarks.
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