
RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep

Reinforcement Learning and Space Reduction

DONGSHENG ZUO, Microelectronics Thrust, The Hong Kong University of Science and Technology -

Guangzhou Campus, Guangzhou, China

JIADONG ZHU, Microelectronics Thrust, The Hong Kong University of Science and Technology - Guangzhou

Campus, Guangzhou, China

YIKANG OUYANG, Microelectronics Thrust, The Hong Kong University of Science and Technology -

Guangzhou Campus, Guangzhou, China

YUZHE MA, Microelectronics Thrust, The Hong Kong University of Science and Technology - Guangzhou

Campus, Guangzhou, China

Multiplication is a fundamental operation in many applications, and multipliers are widely adopted in various circuits.

However, optimizing multipliers is challenging due to the extensive design space. In this paper, we propose a multiplier design

optimization framework based on reinforcement learning. We utilize matrix and tensor representations for the compressor

tree of a multiplier, enabling seamless integration of convolutional neural networks as the agent network. The agent optimizes

the multiplier structure using a Pareto-driven reward customized to balance area and delay. Furthermore, we enhance the

original framework with parallel reinforcement learning and design space pruning techniques and extend its capability to

optimize fused multiply-accumulate (MAC) designs. Experiments conducted on diferent bit widths of multipliers demonstrate

that multipliers produced by our approach outperform all baseline designs in terms of area, power, and delay. The performance

gain is further validated by comparing the area, power, and delay of processing element arrays using multipliers from our

approach and baseline approaches.

1 Introduction

In the era of rapid advancements in neural networks and streaming media applications, the demand for com-
putational power has intensiied. Notably, the multiply-accumulate (MAC) computation can constitute over
99% of operations in standard deep neural networks. At the hardware layer, multipliers and MAC circuits are
integral to the architecture of compute-intensive circuits, signiicantly impacting the system performance, energy

Dongsheng Zuo and Jiadong Zhu contributed equally to this research.

This work is supported in part by the Department of Education of Guangdong Province (No. 2024KTSCX037), the Guangzhou-HKUST(GZ)

Joint Funding Program (No. 2023A03J0155), and the Guangzhou Municipal Science and Technology Project (Municipal Key Laboratory

Construction Project, Grant No.2023A03J0013).
Authors’ Contact Information: Dongsheng Zuo, Microelectronics Thrust, The Hong Kong University of Science and Technology - Guangzhou

Campus, Guangzhou, China; e-mail: dzuo721@connect.hkust-gz.edu.cn; Jiadong Zhu, Microelectronics Thrust, The Hong Kong Univer-

sity of Science and Technology - Guangzhou Campus, Guangzhou, China; e-mail: jzhu484@connect.hkust-gz.edu.cn; Yikang Ouyang,

Microelectronics Thrust, The Hong Kong University of Science and Technology - Guangzhou Campus, Guangzhou, China; e-mail:

youyang929@connect.hkust-gz.edu.cn; YuzheMa,Microelectronics Thrust, TheHongKongUniversity of Science and Technology - Guangzhou

Campus, Guangzhou, Guangdong, China; e-mail: yuzhema@hkust-gz.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7309/2025/1-ART

https://doi.org/10.1145/3711850

ACM Trans. Des. Autom. Electron. Syst.

HTTPS://ORCID.ORG/0009-0004-9346-6383
HTTPS://ORCID.ORG/0009-0001-6935-6107
HTTPS://ORCID.ORG/0009-0007-0714-9501
HTTPS://ORCID.ORG/0000-0002-3612-4182
https://orcid.org/0009-0004-9346-6383
https://orcid.org/0009-0001-6935-6107
https://orcid.org/0009-0007-0714-9501
https://orcid.org/0000-0002-3612-4182
https://doi.org/10.1145/3711850
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711850&domain=pdf&date_stamp=2025-01-14

2 • D. Zuo et al.

consumption, spatial requirements, and design complexities. Therefore, swiftly designing multipliers and MACs
that meet metric speciications such as power, performance, and area (PPA) becomes imperative.

Multiplier design optimization at the architecture level is non-trivial due to the huge design space. For an 8-bit
multiplier, the design space size is on the order of 109, while for a 16-bit multiplier, it reaches approximately 1023.
This exponential scaling highlights the signiicant complexity involved in efectively exploring and optimizing
designs as bit-width increases. The multiplier design is fundamentally segmented into three primary components:
a partial product generator (PPG), a compressor tree (CT), and a carry propagation adder (CPA). Among these,
the optimization of the Compressor Tree (CT) is pivotal, as it signiicantly inluences the PPA of a multiplier. The
architecture of the compressor tree was irst introduced in [1], designed for parallel compression (i.e., addition) of
partial products in multiplication operations. This innovation has enabled the application of compressor trees in
other datapath circuits, such as MACs and vector adders. Conventionally, MAC operations extend the functionality
of multipliers by incorporating an accumulator after multiplication, resulting in increased operational delay. In
contrast, the merged MAC is proposed, which enables the execution of MAC operations within the multiplication
time by integrating the addend directly into the partial products [2]. This approach also allows the optimization
methodologies developed for multipliers to be applied to MAC design optimization. Generally, datapath designs,
including adders, multipliers, and MACs, can be completed manually. Take multiplier design as an example.
The manual design includes Wallace tree structure [1], Dadda tree structure [3], and further optimized designs
based on them [4ś7], which efectively optimize area, power, and performance for speciic technology nodes
and applications. The Wallace tree strategically organized the compressor layers [4]. An area-reduced tree is
proposed by using a maximum number of 3:2 compressors early and carefully placing 2:2 compressors [6]. Itoh et

al. [5] proposed an advanced rectangular-styled tree structure, tailored speciically for 32-bit × 24-bit multipliers.
Optimizations for merged MAC structures have been explored based on the characteristics of multiply-accumulate
operations. Basiri et al. [8] proposed a high-radix Booth-encoded merged MAC targeting loating-point DSP
applications. Their design combines Wallace and Braun tree structures to optimize circuit depth and area,
efectively balancing performance and resource usage for loating-point operations. Tung et al. [9] proposed a
method where the inal addition and accumulation of higher signiicance bits are merged to the partial products
of the next multiplication operation. Zhang et al. [10] proposed a strategy optimizing pipeline merged MAC.
These regular structure-based designs may not always meet the stringent PPA speciications required. To address
this, full custom-designed multipliers are developed, which are inely optimized for speciic fabrication processes
or unique application scenarios [11ś13]. However, a signiicant engineering efort is required to explore the huge
design space with manual design, which limits design lexibility and eiciency.
The automatic generation or search methods have provided a more lexible solution to datapath designs. A

three-dimensional method for designing the compressor tree was proposed, which utilized an input-to-output
delay model [14ś16]. Integer linear programming (ILP) is another widely investigated approach for datapath
circuit optimization. Xiao et al. [17] employed ILP for global optimization of multiplier design by minimizing
the total number of compressors in the compressor tree. In addition, ILP has also been applied for exploring
adder trees based on analytical area, power, and timing models [18]. However, these works may sufer from the
long runtime of the ILP solver as well as the misaligned objective between the modeled PPA metrics and real
synthesized metrics. Heuristic search strategies utilize various pruning techniques and avoid exhaustive searches
[19ś23]. A heuristic is introduced in [21] for the design of compressor trees using generalized parallel counters
(GPCs), aiming to optimize the balance between logic utilization and delay. Kumm et al. [23] further advanced
heuristic method in [21, 22] and combined the heuristic method the with ILP.
Recently, machine learning methodologies have become promising solutions for circuit optimization and

design space exploration, where various learning models are leveraged as surrogate models to evaluate designs
during the search or optimization process [24ś26]. An active learning-based preix adder exploration framework
is proposed in [25], which uses the Gaussian process regression model to predict the delay and area based on the

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 3

feature extracted from the preix tree structure. Geng et al. [24] further facilitated automatic feature learning
for preix adder structures and deployed a sequential optimization framework that employs the graph neural
process as a surrogate model, which enables a more eicient and efective adder structure exploration. However,
the exploration still highly relies on a regression model as a proxy to the real PPA, whose modeling accuracy
signiicantly afects the inal results. Contrary to existing approaches, reinforcement learning (RL) integrates
actual PPA evaluations directly into its optimization loop, demonstrating its feasibility by eiciently navigating
complex design spaces. Recent advancements have seen RL tackle a variety of challenges within electronic
design automation (EDA), as evidenced by applications across diferent domains such as preix circuit design
optimization, analog circuit design optimization and gate sizing [26ś28]. Given the complexity of multiplier design
and the vastness of its design space, the feasibility of reinforcement learning in multiplier design optimization is
underscored. RL addresses this gap by leveraging real synthesized metrics as rewards, allowing optimization
of designs that perform better than analytical models after synthesis. In addition, RL algorithms can also be
enhanced with parallelism by implementing diferent environment instances. By utilizing multiple threads, the
stability and eiciency of deep reinforcement learning algorithms are enhanced.
The design space of the multiplier is huge to explore. To address this, we have proposed an RL-based frame-

work that is tailored for the optimization of multipliers and merged MACs [29]. However, obtaining a suitable
representation of the multiplier structure is non-trivial due to its inherent complexity. To address this, we employ
matrix and tensor representations for the compressor tree in a multiplier, enabling seamless integration of neural
networks as the agent network in RL. These representations efectively capture the structural characteristics of the
multiplier. The agent can learn to make efective decisions by optimizing the trade-of between key performance
metrics such as power, performance, and area using a Pareto-driven approach. Furthermore, to exploit the huge
design space more eiciently, the proposed framework also features design space pruning and parallel RL agent
training for more eicient optimization. To validate the efectiveness of the proposed framework, we applied it
to design and optimize multipliers with diferent bit widths. The experimental results show that our approach
outperforms various baseline methods, including legacy designs, evolutionary algorithms, and integer linear
programming, in terms of area and delay. Moreover, to validate the efectiveness of the optimized multipliers and
MACs, a computation module, e.g., a process element (PE) array, is implemented with the multipliers and MACs
generated by the RL agent, and the PPA gets improved accordingly. In summary, the contributions are as follows:

• We propose a multiplier optimization framework based on reinforcement learning, marking the irst instance
of applying reinforcement learning for this purpose to our knowledge.
• We present a matrix and a tensor representation for multipliers, which enables the seamless integration
of deep neural networks as the agent network. A Pareto-driven reward is employed to accommodate the
trade-of between the area and delay so that the agent can learn to achieve Pareto-optimal designs.
• To improve search eiciency within this framework, we further enhance the framework with a parallel
training methodology to enable faster and more stable training.
• We also broaden the scope of the RL-based multiplier design framework to include fused MAC to validate
the applicability.
• Experimental results demonstrate that the multipliers and MACs produced by RL agents dominate all
baseline designs in terms of both area and delay. Furthermore, applying the optimized multipliers and
MACs to the implementation of a larger computation module also results in PPA improvement, which
validates the efectiveness of the optimized designs.

ACM Trans. Des. Autom. Electron. Syst.

4 • D. Zuo et al.

Result

PP Generation

A(N-bit) B(N-bit)

Compressor Tree

Full Adder

A(N-bit) B(N-bit)

Full Adder

1 0 1 0
0 1 0 1X
1 0

1

0
0 0 0

0

1 0 1 0
0 0 0 0

0

1

00
0
0

0
1

0

10
0

0000 1
0

1
0

1
0

1 00 0 1 1 0 0

Stage1

Stage2

0

2:2
Compressor

3:2
Compressor

Fig. 1. Multiplier architecture

2 Preliminary

2.1 Multiplier Architecture

The multiplier typically comprises three primary components: a partial product generator (PPG), a compressor
tree (CT), and a carry propagation adder, as shown in Figure 1. PPG generates partial products (PPs) from the
multiplicand and multiplier, while the CT compresses these PPs into two parallel rows. Subsequently, an adder is
utilized to aggregate these two rows of PPs, culminating in the inal product. A typical partial product generator
generally employs � 2 AND gates for an � -bit multiplier. A CT has multiple compression stages to compress the
PPs into two rows. Predominantly, there are 3:2 compressors and 2:2 compressors implemented through a full
adder and a half adder, respectively. A 3:2 (resp. 2:2) compressor applied at column � of stage � receives 3 (resp. 2)
partial products as input from column � of stage � , passing the sum output to column � of stage � + 1, and the carry
out to column � + 1 of stage � + 1. Consequently, a 3:2 compressor decreases the partial products of column � by
two, while a 2:2 compressor reduces them by one, each incrementing the partial products in column � + 1 by one.

2.2 Q-Learning

RL encompasses a collection of optimization problems referred to as state � , with a corresponding set of actions �.
An agent transitions from one state � to another state �′ by executing an action � ∈ �, consequently receiving a
reward � (�, �) as an evaluation from the RL environment. The model governing action selection is known as the
policy � . The primary objective of the RL agent is to devise a policy that optimizes the cumulative reward.

Q-learning is an RL algorithm that learns the scores of each action � for a given state � , and the score is called
Q-value, represented by � (�, �). According to Bellman equation [30], the Q-value is calculated as follows:

� (�, �) = � (�, �) + � max
�′

� (�′, �′) , (1)

where �′ indicates the next state, and � is the discount factor. Therefore, the Q-value is updated by:

� (�, �) = � (�, �) + �
[

� (�, �) + � max
�′

� (�′, �′) −� (�, �)
]

, (2)

where � is the learning rate. In this paper, we utilize the deep Q-learning approach, leveraging a deep neural
network to approximate the Q-value. Here, the state � represents the architecture of the multiplier, detailed in

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 5

Section 3.2. An action � alters the current multiplier architecture into a new one, efectively progressing to the
next state. The reward � is quantiied by the enhancements in the multiplier’s area and delay metrics.

2.3 Advantage Actor-Critic

The A2C algorithm [31] addresses the challenges of high variance and unstable learning due to strong correlations
between consecutive states by splitting the traditional RL model into two components: an actor that enacts
policies and a critic that evaluates these actions. A policy network � (� |�;�) and a value network � (�;�) are
employed, where � and� are the parameters of two neural networks, respectively. The synchronous multi-thread
coordination method in A2C ensures uniform learning and parameter updates. This synchronization removes the
need for diferent agents in A3C [31], as the single agent with diferent environment instances suices, while
therefore avoiding updates based on outdated copies, signiicantly stabilizing the training process and ofering
suicient parallelism and efectiveness [32, 33]. The A2C algorithm employs bootstrapped advantage estimates
generated by the critic instead of mere state-value approximations to enhance gradient estimation accuracy and
learning eiciency [34]. With state � and action �, The advantage is deined as:

�̂(�, �) = �� (�, �) −�� (�), (3)

where �� (�, �) indicates the action-value function that estimates the expected reward that can be obtained
by taking action � and then following strategy � at state � , while �� (�) indicates the state-value function that
estimates the expected reward that can be obtained in state � if the strategy � is followed from that state instead
of taking a speciic action [32, 35].

For a known transition (�� , �� , �� , ��+1), to facilitate calculations of advantage function, we use a value network
� (�� ;�) to approximate the state-value function �� (��), and estimate �� (�� , ��) through Monte Carlo methods
based on the Bellman equation. Consequently, we can approximate (3) as:

�̂(�� , ��) ≈ �� + � · � (��+1;�) − � (�� ;�), (4)

where � is the discount factor.

3 Proposed Method

3.1 Overview

As illustrated in the left of Figure 2, our original RL-MUL framework leverages a reinforcement learning approach
for multiplier design optimization. An RL agent engages in iterative interactions with its environment from an
initial state �0. At any given state �� , the RL agent, guided by a policy � derived from the policy network, selects
an action �� from a set of legal actions. This action modiies the current multiplier coniguration, leading to a
new state ��+1. Subsequently, a reward �� is computed using EDA tools, facilitating the neural network model’s
update based on the received feedback.

3.2 Multiplier Representation

The RL state space, denoted as S, consists of all possible conigurations of � -bit multipliers. We recognize the
count of various compressors in each column as a critical attribute inluencing the synthesized performance
metrics of the multipliers. Consequently, we characterize the multiplier architecture using the aggregate counts of
3:2 and 2:2 compressors across columns, encapsulated by a matrix� ∈ R2�×2. In this matrix, the irst and second
rows quantify the total 3:2 and 2:2 compressors in each column, respectively. An illustration of a 4-bit multiplier
structure alongside its matrix representation � is provided in Figure 3. To derive a complete multiplier structure
from � , the compressors are allocated to speciic stages. However, the mapping from � to the structures is
not unique since diferent assignments of compressors in multiple stages may have the same overall number in

ACM Trans. Des. Autom. Electron. Syst.

6 • D. Zuo et al.

Agent

Stage 1

Stage 2

6 5 4 3 2 1 0

6 5 4 3 2 1 0

Stage 1

Stage 2

6 5 4 3 2 1 0

6 5 4 3 2 1 0

�ݏ
Change

Structure
Reward

calculation1+�ݏ

RL-MUL

Environment

Synthesis

& STA

�ݎ
1+�ݏ

��

Fig. 2. RL-MUL framework.

01123456

Stage 1

 matrix representation

tensor representation

01123456

Stage 2
01123456

<latexit sha1_base64="knQ7tIj2kjjCc7W4pPRNNyRhvfc=">AAADAnicjVHNTtwwGBxSaOmWli09colYdcVplSAEvVRCcOFIJRaQCEJJ1iwW+ZPjoKIVt74JN26oV16AKz1UfYP2LRgbI2gRKracjOeb+ezPX1JlstZB8GvMezE+8fLV5OvWm6m376bb72e26rJRqeinZVaqnSSuRSYL0ddSZ2KnUiLOk0xsJ0drJr59LFQty2JTn1RiL4+HhTyQaaxJ7bc/R4kYymKU5LFW8utpK+gG3bC7wEXkRxEJtzGzFYlicC/eb3eCXmCH/xiEDnTgxkbZ/okIA5RI0SCHQAFNnCFGzbmLEAEqcnsYkVNE0sYFTtGit6FKUBGTPeJ3yN2uYwvuTc7aulOeknEpOn18pKekThGb03wbb2xmwz6Ve2Rzmrud8J+4XDlZjUOy//PdKZ/rM7VoHOCTrUGypsoyprrUZWnsq5ib+w+q0sxQkTN4wLgiTq3z7p1966lt7eZtYxv/bZWGNfvUaRv8Mbdkg8N/2/kYbC30wqVe+GWxs7LqWj2JWcxhnv1cxgrWsYE+c5/hCtf44X3zzr0L7/ut1Btzng/4a3iXN93VotU=</latexit>

[

0 0 1 2 1 0 0

0 2 1 0 0 0 0

]

Compressor Tree

<latexit sha1_base64="wcgnoDkChr1071+VFglGfTGVEYs=">AAACJXicbVDLSgMxFM3UVx1fVZdugsXiqmRE1IWLggtdVrC10Cklk962oZnMkGTEMvRn3PgrblxYRHDlr5hOi2jrCYGTc88l954gFlwbQj6d3NLyyupaft3d2Nza3ins7tV1lCgGNRaJSDUCqkFwCTXDjYBGrICGgYD7YHA1qd8/gNI8kndmGEMrpD3Ju5xRY6V24dIPoMdlGoTUKP44ckmJlLzsWIZ9PxPI9Fkirg+y82NuF4qkTDLgReLNSBHNUG0Xxn4nYkkI0jBBtW56JDatlCrDmYCR6ycaYsoGtAdNSyUNQbfSbMsRPrJKB3cjZa80OFN/d6Q01HoYBtZp5+vr+dpE/K/WTEz3opVyGScGJJt+1E0ENhGeRIY7XAEzYmgJZYrbWTHrU0WZscG6NgRvfuVFUj8pe2dl7/a0WLmexZFHB+gQHSMPnaMKukFVVEMMPaEX9IbGzrPz6rw7H1Nrzpn17KM/cL6+AVP2oEI=</latexit>

[

0 0 1 1 1 0 0

0 0 0 1 0 0 0

]

<latexit sha1_base64="mz84/XiFKzkO9F30/EGttEc7CQU=">AAACJHicbVDLSsNAFJ34rPEVdekmWCyuSiKigpuCIC4r2Ac0oUymt+3QySTMTMQS+jFu/BU3Lnzgwo3f4jSNRVvPMHDm3HOZe08QMyqV43waC4tLyyurhTVzfWNza9va2a3LKBEEaiRikWgGWAKjHGqKKgbNWAAOAwaNYHA5rjfuQEga8Vs1jMEPcY/TLiVYaaltXXgB9ChPgxArQe9HplNyS87P8bzsPVVMD3hn6m1bRafsZLDniZuTIspRbVtvXiciSQhcEYalbLlOrPwUC0UJg5HpJRJiTAa4By1NOQ5B+mm25Mg+1ErH7kZCX67sTP3dkeJQymEYaKeery9na2Pxv1orUd1zP6U8ThRwMvmomzBbRfY4MbtDBRDFhppgIqie1SZ9LDBROldTh+DOrjxP6sdl97Ts3pwUK1d5HAW0jw7QEXLRGaqga1RFNUTQA3pCL+jVeDSejXfjY2JdMPKePfQHxtc376SgFg==</latexit>

[

0 1 0 0 0 0 0

0 1 1 0 0 0 0

]

<latexit sha1_base64="WSvTkspEC6l7g+U738YI1K/+Kks=">AAACz3icjVHLTsJAFD3UF+ILdemmEUxckZaFujS6cWMCiYAJEDMtAzT0lXaqMQTj1h9wq39l/AP9C++MQ6ISo9O0PXPuPWfm3uvEvpcKy3rNGXPzC4tL+eXCyura+kZxc6uZRlni8oYb+VFy6bCU+17IG8ITPr+ME84Cx+ctZ3Qq461rnqReFF6I25h3AzYIvb7nMkFUp9wJmBg6/fH5pHxVLFkVSy1zFtgalKBXLSq+oIMeIrjIEIAjhCDsgyGlpw0bFmLiuhgTlxDyVJxjggJpM8rilMGIHdF3QLu2ZkPaS89UqV06xac3IaWJPdJElJcQlqeZKp4pZ8n+5j1WnvJut/R3tFdArMCQ2L9008z/6mQtAn0cqRo8qilWjKzO1S6Z6oq8ufmlKkEOMXES9yieEHaVctpnU2lSVbvsLVPxN5UpWbl3dW6Gd3lLGrD9c5yzoFmt2AcVu14tHZ/oUeexg13s0zwPcYwz1NAg7xiPeMKzUTdujDvj/jPVyGnNNr4t4+EDX46T0g==</latexit>

M

<latexit sha1_base64="RtfvI8xdDt1B7vcRzR28K+kbeQY=">AAAC13icjVHLTsJAFD3UF74Rl24awQQ3pGWhLoluXGLCywCStgzQ0FfaqZEQ4s649Qfc6h8Z/0D/wjtjSVRidJq2Z86958zce83AsSOuaa8pZWFxaXklvbq2vrG5tZ3ZydYjPw4tVrN8xw+bphExx/ZYjdvcYc0gZIZrOqxhjs5EvHHNwsj2vSofB6zjGgPP7tuWwYnqZrL5tmvwodmfVKdXk4J2OM13MzmtqMmlzgM9ATkkq+JnXtBGDz4sxHDB4IETdmAgoqcFHRoC4jqYEBcSsmWcYYo10saUxSjDIHZE3wHtWgnr0V54RlJt0SkOvSEpVRyQxqe8kLA4TZXxWDoL9jfvifQUdxvT30y8XGI5hsT+pZtl/lcnauHo40TWYFNNgWREdVbiEsuuiJurX6ri5BAQJ3CP4iFhSypnfValJpK1i94aMv4mMwUr9laSG+Nd3JIGrP8c5zyol4r6UVG/KOXKp8mo09jDPgo0z2OUcY4KauR9g0c84Vm5VG6VO+X+M1VJJZpdfFvKwwdlHJYd</latexit>

T
(0)

<latexit sha1_base64="Dlhw5BRSxXtiU8IeCzHQvYFNjuY=">AAAC13icjVHLTsJAFD3UF74Rl24awQQ3pGWhLoluXGLCywCStgzQ0FfaqZEQ4s649Qfc6h8Z/0D/wjtjSVRidJq2Z86958zce83AsSOuaa8pZWFxaXklvbq2vrG5tZ3ZydYjPw4tVrN8xw+bphExx/ZYjdvcYc0gZIZrOqxhjs5EvHHNwsj2vSofB6zjGgPP7tuWwYnqZrL5tmvwodmfVKdXk4J+OM13MzmtqMmlzgM9ATkkq+JnXtBGDz4sxHDB4IETdmAgoqcFHRoC4jqYEBcSsmWcYYo10saUxSjDIHZE3wHtWgnr0V54RlJt0SkOvSEpVRyQxqe8kLA4TZXxWDoL9jfvifQUdxvT30y8XGI5hsT+pZtl/lcnauHo40TWYFNNgWREdVbiEsuuiJurX6ri5BAQJ3CP4iFhSypnfValJpK1i94aMv4mMwUr9laSG+Nd3JIGrP8c5zyol4r6UVG/KOXKp8mo09jDPgo0z2OUcY4KauR9g0c84Vm5VG6VO+X+M1VJJZpdfFvKwwdnf5Ye</latexit>

T
(1)

Fig. 3. Structure representation.

each column. To achieve a distinctive representation, we advance to a tensor representation that ofers more
informative insights, as illustrated in Figure 3.
We represent the tensor as T ∈ R

�×2�×�� , with � indicating the total kinds of compressors used and
�� the stage count. Speciically, we utilize 3:2 and 2:2 compressors, thus � = 2. This framework is designed
for potential extension to accommodate more compressor variants. The tensors � (0) = T0,:,: ∈ R

2�×�� and

�
(1)

= T1,:,: ∈ R
2�×�� respectively map the placement of 3:2 and 2:2 compressors. The elements �

(0)
� � and �

(1)
� �

denote the quantity of 3:2 and 2:2 compressors at the �-th column of the �-th stage. Given a matrix� that contains
the information of the overall number of compressors in each column, we can construct the tensor representation
T correspondingly based on an assignment scheme of the compressors in diferent stages.

For the assignment process, we employ a deterministic method that assigns compressors from the least to the
most signiicant bit columns, prioritizing 3:2 compressors and then utilizing 2:2 compressors where applicable. This
method progresses through stages until all compressors are allocated, as detailed in Algorithm 1. This approach
guarantees a unique tensor representation for each multiplier structure, facilitating precise and unambiguous
characterizations of the multiplier architecture.

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 7

Algorithm 1 Compressor Assignment

Require: � : Matrix representation
Ensure: T : Tensor representation.
1: for � ← 1 �� 2� do

2: � ← 0
3: while column � exists not assigned comp. do
4: Assign 3:2 comp. to stage � column � irst

5: Update �
(0)
� � in �

(0)

6: if Remaining PPs ≥ 2 then
7: Assign 2:2 comp. to stage � column �

8: Update �
(1)
� � in �

(1)

9: end if

10: � ← � + 1
11: end while

12: end for

13: T0,:,: ← �
(0)

14: T1,:,: ← �
(1)

0101

0000

01101

0000

010010

0 0

0

1 0

0

010010

0 0

1

00

Final Adder

010010

0 0

1

0 00 1 1 C

Accumulator

111010 1

01123456

PP Generation

PP

Compressor Tree

Final Adder

A(N-bit) B(N-bit) C(2N-bit)

 M
u
ltip

lier

Accumulator

Final result

0101

010 1
<latexit sha1_base64="HwTS/tPzwSuhdjC9bLl84CF4/wA=">AAACynicjVHLSsNAFD2N7/qqunQTLIKrkoioS9GNCxcV7ANskWQ6rUPzYmYilOLOH3CrHyb+gf6Fd8YU1CI6IcmZc8+5M/feMIuE0p73WnJmZufmFxaXyssrq2vrlY3NpkpzyXiDpVEq22GgeCQS3tBCR7ydSR7EYcRb4fDMxFt3XCqRJld6lPFuHAwS0Rcs0ES1OlrEXJVvKlWv5tnlTgO/AFUUq55WXtBBDykYcsTgSKAJRwig6LmGDw8ZcV2MiZOEhI1z3KNM3pxUnBQBsUP6Dmh3XbAJ7U1OZd2MTonoleR0sUuelHSSsDnNtfHcZjbsb7nHNqe524j+YZErJlbjlti/fBPlf32mFo0+jm0NgmrKLGOqY0WW3HbF3Nz9UpWmDBlxBvcoLgkz65z02bUeZWs3vQ1s/M0qDWv2rNDmeDe3pAH7P8c5DZr7Nf+w5l8eVE9Oi1EvYhs72KN5HuEE56ijYat8xBOenQtHOiNn/Cl1SoVnC9+W8/ABPqCRzw==</latexit>

×

Stage 1

Stage 2

0101

0000

01101

0000

110000

1 0

0

0 1

0

111000

1 0

1

0

Final Adder

111010 1

01123456

PP Generation

PP

Compressor Tree

Final Adder

A(N-bit) B(N-bit) C(2N-bit)

Final result

0101

010 1
<latexit sha1_base64="HwTS/tPzwSuhdjC9bLl84CF4/wA=">AAACynicjVHLSsNAFD2N7/qqunQTLIKrkoioS9GNCxcV7ANskWQ6rUPzYmYilOLOH3CrHyb+gf6Fd8YU1CI6IcmZc8+5M/feMIuE0p73WnJmZufmFxaXyssrq2vrlY3NpkpzyXiDpVEq22GgeCQS3tBCR7ydSR7EYcRb4fDMxFt3XCqRJld6lPFuHAwS0Rcs0ES1OlrEXJVvKlWv5tnlTgO/AFUUq55WXtBBDykYcsTgSKAJRwig6LmGDw8ZcV2MiZOEhI1z3KNM3pxUnBQBsUP6Dmh3XbAJ7U1OZd2MTonoleR0sUuelHSSsDnNtfHcZjbsb7nHNqe524j+YZErJlbjlti/fBPlf32mFo0+jm0NgmrKLGOqY0WW3HbF3Nz9UpWmDBlxBvcoLgkz65z02bUeZWs3vQ1s/M0qDWv2rNDmeDe3pAH7P8c5DZr7Nf+w5l8eVE9Oi1EvYhs72KN5HuEE56ijYat8xBOenQtHOiNn/Cl1SoVnC9+W8/ABPqCRzw==</latexit>

×

Stage 1

Stage 2

0

0

0

0

0

1 1 C

0

110

0

0

0

0

111000

1

0

1 0

Stage 3
0

0

0

0

0

0

0

0 0

0

7

(a) Separated MAC (b) Merged MAC

Fig. 4. MAC architectures

3.3 Multiplier Modification

In the RL agent’s context, an action � signiies the agent’s choice to alter the existing structure of the multiplier.
The agent can choose from four distinct actions for each column: adding or removing a 2:2 compressor, and
replacing a 3:2 or a 2:2 compressor with another type. We denote ��� � to present the PP number after compression
of column � , which should only be 1 or 2. Actions leading to ��� � values of 0 or 3, such as adding or removing a 3:2
compressor, are excluded, thereby deining the action space as |A| = 2� × 4 = 8� . It is important to note that not
every action is feasible to yield a legal multiplier structure instantly. For instance, if there is no 2:2 compressor in
column 1 as depicted in Figure 3, attempting to remove a 2:2 compressor from this column is considered invalid.

ACM Trans. Des. Autom. Electron. Syst.

8 • D. Zuo et al.

Similarly, any action � on column � that results in the partial product (PP) numbers post-compression being
either 0 or 3 would be considered invalid. Take another example from Figure 3. Removing a 2:2 compressor from
column 4 would lead to ���4 equating to three, thereby invalidating the action.

For a compressor tree with 2� columns, the output of a deep Q-network is a vector that indicates the predicted
Q-values:

� (��) = [�11, �12, �13, �14, · · · , �2�,1, �2�,2, �2�,3,�2�,4], (5)

where each group of � �1, � �2, � �3, � �4 indicates the Q-value of the four actions � �1, � �2, � �3, � �4 in column � . To
ensure only legal actions can be selected, a mask � is utilized as the selector to enable valid actions and forbid
invalid actions.

� = [�10,�11,�12,�13, · · · ,�2�,0,�2�,1,�2�,2,�2�,3], (6)

where each entry is a binary value. If an action �� � is valid, the corresponding entry in�� � is 1. Otherwise, it is 0.
In the proposed RL framework, the inal masked Q-value vector is the element-wise multiplication of the mask
vector and Q-value vector:

� ′ (��) = � (��) ⊙ �. (7)

Now the decision is given by

�� = argmax
�

� ′ (�� , �) . (8)

Note that only non-zero entries are considered. The action applied to column � changes the number of 3:2
or 2:2 compressors of the current column � , which may cause the number of compressed PPs of subsequent
column � + 1 to become 0 or 3. We use the legalization strategy shown in Algorithm 2 to reine the multiplier
structure to ensure the PPs are compressed to 2 rows. This strategy sequentially reines from column � + 1 to the
MSB, addressing under-compression by adding or replacing compressors, and managing over-compression by
removing compressors. Similar to the assignment procedure, the legalization process is also deterministic. Under
state �� , we can get a new state ��+1 after performing action �� to modify the structure along with the legalization.

3.4 Pareto-driven Reward

In our framework, we deine the reward, �� , as the improvement in circuit metrics, such as area, delay, and
power, achieved by executing an action �� at state �� . Considering the nature of the trade-of between power,
performance, and area (PPA), a superior multiplier design is always expected to achieve Pareto-optimal in terms
of these dimensions. To encourage the RL agent to learn to generate Pareto-optimal designs, we introduce a
Pareto-driven reward mechanism. This mechanism leverages a synthesis low under multiple design constraints,
enabling the reward to cover a variety of design scenarios: those driven primarily by area, delay, or power, as
well as scenarios seeking a trade-of optimization of these three key metrics. The overall cost is calculated as a
weighted sum of area, delay, and power, allowing for lexible adjustment of their relative importance in diferent
design scenarios:

���� = ��

�︁

�=1

����� +��

�︁

�=1

������ +��

�︁

�=1

������ , (9)

where ����� , ������ , and ������ are the synthesized metrics under the �-th constraint. Since the area, delay, and
power values have substantially diferent ranges, we normalize the area, delay, and power metrics to a consistent
scale using Wallace tree implementations.�� ,�� and�� are the weights to trade of PPA. We deine our reward
� as the diference between �� and ��+1:

�� = ����� − �����+1 (10)

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 9

Algorithm 2 Legalization

Require: Multiplier structure to be legalized; �: action column
Ensure: Legalized multiplier structure
1: for � ← (� + 1) �� 2� do

2: ��� � ← Get residual PPs after compression
3: if ��� � = 1 or ��� � = 2 then
4: return ⊲ legalization done
5: else if ��� � == 3 then
6: if exists 2:2 comp. in column � then
7: Replace a 2:2 compressor
8: else

9: Add a 3:2 compressor
10: end if

11: else if ��� � == 0 then
12: if exists 2:2 compressor in column � then
13: Delete a 2:2 compressor
14: else

15: Delete a 3:2 compressor
16: end if

17: end if

18: end for

3.5 Training Algorithm

We adopt ResNet-18 [36] as the backbone of Q-Network with the parameters denoted by � . The state undergoes
encoding into a tensor representation T , as detailed in Section 3.2, before being processed by the Q-network.
The RL training methodology is outlined in Algorithm 3. Initially, action selections � are randomized during the
warm-up phase (Line 6), transitioning to policy-based selections in subsequent steps (Line 8).

Each iteration � leads to the transformation of the multiplier’s architecture from �� to ��+1, culminating in a
reward �� derived from synthesis and timing analysis. This process generates a new transition (�� , �� , �� , ��+1),
which is recorded. Then, the network parameter � is updated by gradient descent, and � is also updated in
actor-critic methods(Line 14). The target Q-value for each state-action pair within the batch is determined as
follows:

� = � ′ + � max
�′

� ′ (�′, �′;�), (11)

where � is the discount factor. Based on the expected Q-value �, a gradient of � can be obtained by:

Δ� = ∇� (� −�
′ (�, �;�))2. (12)

Then, the network parameter � is updated by gradient descent(Line 14). By incorporating masked actions in
backpropagation, the Q-network learns to assign lower Q-values to seldom-used, invalid actions, minimizing
their selection in future iterations.

4 RL-MUL 2.0

Optimizing hardware conigurations requires an eicient search within a vast design space, particularly in
multiplier design, where an increase in bit width exponentially expands the design space. Therefore, dealing

ACM Trans. Des. Autom. Electron. Syst.

10 • D. Zuo et al.

Algorithm 3 RL-MUL low

Require: �0: initial multiplier structure; � : discount factor; � : learning rate;� : total training steps;�� : warm-up
steps

Ensure: � : Q-network parameters
1: Replay bufer � ← {}
2: Encode �0 into T based on �0 ⊲ Algorithm 1
3: � ← 0
4: for � ← 0 to � do

5: if � < �� then

6: �� ← randomly choose from legal actions
7: else

8: Get �� by Equation (8)
9: end if

10: Perform �� to �� and get ��+1
11: Run EDA tools on ��+1 and get �� ⊲ Equation (10)
12: Push (�� , �� , �� , ��+1) to �
13: Sample a batch of transitions from �

14: Update � by gradient descent ⊲ Equation (12)
15: end for

with this enlarged space efectively becomes crucial, especially for larger designs like MACs, where the DQN
algorithm may struggle to achieve optimal results.

In this work, we extend the proposed RL framework to MAC designs, enhancing its application in deep learning
acceleration. To tackle the greater challenges of more complex designs, we use parallel algorithms to improve
eiciency from two perspectives. Firstly, parallel optimization is always a promising solution in this scenario. Their
inherent parallelism not only reliably boosts search eiciency but also fosters a thorough exploration of possible
designs, enhancing the likelihood of uncovering optimal or nearly optimal solutions. Secondly, search space
pruning condenses the design space by discarding less promising designs. This approach emphasizes exploring
viable design areas, thus reining the search process and minimizing computational demands. Eliminating inferior
designs early on ensures a more targeted and eicient discovery of superior conigurations. In addition, integrating
metrics with high correlation can achieve a similar purpose, not only signiicantly simplifying the optimization
process but also enhancing the focus on conigurations that genuinely contribute to performance improvements.

4.1 Extend to Merged Multiply-Accumulator Architecture

An integral component of many digital signal processing systems and neural network architectures is the multiply
accumulator (MAC), which can be a decisive factor in determining the overall performance of many computing-
intensive systems. Incorporating compressor trees within MACs ofers a pathway to enhance their eiciency.
Rather than treating multiplication and accumulation as sequential operations, this approach seamlessly integrates
them. By merging the accumulation (addition) directly into the partial product stages of multiplication and
conducting partial product compression, we can capitalize on parallelism, thus potentially speeding up the entire
MAC operation. We can see that the proposed RL framework can seamlessly support the optimization of fused
MAC design.
By integrating the addition into the partial product generation phase, the representation within the RL

framework is tweaked to consider the intricacies of the MAC operation. The aim is to train the RL agent to
explore and design optimal MAC structures, utilizing compressor trees for eicient parallel addition. Therefore,

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 11

Agent

Policy network

actor

Value network

critic

መ�
Thread 1

RL-MUL

Environment 1

Thread n

RL-MUL

Environment n

…

1ሺ�ሻ+�ݏ , ሺ�ሻ��ሺ�ሻ�ݎ 1ሺ�ሻMultiple threadsSingle thread+�ݏ

Agent
Q-network

RL-MUL

Environment

�� �ݎ 1+�ݏ

Fig. 5. Comparison of RL algorithm between single-thread and multi-thread implementations.

the representations in Section 3.2 can be easily extended to MACs by providing łmerged" partial products, and
the training procedure will be identical. In Section 5, we will demonstrate the efectiveness and superiority of the
proposed RL framework for fused MAC design.

4.2 Multiple Agents Training

Multiple agents running in parallel are more likely to explore diferent parts of the environment, promoting
more eicient and stable policy training. Therefore, as shown in Figure 5, compared to the single-thread RL
algorithm implemented in the proposed RL framework, we further enhance the proposed framework by training
multiple agents in parallel, where each agent is handled by a thread. Following the training stability analysis
in [31], each agent in our framework is designed with the A2C scheme, where the policy and value networks
share the convolution layers of ResNet-18. Speciically, we employ a shared global network parameter across
threads, each interacting with its local environment independently, followed by an average of all threads’ gradient
updates to adjust the global parameter. � parallel threads synchronously process corresponding transitions

(�
(�)
� , �

(�)
� , �

(�)
� , �

(�)
�+1). The right side of Figure 2 illustrates the synchronous parallel structure with A2C. At each

step, given � is the number of threads, the agent selects �� including � actions for threads, the �-th thread’s

RL-MUL environment instance receives its corresponding action �
(�)
� and transitions to the new state �

(�)
�+1, which

is returned with the reward �
(�)
� to the agent. Thus, in A2C, each element of the transition tuples (�� , �� , �� , ��+1) is

an �-element vector. Then Equation (5) is transformed into:

� (·|��) = [�11, �12, �13, �14, · · · , �2�,1, �2�,2, �2�,3,�2�,4], (13)

where each group of � �1, � �2, � �3, � �4 indicates the probability of the four actions � �1, � �2, � �3, � �4 in column � . The
mask is conigured as in Section 3.3, and the inal masked probability distribution vector is:

� ′ (·|��) = � (·|��) ⊙ �. (14)

Now, the decision is given by
�� ∼ �

′ (·|��). (15)

Algorithm 4 outlines the parallel training and optimization low in RL-MUL 2.0 [32, 34]. Firstly, � threads
(Line 1) are initiated. Then, at each step, a multiplier structure alteration �� is sampled from Equation (15), which
incorporates masks to prevent the selection of actions that lead to invalid multiplier structures (Line 3). Following

ACM Trans. Des. Autom. Electron. Syst.

12 • D. Zuo et al.

Algorithm 4 RL-MUL 2.0 low

Require: �: number of threads; � : total training steps; ��� : update interval
Ensure: � : policy network parameters;� : value network parameters
1: Initialize � parallel threads
2: for � ← 0 to � do

3: Sample a multiplier structure alteration �
(�)
� by Equation (15), ∀� ∈ {1, 2, . . . , �}

4: Perform �
(�)
� to get structure �

(�)
�+1 and �

(�)
� , ∀� ∈ {1, 2, . . . , �}

5: if � | ��� then

6: Update � by gradient ascent ⊲ Equation (16)
7: Update� by gradient descent ⊲ Equation (19)
8: end if

9: end for

this, the chosen action is executed to obtain a new structure and its corresponding reward (Line 4). In terms of
the model updating, this algorithm employs an �-step return approach for faster learning, updating the policy
network parameter � and the value network parameter� only when the total training steps constitute an integer
multiple of the update interval (Line 5). A policy gradient of � used to update the policy network can be obtained
by:

Δ� = ∇� log� (�� |�� ;�) · �̂(�� , ��), (16)

where � (�� |�� ;�) is the policy network deinited by parameter � at time � , and �̂ is the advantage function deined
in Equation (4) [35]. Then, the policy network parameter � is updated by gradient ascent (Line 6). In addition,
the Temporal-Diference (TD) learning [37] aspect of the A2C algorithm guides the value network � (�� ;�) to
converge to the TD target �� , deined as:

�� = �� + � · � (��+1;�), (17)

where � represents the discount factor. The TD target combines the real reward �� after taking the action �� with
the predicted value of the next state ��+1, serving as a crucial element in computing the TD error. This error is
expressed as:

�� = � (�� ;�) − �� , (18)

measuring the discrepancy between the estimated value of the state before taking the action �� and the TD target.
In other words, the TD error relects the accuracy of the value function prediction. Based on the TD error, a
gradient of� used to update the value network can be obtained by:

Δ� = −∇�
(��)

2

2
= −�� · ∇�� (�� ;�). (19)

Then, the value network parameter� is updated by gradient descent (Line 7).

4.3 Objective Space Reduction

The goal of multiplier design space exploration is to ind designs that are superior in terms of multiple objectives.
In Equation (10), a weighted reward is designed such that the agent can acquire a good trade-of among diferent
objectives, while the selection of weights for each objective can impact the inal solutions substantially. The more
objectives we have, the more efort is required for tuning the weights. Notably, we investigated a correlation
between the area and the power of a multiplier. Based on the architectures we have searched for, it is observed
that the power and area are highly correlated. A correlation between these two factors represented by box plots
is illustrated in Figure 6, the upper graph depicts the relationship for 8-bit AND-based multipliers, while the

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 13

500 520 540
Area (m²)

0.46

0.47

0.48

0.49

0.50
Po

w
er

 (m
W

)

2280 2300 2320 2340
Area (m²)

2.62

2.64

2.66

2.68

2.70

Po
w

er
 (m

W
)

Fig. 6. Correlation between area and power. The upper one is an 8-bit AND-based multiplier, and the lower one is a 16-bit

AND-based multiplier.

lower plot shows the same for 16-bit AND-based multipliers. The bottom and top boundaries of the box represent
the irst and third quartiles, respectively, indicating the inter-quartile range (IQR). The median is denoted by
the band within the box. The upper whisker represents the maximum value of the data, and the lower whisker
represents the minimum value of the data. It can be observed from the trend in Figure 6 that there exists a strong
positive correlation between the area and the power, which suggests that the area is a reliable indicator of the
power. Consequently, our methodology gives precedence to area and delay as key optimization metrics, which
allows Equation (9) to be further reduced to:

���� = ��

�︁

�=1

����� +��

�︁

�=1

������ (20)

4.4 Search Space Pruning

Furthermore, another analysis indicates the number of stages of a compressor tree as a signiicant factor afecting
the area and delay of multipliers, as shown in Figure 7. This analysis takes 8-bit AND-based multiplier structures
as an example. Notably, there is a positive relationship between stage number and the parameters of area and
delay. This suggests that an increase in stage number is associated with a corresponding rise in these metrics. To
mitigate this, our framework integrates a strategy to constrain actions that will lead to excessive stage increases,
which facilitates a more eicient search and optimization toward desired multiplier structures.

5 Experimental Results

5.1 Setup

The proposed framework is implemented on a Linux system powered by a 2.8 GHz AMD EPYC CPU and
an NVIDIA RTX 3090 GPU. We use EasyMAC [38] for RTL generation and have extended its capabilities by
incorporating Modiied Booth Encoding (MBE)-based partial product generation, as well as enhancing support
for the RTL generation of merged MAC units. These designs are synthesized using the OpenROAD low [39]
with the NanGate 45�� Open Cell Library [40]. OpenSTA[41] is utilized to perform timing analysis. To ensure
the functional correctness of the generated multipliers, we irst convert RTL into AIGER format using Yosys [42],
and use the cec command in ABC[43] to perform logic equivalence veriication with a golden implementation of
multiplier.
Given the prevalent use of 8-bit and 16-bit multipliers, the RL-MUL 2.0 framework is assessed using both

8-bit and 16-bit multipliers, incorporating AND-based PPG and MBE-based PPG. We compare our approach

ACM Trans. Des. Autom. Electron. Syst.

14 • D. Zuo et al.

3 4 5 6 7 8 9 10 11 12 13
Stage number

420

440

460

480
A

re
a

(
m

²)

3 4 5 6 7 8 9 10 11 12 13
Stage number

0.8

0.9

1.0

D
el

ay
 (n

s)

Fig. 7. Correlation between stage number and metrics of 8-bit AND-based multipliers.

400 450 500 550

0.7

0.8

0.9

Area (μm2)

D
el
ay

(n
s)

600 700
0.9

1

1.1

Area (μm2)

D
el
ay

(n
s)

Wallace [1] GOMIL [17] SA RL-MUL [29] RL-MUL 2.0

1,800 2,200
1.1

1.2

1.3

1.4

Area (μm2)

D
el
ay

(n
s)

2,000 2,400

1.4

1.6

Area (μm2)

D
el
ay

(n
s)

Fig. 8. Pareto-frontiers of the synthesis results on multipliers. From let to right: 8-bit AND-based; 8-bit MBE-based; 16-bit

AND-based; 16-bit MBE-based. Note that the Pareto-frontiers of RL-MUL 2.0 and original RL-MUL overlap in the 8-bit

MBE-based result.

against established baselines, including the legacy Wallace tree[1], an ILP-based method GOMIL [17], and the
simulated annealing (SA) technique. Four delay constraints are conigured in Equation (9). The weights�� and
�� range from 0 to 1, resulting in diferent optimization preferences towards area or delay. In native RL-MUL
implementation, we set � to 0.8, learning rate to 0.0002, � to decay from 0.95 to 0.05, and employ RMSProp
optimizer [44] for the training. In the RL-MUL 2.0 implementation, we employ four synchronization threads and
a ive-step return. We train the original RL-MUL and RL-MUL 2.0 10,000� and run SA for the same amount of
time. During this period, RL-MUL performs approximately 450 iterations, while RL-MUL 2.0 performs about 650
iterations, exploring 4 design points in each iteration. Each iteration of RL-MUL takes about 22 seconds, and each
iteration of RL-MUL 2.0 takes about 15 seconds. For the ILP approach, solving the 8-bit cases takes approximately
1���, whereas the 16-bit cases require around 16 ℎ. Synthesizing under varying design constraints produces
diferent netlists for the same RTL design. We synthesize all the obtained multipliers and MACs across target
delays from 0.05 �� to 1.2 �� . Furthermore, to enhance the demonstration of RL-MUL 2.0’s efectiveness and the
performance of the resulting designs, we incorporate these multipliers and MACs from all evaluated methods
into large macro designs. Processing Element (PE) arrays, commonly utilized in DNN accelerators, consist of
numerous MAC units, making them ideal for further evaluating the impact of diferent multipliers and MACs on
area and timing eiciency. By integrating diferent multipliers and MACs into PE arrays, speciically following a
systolic array architecture, we investigate the potential for improvements in both area and timing within these
structures.

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 15

1.8 2
0.95

1
1.05
1.1
1.15

Area (·105μm2)

D
el
ay

(n
s)

2 2.2 2.4 2.6
1.1

1.2

1.3

1.4

Area (·105μm2)
D
el
ay

(n
s)

Wallace [1] GOMIL [17] SA RL-MUL [29] RL-MUL 2.0

6 7
1.4

1.5

1.6

Area (·105μm2)

D
el
ay

(n
s)

6 7 8

1.6

1.7

1.8

Area (·105μm2)

D
el
ay

(n
s)

Fig. 9. Pareto-frontiers of the synthesis results on multiplier-implemented PE arrays. From let to right: 8-bit AND-based;

8-bit MBE-based; 16-bit AND-based; 16-bit MBE-based.

8-bit-AND 8-bit-MBE 16-bit-AND 16-bit-MBE
0

0.5

1

N
o
rm

al
iz
ed

H
V

Wallace [1] GOMIL [17] SA RL-MUL [29] RL-MUL 2.0

(a)

8-bit-AND 8-bit-MBE 16-bit-AND 16-bit-MBE
0

0.5

1

N
o
rm

al
iz
ed

H
V

(b)

Fig. 10. Pareto-frontiers hypervolume comparison of (a) multipliers and (b) multiplier-implemented PE arrays.

5.2 Multiplier Performance Comparison

The resulting area-delay curves for multipliers are illustrated in Figure 8, where the designs derived from the
RL-MUL framework outperform all baselines. Detailed statistics of minimum area, delay, and balanced area-delay
metrics are presented in Table 1 (the optimal results are marked in bold). In the trade-of scenario, optimal
corresponds to the lowest weighted sum of PPA in Equation (10). Through the RL-MUL 2.0 framework, we achieve
up to 10.0% area reduction under the minimum area constraint and a 12.5% decrease in delay under the minimum
delay constraint. Additionally, the implementation in PE arrays, as shown in Figure 9 and Table 2, indicates
similar performance, with up to a 6.0% area reduction and up to 11.5% delay decrease.

The hypervolume [45]measures the volume enclosed by the Pareto frontier and a reference point in the objective
space, which is a common metric to evaluate the quality of the Pareto frontiers. Hypervolume comparisons for
multipliers presented in Figure 10a show that RL-MUL generates signiicantly larger hypervolume than GOMIL,
with average increases of 85.9%. RL-MUL 2.0 shows an improvement of 11.1% compared to the original RL-MUL.
Similarly, for PE arrays constructed with the multiplier, as shown in Figure 10b, the average improvement of
RL-MUL 2.0 compared with GOMIL and original RL-MUL is 96.1% and 8.4% respectively.

ACM Trans. Des. Autom. Electron. Syst.

16 • D. Zuo et al.

Table 1. Multiplier area, timing, and power comparison.

Preference Method
8-bit 16-bit

AND MBE AND MBE
Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW)

Area

Wallace[1] 427 0.8530 0.3513 555 1.0880 0.4975 1812 1.4073 1.962 2008 1.7016 2.187
GOMIL [17] 404 0.8420 0.3352 545 1.0797 0.4833 1706 1.3375 1.855 1882 1.5432 2.013

SA 397 0.8468 0.3317 538 1.0353 0.4845 1712 1.3619 1.860 1969 1.6184 2.133
RL-MUL 393 0.7643 0.3261 532 1.0162 0.4752 1705 1.2633 1.855 1882 1.5478 2.016

RL-MUL 2.0 388 0.7643 0.3237 532 1.0162 0.4752 1696 1.2481 1.845 1881 1.5478 2.008

Timing

Wallace[1] 545 0.7791 0.4977 720 0.9601 0.7054 2420 1.2672 2.822 2645 1.4709 3.032
GOMIL [17] 514 0.7750 0.4726 706 0.9571 0.6836 2281 1.2169 2.629 2482 1.3684 2.791

SA 507 0.7800 0.4656 697 0.9147 0.6886 2280 1.2616 2.619 2551 1.4125 2.893
RL-MUL 503 0.7033 0.4650 690 0.8922 0.6736 2281 1.1684 2.638 2475 1.3318 2.780

RL-MUL 2.0 507 0.6931 0.4670 690 0.8922 0.6736 2302 1.1263 2.658 2481 1.3085 2.791

Trade-of

Wallace [1] 458 0.8328 0.3820 637 1.0018 0.5900 2184 1.3054 2.562 2300 1.4954 2.537
GOMIL[17] 435 0.8086 0.3634 629 0.9837 0.5824 2061 1.2416 2.382 2106 1.4298 2.328

SA 402 0.8265 0.3366 556 0.9901 0.5163 1738 1.3161 1.907 2016 1.5071 2.232
RL-MUL 399 0.7451 0.3345 551 0.9662 0.5081 1731 1.2192 1.903 1927 1.4339 2.140

RL-MUL 2.0 401 0.7252 0.3360 551 0.9662 0.5081 1722 1.1875 1.887 1947 1.3923 2.148

Table 2. PE array (multiplier) area, timing, and power comparison.

Preference Method
8-bit 16-bit

AND MBE AND MBE
Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW)

Area

Wallace[1] 175892 1.1347 145.14 208782 1.3302 178.67 601492 1.6693 495.67 650385 1.8543 548.16
GOMIL[17] 170036 1.1237 141.11 206058 1.3154 176.36 574117 1.6017 470.92 618107 1.7403 522.13

SA 168401 1.1237 140.08 204288 1.2711 175.17 575479 1.6216 472.59 640443 1.794 536.34
RL-MUL 167312 1.0421 138.79 202926 1.2512 173.18 573709 1.5305 471.27 618107 1.6976 520.65

RL-MUL 2.0 165950 1.0421 137.65 202926 1.2512 173.18 571394 1.5148 469.23 617971 1.6976 520.57

Timing

Wallace[1] 213345 1.0436 175.97 258016 1.1988 220.73 775001 1.5809 639.48 827503 1.6992 692.68
GOMIL [17] 205378 1.0395 169.73 254475 1.1856 217.20 739591 1.5137 610.51 785896 1.6085 659.21

SA 203607 1.0395 168.23 251955 1.1505 214.85 739318 1.5398 608.93 813339 1.6777 681.73
RL-MUL 202722 0.9752 167.61 250185 1.1200 213.30 737139 1.4464 606.31 778678 1.5607 652.30

RL-MUL 2.0 203607 0.9621 168.52 250185 1.1200 213.30 736731 1.4166 604.51 778269 1.5607 652.30

Trade-of

Wallace[1] 191214 1.1017 157.57 236566 1.2254 198.45 628322 1.6419 518.51 735028 1.7352 601.46
GOMIL[17] 185357 1.0709 152.69 221857 1.2703 184.62 600947 1.5727 496.70 649908 1.6847 555.77

SA 169014 1.1079 139.35 204901 1.2552 181.19 580110 1.5959 479.28 652019 1.7225 566.53
RL-MUL 167925 1.0263 137.64 203539 1.2353 179.80 578339 1.4987 478.52 623691 1.6479 546.24

RL-MUL 2.0 168606 0.9966 138.06 203539 1.2353 179.80 576024 1.4844 475.76 623555 1.6479 545.83

5.3 MAC Performance Comparison

The curves in Figure 11 for MACs and PE arrays consisting of MAC, along with the detailed comparisons in
Table 4, demonstrate that RL-MUL 2.0 designs achieve superior performance compared to baselines. The RL-MUL
2.0 framework leads to up to a 13.4% area reduction under the minimum area constraint and a 15.6% decrease in
delay under the minimum delay constraint for MACs. Similarly, PE arrays beneit from up to a 9.6% reduction in
area and a 13.1% decrease in delay.
The hypervolume metrics, shown in Figure 12 for MACs and PE arrays implemented by MAC, highlight

RL-MUL 2.0’s eiciency. RL-MUL 2.0 generates an average of 81.7% more hypervolume than GOMIL for MACs
and 80.9% for the arrays. When comparing the performance of RL-MUL 2.0 to the original RL-MUL, there is a
7.0% increase for MACs and a 7.9% increase for arrays.

Regardless of the multiplier cases or the MAC cases, it is observed that the advantage of RL-MUL 2.0 over
the SA approach varies between 8-bit and 16-bit conigurations. GOMIL outperforms SA in larger bit widths,
suggesting that evolutionary algorithms may struggle with large design spaces due to their complexity. The
improvement margins over the SA method vary between 8-bit and 16-bit designs, with GOMIL outperforming
SA in larger bit widths. This suggests the evolutionary algorithm’s limitations in addressing the expansive design
space of larger bit widths. Additionally, the ILP-based method GOMIL simpliies the cost function by focusing
solely on the area as the optimization objective. This approach limits its ability to achieve optimization gains in
terms of delay consistently. In contrast, our approach employs multi-objective optimization, allowing us to attain
Pareto-optimal results across both area and delay, demonstrating RL-MUL 2.0’s consistent superiority across
evaluations.

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 17

Table 3. MUL and MAC area, timing, and power comparison (commercial synthesis tool).

Preference Method
MUL MAC

8-bit 16-bit 8-bit 16-bit
Area (μm2) Delay (ns) Power (uW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (uW) Area (μm2) Delay (ns) Power (mW)

Area

Wallace[1] 332.5000 1.5710 312.2091 1612.2260 2.4991 2.0378 442.6240 1.7983 473.6569 1846.3060 2.5995 2.4445
GOMIL [17] 326.4040 1.4703 313.3043 1570.2830 2.4098 1.9783 393.9460 1.6543 420.6916 1700.0060 2.5103 2.2788
RL-MUL 322.6040 1.4578 196.7360 1550.5620 2.4004 1.9553 387.0640 1.6527 419.2456 1689.4040 2.5087 2.1896

RL-MUL 2.0 320.5080 1.4367 196.3859 1538.0440 2.3857 1.9247 379.3560 1.6432 414.6432 1640.3560 2.4818 2.1752

Timing

Wallace[1] 464.1700 1.1124 399.9932 1904.5600 2.3413 2.2190 576.1560 1.2860 585.1385 2117.3600 2.4768 2.6243
GOMIL [17] 440.7400 1.0789 378.6793 1770.2700 2.2812 2.1567 530.4040 1.2164 536.2910 1970.7940 2.4253 2.4654
RL-MUL 442.7080 1.0698 380.8763 1750.5080 2.2723 2.1367 531.8530 1.2167 533.7445 1972.6300 2.3464 2.4578

RL-MUL 2.0 428.7080 1.0567 366.7378 1744.7000 2.2660 2.1335 530.2460 1.2158 531.4654 1969.0400 2.339 2.4563

Trade-of

Wallace[1] 443.9540 1.1084 388.6333 1776.8800 2.3172 2.1315 554.0780 1.3003 562.4348 1979.8380 2.5050 2.5145
GOMIL [17] 431.4280 1.1024 378.2456 1690.3600 2.2419 2.0643 514.1780 1.2153 531.8048 1846.5720 2.4177 2.3804
RL-MUL 428.3760 1.0910 372.3638 1678.0340 2.2406 2.0541 509.3560 1.2015 527.8372 1816.3460 2.3935 2.3729

RL-MUL 2.0 420.4060 1.0860 362.3837 1669.4000 2.2387 2.0452 504.5040 1.1893 521.3543 1807.3040 2.3912 2.3679

500 600
0.7

0.8

0.9

Area (μm2)

D
el
ay

(n
s)

2,000 2,400
1.2

1.3

1.4

Area (μm2)

D
el
ay

(n
s)

Wallace [1] GOMIL [17] SA RL-MUL [29] RL-MUL 2.0

1.6 1.8 2 2.2

0.8
0.85
0.9
0.95

Area (·105μm2)

D
el
ay

(n
s)

6 7

1.3

1.4

1.5

Area (·105μm2)

D
el
ay

(n
s)

Fig. 11. Pareto-frontiers of the synthesis results on MACs and MAC-implemented PE arrays. From let to right: 8-bit MAC;

16-bit MAC; 8-bit MAC-implemented PE arrays; 16-bit MAC-implemented PE arrays.

8-bit-MAC 16-bit-MAC 8-bit-array 16-bit-array
0

0.5

1

N
o
rm

al
iz
ed

H
V

Wallace [1] GOMIL [17] SA RL-MUL [29] RL-MUL 2.0

Fig. 12. Pareto-frontiers hypervolume comparison of MACs and MAC-implemented PE arrays.

5.4 Eficient and Stable Training

We conducted six experiments, each repeated three times, on the original RL-MUL, RL-MUL 2.0, and SA algorithms,
with a ixed PPA weight across two bit-widths. These experiments are categorized into three groups: one focusing
on AND-based MUL operations, another on MUL operations employing Booth encoding, and a third on MAC
operations. The mean PPA values are represented by a solid line, with the standard deviation depicted as
the surrounding shadow in Figure 13. Across all datasets, our RL methods consistently demonstrate superior
performance, signiicantly outperforming SA. Particularly, the RL-MUL 2.0 demonstrates superior results and a
more stable and eicient training process. Furthermore, it is observed that there exists a gap between the variance
shadow caused by independent repetitions of RL-MUL and RL-MUL 2.0 experiments, especially in the 16-bit

ACM Trans. Des. Autom. Electron. Syst.

18 • D. Zuo et al.

Table 4. MAC and PE array (MAC) area, timing, and power comparison.

Preference Method
MAC PE-MAC

8-bit 16-bit 8-bit 16-bit
Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW)

Area

Wallace[1] 534 0.9182 0.5212 1995 1.4234 2.313 181340 0.9561 167.32 600471 1.4868 553.84
GOMIL [17] 487 0.9063 0.4674 1889 1.3787 2.167 169491 0.9638 156.65 571053 1.451 529.78

SA 503 0.8775 0.4846 1981 1.3807 2.289 173577 0.9342 160.37 598836 1.4714 537.73
RL-MUL 471 0.8511 0.4584 1870 1.4046 2.169 165405 0.9112 154.41 568465 1.4673 523.36

RL-MUL 2.0 471 0.8511 0.4584 1868 1.3545 2.158 165405 0.9112 154.38 567784 1.4178 522.58

Timing

Wallace[1] 677 0.8359 0.7392 2646 1.264 3.291 219678 0.8856 202.61 771664 1.3187 710.85
GOMIL [17] 615 0.8119 0.6472 2494 1.2766 3.039 203743 0.8693 188.57 730670 1.3109 675.11

SA 642 0.7737 0.6865 2632 1.2652 3.282 210825 0.8331 195.18 769893 1.3448 694.90
RL-MUL 649 0.7324 0.6983 2568 1.2149 3.110 212596 0.7897 197.23 749533 1.2668 677.48

RL-MUL 2.0 642 0.7231 0.6948 2594 1.1992 3.192 210825 0.7827 195.18 758385 1.2487 683.39

Trade-of

Wallace [1] 552 0.8727 0.5450 2060 1.3248 2.432 186038 0.9107 173.17 611502 1.3851 563.23
GOMIL[17] 498 0.859 0.4857 2486 1.2766 3.014 172283 0.9161 160.37 582085 1.3729 535.26

SA 518 0.8202 0.5043 2005 1.3181 2.335 177322 0.8799 166.99 604148 1.4084 545.24
RL-MUL 482 0.8202 0.4774 1946 1.3016 2.329 168197 0.8799 158.36 588486 1.3429 529.68

RL-MUL 2.0 482 0.8202 0.4774 2002 1.2625 2.350 176777 0.8309 166.89 578816 1.3233 529.38

designs. So it implies that even if the DQN in RL-MUL were to support parallel agents within the 10,000s runtime,
the best results achieved are still not as good as RL-MUL 2.0.
When comparing eiciency, runtime serves as a key metric, relecting the algorithm’s ability to explore the

design space within a given time. Parallel processing allows RL-MUL 2.0 to utilize computational power to
accelerate exploration. Notably, for the 8-bit MUL AND case, RL-MUL 2.0 achieves the optimal PPA value reached
by RL-MUL in an average of 2,124 seconds. Similarly, RL-MUL 2.0 reaches this level in 6,275 seconds for the 8-bit
MUL MBE case, 5,166 seconds for the 8-bit MAC AND case, 136 seconds for the 16-bit MUL AND case, 5,985
seconds for the 16-bit MUL MBE case, and 4,823 seconds for the 16-bit MAC AND case. These results indicate that
RL-MUL 2.0 requires signiicantly less time to achieve the same performance level as RL-MUL, demonstrating the
eiciency of its parallel training approach.

In addition to OpenROAD low and OpenSTA, we conducted a cross-check synthesis using Synopsys Design
Compiler [46] to validate the multipliers and MACs from our RL-MUL framework. The results, shown in Table 3,
demonstrate that RL-MUL-designed multipliers consistently outperform baseline multipliers, achieving superior
area, delay, and power metrics under commercial EDA tools, thereby conirming the efectiveness and robustness
of our designs across synthesis environments.

ACM Trans. Des. Autom. Electron. Syst.

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 19

0 0.5 1
Time (10 s)

475

500

Be
st

PP
A

8bit MUL AND

0 0.5 1
Time (10 s)

480

500

Be
st

PP
A

8bit MUL MBE

0 0.5 1
Time (10 s)

475

500

Be
st

PP
A

8bit MAC AND

0 0.5 1
Time (10 s)

470

480

Be
st

PP
A

16bit MUL AND

0 0.5 1
Time (10 s)

480

500

Be
st

PP
A

16bit MUL MBE

0 0.5 1
Time (10 s)

490

500

Be
st

PP
A

16bit MAC AND

SA RL-MUL RL-MUL 2.0

Fig. 13. Optimization trajectories for diferent methods illustrate the mean PPA ± standard error. The shaded areas represent

the standard deviation of the PPA values.

6 Conclusion

In this research, we introduce a novel framework for optimizing multipliers through reinforcement learning. The
framework utilizes an RL agent that adapts based on EDA tool feedback to engineer multipliers achieving Pareto
optimality. We demonstrate that multipliers and MACs designed by RL can Pareto-dominate multipliers that are
produced by existing approaches. The obtained optimized multiplier and MACs can be further applied in the
implementation of a larger module, such as a PE array. Looking ahead, we aim to broaden the application of our
RL methodology to encompass more extensive datapath components, enhancing the scope and impact of our
optimization eforts.

ACM Trans. Des. Autom. Electron. Syst.

20 • D. Zuo et al.

References

[1] C. S. Wallace. 1964. A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic Computers EC-13, 1 (1964), 14ś17. DOI:

http://dx.doi.org/10.1109/PGEC.1964.263830

[2] P.F. Stelling and V.G. Oklobdzija. 1997. Implementing multiply-accumulate operation in multiplication time. In Proceedings 13th IEEE

Sympsoium on Computer Arithmetic. 99ś106. DOI:http://dx.doi.org/10.1109/ARITH.1997.614884

[3] Luigi Dadda. 1983. Some schemes for fast serial input multipliers. In 1983 IEEE 6th Symposium on Computer Arithmetic (ARITH). 52ś59.

DOI:http://dx.doi.org/10.1109/ARITH.1983.6158074

[4] J. Fadavi-Ardekani. 1993. M*N Booth encoded multiplier generator using optimized Wallace trees. IEEE Transactions on Very Large Scale

Integration Systems (TVLSI) 1, 2 (June 1993), 120ś125. DOI:http://dx.doi.org/10.1109/92.238424

[5] N. Itoh, Y. Tsukamoto, T. Shibagaki, K. Nii, H. Takata, and H. Makino. 2005. A 32/spl times/24-bit multiplier-accumulator with

advanced rectangular styled Wallace-tree structure. In IEEE International Symposium on Circuits and Systems (ISCAS). 73ś76 Vol. 1. DOI:

http://dx.doi.org/10.1109/ISCAS.2005.1464527

[6] K.A.C. Bickerstaf, M. Schulte, and E.E. Swartzlander. 1993. Reduced area multipliers. In Proceedings of International Conference on

Application Speciic Array Processors (ASAP ’93). 478ś489. DOI:http://dx.doi.org/10.1109/ASAP.1993.397168

[7] Xuan-Vy Luu, Trong-Thuc Hoang, Trong-Tu Bui, and Anh-Vu Dinh-Duc. 2014. A high-speed unsigned 32-bit multiplier based on

booth-encoder and wallace-tree modiications. In 2014 International Conference on Advanced Technologies for Communications (ATC

2014). 739ś744. DOI:http://dx.doi.org/10.1109/ATC.2014.7043485

[8] Mohamed Asan Basiri M and Noor Mahammad Sk. 2014. An Eicient Hardware-Based Higher Radix Floating Point MAC Design. ACM

Trans. Des. Autom. Electron. Syst. (2014).

[9] Che-Wei Tung and Shih-Hsu Huang. 2020. A High-Performance Multiply-Accumulate Unit by Integrating Additions and Accumulations

Into Partial Product Reduction Process. IEEE Access 8 (2020), 87367ś87377. DOI:http://dx.doi.org/10.1109/ACCESS.2020.2992286

[10] Song Zhang, Jiangyuan Gu, Shouyi Yin, Leibo Liu, and Shaojun Wei. 2021. A Multiple-Precision Multiply and Accumulation Design

with Multiply-Add Merged Strategy for AI Accelerating. In 2021 26th Asia and South Paciic Design Automation Conference (ASP-DAC).

229ś234.

[11] Netanel Shavit, Inbal Stanger, Ramiro Taco, Marco Lanuzza, and Alexander Fish. 2020. A 0.8-V, 1.54-pJ/940-MHz Dual-Mode Logic-Based

16×16-b Booth Multiplier in 16-nm FinFET. IEEE Solid-State Circuits Letters 3 (2020), 314ś317. DOI:http://dx.doi.org/10.1109/LSSC.2020.

3011636

[12] Divyansh Jangalwa, M. Nagabushanam, and M. C. Parameshwara. 2022. Design and Analysis of 8-Bit Multiplier for Low Power

VLSI Applications. In 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). 1ś5. DOI:http://dx.doi.org/10.1109/

MysuruCon55714.2022.9972421

[13] Durai Balaji R, D.S. Shylu Sam, Manoj G, D. Jayanthi, Samson Immanuel J, Shaik Babafakruddin, and Shriashwinraja E G V. 2023. Design

of Low Power Pass Transistor Logic Based Adders for Multiplier in 90nm CMOS Process. In 2023 4th International Conference on Signal

Processing and Communication (ICSPC). 206ś210. DOI:http://dx.doi.org/10.1109/ICSPC57692.2023.10125717

[14] V.G. Oklobdzija, D. Villeger, and S.S. Liu. 1996. A method for speed optimized partial product reduction and generation of fast parallel

multipliers using an algorithmic approach. IEEE Trans. Comput. 45, 3 (1996), 294ś306. DOI:http://dx.doi.org/10.1109/12.485568

[15] C. Martel, V. Oklobdzija, R. Ravi, and P.F. Stelling. 1995. Design strategies for optimal multiplier circuits. In Proceedings of the 12th

Symposium on Computer Arithmetic. 42ś49. DOI:http://dx.doi.org/10.1109/ARITH.1995.465378

[16] P.F. Stelling, C.U. Martel, V.G. Oklobdzija, and R. Ravi. 1998. Optimal circuits for parallel multipliers. IEEE Trans. Comput. 47, 3 (1998),

273ś285. DOI:http://dx.doi.org/10.1109/12.660163

[17] Weihua Xiao, Weikang Qian, and Weiqiang Liu. 2021. GOMIL: Global Optimization of Multiplier by Integer Linear Programming. (2021),

374ś379.

[18] Jianhua Liu, Yi Zhu, Haikun Zhu, Chung-Kuan Cheng, and John Lillis. 2007. Optimum Preix Adders in a Comprehensive Area, Timing

and Power Design Space. In IEEE/ACM Asia and South Paciic Design Automation Conference (ASPDAC). 609ś615.

[19] Jianhua Liu, Shuo Zhou, Haikun Zhu, and Chung-Kuan Cheng. 2003. An algorithmic approach for generic parallel adders. In IEEE/ACM

International Conference on Computer-Aided Design (ICCAD). 734ś740. DOI:http://dx.doi.org/10.1109/ICCAD.2003.159758

[20] Subhendu Roy, Mihir Choudhury, Ruchir Puri, and David Z. Pan. 2013. Towards optimal performance-area trade-of in adders by synthesis

of parallel preix structures. In ACM/IEEE Design Automation Conference (DAC). 1ś8. DOI:http://dx.doi.org/10.1145/2463209.2488793

[21] Hadi Parandeh-Afshar, Philip Brisk, and Paolo Ienne. 2008. Eicient synthesis of compressor trees on FPGAs. In 2008 Asia and South

Paciic Design Automation Conference. 138ś143. DOI:http://dx.doi.org/10.1109/ASPDAC.2008.4483927

[22] Hadi Parandeh-Afshar, Arkosnato Neogy, Philip Brisk, and Paolo Ienne. 2011. Compressor tree synthesis on commercial high-performance

FPGAs. ACM Trans. Reconigurable Technol. Syst. 4, 4, Article 39 (dec 2011), 19 pages.

[23] Martin Kumm and Johannes Kappauf. 2018. Advanced Compressor Tree Synthesis for FPGAs. IEEE Trans. Comput. 67, 8 (2018),

1078ś1091. DOI:http://dx.doi.org/10.1109/TC.2018.2795611

ACM Trans. Des. Autom. Electron. Syst.

http://dx.doi.org/10.1109/PGEC.1964.263830
http://dx.doi.org/10.1109/ARITH.1997.614884
http://dx.doi.org/10.1109/ARITH.1983.6158074
http://dx.doi.org/10.1109/92.238424
http://dx.doi.org/10.1109/ISCAS.2005.1464527
http://dx.doi.org/10.1109/ASAP.1993.397168
http://dx.doi.org/10.1109/ATC.2014.7043485
http://dx.doi.org/10.1109/ACCESS.2020.2992286
http://dx.doi.org/10.1109/LSSC.2020.3011636
http://dx.doi.org/10.1109/LSSC.2020.3011636
http://dx.doi.org/10.1109/MysuruCon55714.2022.9972421
http://dx.doi.org/10.1109/MysuruCon55714.2022.9972421
http://dx.doi.org/10.1109/ICSPC57692.2023.10125717
http://dx.doi.org/10.1109/12.485568
http://dx.doi.org/10.1109/ARITH.1995.465378
http://dx.doi.org/10.1109/12.660163
http://dx.doi.org/10.1109/ICCAD.2003.159758
http://dx.doi.org/10.1145/2463209.2488793
http://dx.doi.org/10.1109/ASPDAC.2008.4483927
http://dx.doi.org/10.1109/TC.2018.2795611

RL-MUL 2.0: Multiplier Design Optimization with Parallel Deep Reinforcement Learning and Space Reduction • 21

[24] Hao Geng, Yuzhe Ma, Qi Xu, Jin Miao, Subhendu Roy, and Bei Yu. 2022. High-Speed Adder Design Space Exploration via Graph

Neural Processes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 41, 8 (2022), 2657ś2670. DOI:

http://dx.doi.org/10.1109/TCAD.2021.3114262

[25] Yuzhe Ma, Subhendu Roy, Jin Miao, Jiamin Chen, and Bei Yu. 2019. Cross-Layer Optimization for High Speed Adders: A Pareto Driven

Machine Learning Approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 38, 12 (2019),

2298ś2311. DOI:http://dx.doi.org/10.1109/TCAD.2018.2878129

[26] Rajarshi Roy, Jonathan Raiman, Neel Kant, Ilyas Elkin, Robert Kirby, Michael Siu, Stuart Oberman, Saad Godil, and Bryan Catanzaro.

2021. PreixRL: Optimization of Parallel Preix Circuits using Deep Reinforcement Learning. In ACM/IEEE Design Automation Conference

(DAC). 853ś858. DOI:http://dx.doi.org/10.1109/DAC18074.2021.9586094

[27] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung Lee, and Song Han. 2020. GCN-RL Circuit Designer:

Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning. In ACM/IEEE Design Automation Conference

(DAC). 6.

[28] Nath Siddharth, Pradipta Geraldo, Hu Corey, Tian Yang, Khailany Brucek, and Haoxing Ren. 2022. TransSizer: A Novel Transformer-Based

Fast Gate Sizer. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[29] Dongsheng Zuo, Yikang Ouyang, and Yuzhe Ma. 2023. RL-MUL: Multiplier Design Optimization with Deep Reinforcement Learning. In

ACM/IEEE Design Automation Conference (DAC). 1ś6.

[30] Richard Bellman. 1966. Dynamic programming. Science 153, 3731 (1966), 34ś37.

[31] Volodymyr Mnih, Adria Puigdomenech Badia, et al. 2016. Asynchronous Methods for Deep Reinforcement Learning. In International

Conference on Machine Learning (ICML), Vol. 48. 1928ś1937.

[32] Phil Winder. 2020. Reinforcement learning. O’Reilly Media.

[33] Hung-Chin Jang, Yi-Chen Huang, and Hsien-An Chiu. 2020. A study on the efectiveness of A2C and A3C reinforcement learning in

parking space search in urban areas problem. In International Conference on Information and Communication Technology Convergence

(ICTC). IEEE, 567ś571.

[34] Mohit Sewak. 2019. Deep reinforcement learning. Springer.

[35] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray

Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement learning. In International conference on machine learning. PMLR,

1928ś1937.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 770ś778. DOI:http://dx.doi.org/10.1109/CVPR.2016.90

[37] Jing Peng and Ronald J Williams. 1994. Incremental multi-step Q-learning. In Machine Learning Proceedings 1994. Elsevier, 226ś232.

[38] Jiaxi Zhang, Qiuyang Gao, Yijiang Guo, Bizhao Shi, and Guojie Luo. 2022. EasyMAC: Design Exploration-Enabled Multiplier-Accumulator

Generator Using a Canonical Architectural Representation. In IEEE/ACM Asia and South Paciic Design Automation Conference (ASPDAC).

647ś653.

[39] T Ajayi, D Blaauw, TB Chan, CK Cheng, VA Chhabria, DK Choo, M Coltella, S Dobre, R Dreslinski, M Fogaça, et al. 2019. OpenROAD:

Toward a Self-Driving, Open-Source Digital Layout Implementation Tool Chain. Proc. GOMACTECH (2019), 1105ś1110.

[40] Nangate Inc. 2008. Open Cell Library v2008_10 SP1. (2008). http://www.nangate.com/openlibrary/

[41] Parallax Software Inc. OpenSTA. https://github.com/The-OpenROAD-Project/OpenSTA. ([n. d.]).

[42] Claire Wolf. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/. ([n. d.]).

[43] Berkeley Logic Synthesis and Veriication Group. ABC: A System for Sequential Synthesis and Veriication. http://www.eecs.berkeley.

edu/~alanmi/abc/. ([n. d.]).

[44] Geof Hinton. RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. ([n. d.]).

[45] Eckart Zitzler, Dimo Brockhof, and Lothar Thiele. 2007. The hypervolume indicator revisited: On the design of Pareto-compliant

indicators via weighted integration. In International Conference on Evolutionary Multi-Criterion Optimization. Springer, 862ś876.

[46] Synopsys, Inc. Design Compiler. https://www.synopsys.com/implementation-and-signof/rtl-synthesis-test/dc-ultra.html. ([n. d.]).

Received 28 August 2024; revised 11 December 2024; accepted 13 December 2024

ACM Trans. Des. Autom. Electron. Syst.

http://dx.doi.org/10.1109/TCAD.2021.3114262
http://dx.doi.org/10.1109/TCAD.2018.2878129
http://dx.doi.org/10.1109/DAC18074.2021.9586094
http://dx.doi.org/10.1109/CVPR.2016.90
http://www.nangate.com/openlibrary/
https://github.com/The-OpenROAD-Project/OpenSTA
https://yosyshq.net/yosys/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Multiplier Architecture
	2.2 Q-Learning
	2.3 Advantage Actor-Critic

	3 Proposed Method
	3.1 Overview
	3.2 Multiplier Representation
	3.3 Multiplier Modification
	3.4 Pareto-driven Reward
	3.5 Training Algorithm

	4 RL-MUL 2.0
	4.1 Extend to Merged Multiply-Accumulator Architecture
	4.2 Multiple Agents Training
	4.3 Objective Space Reduction
	4.4 Search Space Pruning

	5 Experimental Results
	5.1 Setup
	5.2 Multiplier Performance Comparison
	5.3 MAC Performance Comparison
	5.4 Efficient and Stable Training

	6 Conclusion
	References

