L)

Check for
updates

Bridging Hotspot Detection and Mask Optimization via
Domain-Crossing Masked Layout Modeling

BINWU ZHU, Southeast University, Nanjing, China

SU ZHENG, The Chinese University of Hong Kong, Hong Kong, Hong Kong

YUZHE MA, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
BEI YU, The Chinese University of Hong Kong, Hong Kong, Hong Kong

MARTIN WONG, Hong Kong Baptist University, Hong Kong, Hong Kong

With the rapid development of semiconductors, the size of transistors is continuously scaling down. The
shrinking circuit size poses great challenges to optical proximity correction (OPC) and hotspot detection
(HSD). Recent advancements in OPC and HSD commonly employ deep neural networks, achieving impressive
performance within a limited runtime. Based on these achievements, we observe that deep-learning-based
models of both HSD and OPC require knowledge of layout structure information. Furthermore, these two
tasks are closely related to the lithography process during chip manufacturing. Observing such strong rela-
tionships, we propose that integrating OPC and HSD into a unified deep learning model will contribute to
the performance of both tasks. To bridge the relationship between OPC and HSD, we first pre-train a layout
understanding model built on the mask modeling technique, which effectively captures the layout geometric
information, and then the pre-trained model can be easily fine-tuned on HSD and OPC with limited data. To
fully pre-train the layout understanding model (LUM), we create a large layout dataset using layout genera-
tion techniques, solving the data-hungry issues. Experimental results show that the fine-tuned LUM model
achieves remarkable performance on both OPC and HSD tasks.

CCS Concepts: « Hardware — Design for manufacturability; Methodologies for EDA;
Additional Key Words and Phrases: Mask Optimization, Hotspot Detection, Masked Modeling

ACM Reference Format:

Binwu Zhu, Su Zheng, Yuzhe Ma, Bei Yu, and Martin Wong. 2025. Bridging Hotspot Detection and Mask
Optimization via Domain-Crossing Masked Layout Modeling. ACM Trans. Des. Autom. Electron. Syst. 30, 4,
Article 54 (June 2025), 20 pages. https://doi.org/10.1145/3728468

1 Introduction

In chip manufacturing, due to the proximity effect [1] during the lithography process, mask opti-
mization techniques, including optical proximity correction (OPC), are first adopted to obtain
the desired mask patterns, which facilitates the reduction of printing errors. Inverse lithography
technology (ILT) [2] is a mathematically rigorous approach that optimizes the shapes on the mask

Authors’ Contact Information: Binwu Zhu, Southeast University, Nanjing, Jiangsu, China; e-mail: bwzhu@seu.edu.cn; Su
Zheng, The Chinese University of Hong Kong, Hong Kong, Hong Kong; e-mail: szheng22@cse.cuhk.edu.hk; Yuzhe Ma,
Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China; e-mail: yuzhema@hkust-gz.edu.cn;
Bei Yu, The Chinese University of Hong Kong, Hong Kong, Hong Kong; e-mail: byu@cse.cuhk.edu.hk; Martin Wong, Hong
Kong Baptist University, Hong Kong, Hong Kong; e-mail: mdfwong@hkbu.edu.hk.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 1084-4309/2025/06-ART54
https://doi.org/10.1145/3728468

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0001-8625-1502
HTTPS://ORCID.ORG/0000-0003-1159-1611
HTTPS://ORCID.ORG/0000-0002-3612-4182
HTTPS://ORCID.ORG/0000-0001-6406-4810
HTTPS://ORCID.ORG/0000-0001-8274-9688
https://doi.org/10.1145/3728468
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3728468
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3728468&domain=pdf&date_stamp=2025-06-05

54:2 B. Zhu et al.

Mask M

Loss Function

Mask Quality
Evaluation

(Hotspot or not?)

Back-propagation

Target Image T ILT R(M i, T)

Fig. 1. Traditional mask optimization and hotspot detection process, where detecting hotspot regions has
to rely on the result of previous mask optimization.

to achieve the desired wafer patterns. It has been explored and developed as the new generation
of mask optimization techniques, which is expected to solve the challenges of advanced technol-
ogy nodes such as extreme ultraviolet (EUV) [3]. However, traditional ILT algorithms [4-6]
typically adopt iterative methods such as gradient descent to optimize the misfit between the
printed image on the wafer and the target pattern, and the whole process requires many itera-
tions for convergence, suffering from runtime overhead. To alleviate this problem, researchers
propose multiple algorithms to boost the efficiency of ILT [7-15]. Some methods try to optimize
the traditional ILT algorithm. For example, Yu et al. [8] rely on the CUDA toolkit to implement
a GPU-accelerated Fourier transform algorithm, accelerating a critical and time-consuming step
in the lithography simulation model. Inspired by the multigrid method, the proposed architecture
in [14] involves a lithography simulation scheme that operates at multiple resolutions. The pro-
posed coarse-to-fine simulation scheme can effectively achieve ILT acceleration. Chen et al. [15]
introduce a differentiable lithography imaging framework based on differentiable programming.
It fully leverages the computational power of GPUs to simplify the optimization of resolution
enhancement.

In recent years, the advancement of convolutional neural networks (CNNs) has spawned
powerful techniques for ILT acceleration. Related works try to learn an ILT solver using stacked
convolutional layers. By fully utilizing the massive computation resources of GPU, they can output
the optimized mask patterns within a short runtime. For example, GAN-OPC [9] utilizes a CNN-
based generation model, GAN [16], to quickly approximate an initial mask solution of the test
target and then conduct further refinements on the initial mask to improve the solution quality.

Although considerable progress has been made in mask optimization, there may still exist de-
fects that can potentially lead to open or short failures. As illustrated in Figure 1, traditional defect
detection methods typically sample a series of points on the optimized masks of the layout pat-
tern and then measure edge placement errors (EPEs). The locations with unacceptable EPEs
are regarded as hotspot regions. The main drawback is that these methods cannot achieve end-
to-end defect detection since they always require mask optimization results, causing extra time
overhead. Moreover, the calculation of EPE is not straightforward, and due to the varying com-
plexities of layouts, the number of sampling points differs significantly, making it challenging to
perform parallel computations. Therefore, it is not efficient to identify the potential defects after
the lithography simulation. Besides, since such a detection process involves sampling, the accuracy
is also influenced by the sampling frequency. Higher sampling frequencies result in higher detec-
tion accuracy but lower efficiency. We hope to advance the defect detection process. By performing
hotspot detection before lithography simulation, potential hotspot regions can be identified early
in the design flow, which allows design teams to take proactive measures to address these hotspots,

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling 54:3

such as applying design rule modifications or layout optimizations, before the lithography simu-
lation. Early detection of hotspots enables designers to mitigate potential issues and improve the
overall manufacturability of the chip.

Various practical and efficient hotspot detection methods have been developed to overcome
these limitations in recent years. The main idea is to directly detect hotspot regions from the given
target patterns instead of analyzing the mask patterns after the time-consuming mask optimization
process. In this way, the overall runtime can be remarkably reduced. Recent hotspot detection
can be generally divided into two categories: (1) The first relies on pattern-matching techniques.
These methods [17-19] first take a collection of hotspot layout patterns and use them to scan over
new designs to identify any matched patterns as hotspots. For example, Wen et al. [18] propose
a density-based layout encoder that can discriminate between the hotspots and non-hotspots via
principal component analysis (PCA). (2) The second category formulates the hotspot detection
task as a binary classification problem, which can be effectively tackled by deep neural network
(DNN) models. Related works [20-26] are encouraged by the great success of learning models in
the image classification field. For example, Yang et al. [22] propose to extract layout features with
discrete cosine transform and utilize a CNN architecture for hotspot detection. The performance
is further improved with the proposed bias learning algorithm because of the imbalanced dataset.
Inspired by the object detection problem in computer vision, Chen et al. [25] propose to detect
multiple hotspots within large layouts simultaneously.

For pattern-matching methods, although they can overcome the time-consuming drawback,
their generalization abilities are always unsatisfactory. To be specific, when given hotspot pat-
terns that cannot match any pattern in the pre-collected dataset, these methods may fail to detect
them. As a result, deep learning models, which can automatically learn to extract key features
from layout patterns, are preferred in the state of the art. However, there are still some issues
with learning-based methods: (1) Current deep-learning-based hotspot detection models are usu-
ally trained and tested on small labeled datasets, such as the ICCAD 2012 benchmark [27]. These
small datasets lead to a data-hungry problem in academic research of EDA and may easily cause
over-fitting of learning models. Therefore, learning models trained by these datasets usually have
poor performance when transferred to real industrial scenarios. (2) As mentioned above, hotspot
detection is closely related to mask optimization since the quality of mask optimization will de-
termine whether any hotspot exists. However, these methods simply regard hotspot detection as
an image classification problem and do not effectively utilize any prior knowledge of the mask
optimization and lithography process.

To improve the generalization ability, we aim to design a large pre-trained model, which can
leverage more training data. Such a model can be easily transferred to multiple downstream EDA
tasks. Considering that both hotspot detection and mask optimization call for the understanding
and knowledge of the layout geometry and the lithography process, we argue that hotspot detec-
tion and mask optimization should be integrated into a unified deep learning model, as shown
in Figure 2. Based on these motivations, a strong pre-trained layout understanding model
(LUM) is proposed, where we design a customized training scheme called domain-crossing masked
layout modeling. The proposed framework is inspired by the large pre-trained model in deep
learning, such as mask auto-encoder (MAE) [28] and generative pre-trained transformer
(GPT) [29], which achieves incredible performance on many downstream tasks. In LUM, we first
generate a large amount of layout data and randomly mask a portion of the layout tile. Then, a
training scheme called domain-crossing mask layout modeling is proposed to guide the model
training, which is illustrated in Figure 3. It can be seen that LUM is responsible for restoring both
target images and ILT results from the given masked images. In this way, we can not only leverage
massive masked layout data to pre-train the model sufficiently but also embed the awareness of

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

54:4 B. Zhu et al.

| Layout Encoder

Target Image T' T=E (T)

HSD Result
(Hotspot or Not?)

HSD Decoder

ILT Decoder

M* = D;pr(T) Optimized Mask M*

Fig. 2. Our proposed unified framework. A pre-trained layout understanding encoder can boost performance
on both OPC and HSD.

Restored Target Image

Masked Image
Layout-Understanding Model

Restored ILT Result

Fig. 3. lllustration of domain-crossing masked layout modeling. It restores the desired patterns from a
masked layout tile.

the lithography process and mask optimization into LUM. After pre-training, we can easily fine-
tune the pre-trained LUM with fewer data while achieving satisfactory performance on various
layout understanding tasks, including both OPC and HSD. The main contributions of this article
are listed as follows:

— We unify mask optimization and hotspot detection through the proposed pre-trained LUM.

— We create the SynLayout dataset, a large layout dataset, using layout generation techniques,
which solves the data-hungry issue.

— Our proposed learning scheme, masked layout modeling, helps LUM better capture the geo-
metric information of layout patterns, which contributes to the ability of mask optimization
and hotspot detection.

— Experimental results show that our pre-trained LUM achieves remarkable performance
when fine-tuned on both OPC and HSD tasks.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling 54:5

The rest of this article is organized as follows. Section 2 introduces preliminaries about OPC,
HSD, and mask modeling. Section 3 elaborates on the LUM with customized domain-crossing
mask modeling and target reconstruction mechanisms. Section 4 details our generated large layout
dataset and experimental results, followed by the conclusion in Section 5.

2 Preliminaries

In this section, we will introduce some preliminary knowledge related to this work.

2.1 Optical Proximity Correction

During the lithography process, the input mask M is first transformed through an optical projec-
tion system into the aerial image I. The distribution of light intensity at the wafer plane then forms
the printed image Z with the development and etching processes. OPC is a widely used mask op-
timization technique, which is used to find an optimized mask M,,; = f ~1(Z;), where Z; is the
design target, and f(-) stands for the lithography process under the nominal process condition.

A mathematical model is proposed to simulate the lithography process. It is composed of two
parts: an optical projection model and a photoresist model. For the optical projection process, the
Hopkins diffraction model of the partial coherence imaging system is adopted to approximate the
projection behavior. In mathematics, the aerial image I can be approximated by convolving the
mask M with a set of optical kernels H [2], formulated as

NZ

I(x,y) =) wi IM(x,9) ® hi(x,)l (1)
k=1

where hy is the kth optical kernel of the optical kernel set H, and wy, is the corresponding weight of
the coherent system. “®” represents the convolution operation. To save the computation resources,
an Njth-order approximation to the partially coherent system is proposed in [2], represented as

Np
I(x,y) =) wi IM(x,9) ® hi(x,)l (2)
k=1

where the kernel number Ny, is 24 in our work.

After optical simulation, the aerial image I is input into the photoresist model with an intensity
threshold I;;, which indicates the exposure level. And the final binary printed image Z is calculated
by the following step function:

19 I(xsy) 2Il‘h:

0, I(x,y) < L.)

Z(x,y) = {

To evaluate the quality of the optimized mask, we define the following three metrics.

2.1.1 Process Variation Band (PVB). In the real-world lithography system, process variations
will cause deviations in the final printed image, leading to printing failure. Under different lithog-
raphy conditions, such as focus/defocus depth and incident light intensity, printed images have var-
ious contour results, as shown in Figure 4(a). The process variation band (PV Band) computes
the difference between the outermost and innermost contour to evaluate the printing robustness,
which is formulated as follows:

PVB(Zout Zin) = 1 Zous = Zin”g' 4)

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

54:6 B. Zhu et al.

S]
N _ A]

@) (b) (0
|:| Target Shape (> Resist Image (Maximum) - PVB — EPE Violation (Outer)
(> Resist Image (Nominal) Resist Image (Minimum) L2 Loss EPE Violation (Inner)

Fig. 4. lllustration of the metrics. (a) PVB quantifies the discrepancy between the maximum and minimum
process corners. (b) L2 measures the difference between the nominal resist image and the desired target
image. (c) EPE estimates the geometric distortion of the nominal resist image.

2.1.2 Square L, Error. Given the target image Z, and the printed image Z,,,,, which rep-
resents the image printed via nominal lithography process condition, the square L, loss is
calculated as:

L2o(Znom»Zt) = 1Znom — Zt”g- ©)

2.1.3 Edge Placement Error (EPE). Edge placement error is used to evaluate the difference of
the contour between the target design Z; and the image Z,,,,. To calculate the EPE, a series of
points are sampled along the contour of the target design. If the distance D(x, y) between the target
design and the printed image is larger than an EPE constraint thgpg, the point (x, y) is labeled as
an EPE violation:

1, D(x,y) = thgpg;

0, D(x, y) < thgpg. (6)

EPE Violation(x, y) = {

2.2 Hotspot Detection

The lithographic process always involves many variations, and some patterns are sensitive to these
variations, which may cause potential open or short-circuit failures. These failures will undoubt-
edly reduce manufacturing yields. Layout pattern regions that are sensitive to lithographic process
variations are defined as hotspot regions. To improve the manufacturing yield, an efficient and
accurate hotspot detection technique must be developed to help locate the defect positions of lay-
outs. A high-performance hotspot detector should correctly detect as many hotspots as possible
and avoid mistaking non-hotspot patterns for hotspot patterns. To evaluate the performance, we
define the following metrics.

2.2.1 Accuracy. The ratio between the number of correctly detected hotspots and the number
of ground-truth hotspots.

2.2.2 False Alarm. The number of non-hotspots that are predicted as hotspots by the classifier.

2.3 Masked Modeling

Masked modeling is such a learning task: masking a portion of input contents and attempting to
restore the contents hidden by the mask [30]. Masked language modeling, including BERT [31] and
GPT [29], is the first successful application of masked modeling in natural language processing.
Typically, it is a fill-in-the-blank self-supervised learning task, where a model learns representa-
tions by predicting what a masked word should be according to the context words surrounding the
token. Recently, masked image modeling [28, 32] follows a similar way to learn representations by
predicting the missing parts at the pixel or patch level. Once the model is trained and evaluated, it

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling 54:7

1| Target/Optimized i ! HSD Decoder
! ——

i Layout Patterns Encoder Decoder Reconstruct

| Masking|Strategy Target Encoder |- B
I

I

' | Masked Layout

! < OPC Decoder
I N

I

I

I

I

|

Pre-train Phase Fine-tune Phase

Fig. 5. Overview of the proposed framework, consisting of the pre-training, fine-tuning, and co-evolution
phases. The solid and dashed lines indicate the feed-forward and back-propagation in training, respectively.

can be deployed in production systems for various applications, such as object detection, instance
segmentation, semantic segmentation, or medical image analysis. Mask modeling plays a crucial
role in computer vision tasks where precise localization and pixel-level understanding of objects
or regions are required.

Nonetheless, the techniques described above have only been shown to be useful for natural lan-
guage and image modeling. Masked modeling has not been fully explored in the EDA domain. It is
widely known that there are many layout-related tasks that call for strong layout understanding
abilities of the deep learning model. In this work, we aim to investigate the application of masked
modeling for more robust layout feature extraction. We mask a portion of the layout, and our
LUM is responsible for restoring the masked layout image. In addition, regarding the uniqueness
of EDA layouts and tasks, we have made many customizations to the mask layout modeling mech-
anism, which is significantly different from the mask modeling mechanisms in computer vision
and natural language processing fields, which will be detailed in Section 3.5.

With the evaluation metrics defined in Sections 2.1 and 2.2, we formulate the objective of LUM
as follows:

ProBLEM 1 (LAYOUT UNDERSTANDING MODEL). Given a collection of layout patterns, the objective
of the LUM is to learn to capture the geometry information so that it can achieve satisfactory perfor-
mance on both OPC and HSD. For OPC, the printed image is supposed to be close to the target image
under different process conditions, such that the EPE, L, loss, and PV Band are minimized. For HSD,
LUM is supposed to locate and classify all hotspots and non-hotspots, such that the detection accuracy
is maximized and the false alarm is minimized.

3 Algorithms

In this section, the architecture of our LUM will be explained in detail. We will introduce the
critical components that enable the LUM to be equipped with strong generalization abilities that
differentiate LUM from previous attempts on layout feature learning models. We also show how to
incorporate the prior knowledge of mask optimization into LUM, which remarkably contributes
to the HSD and OPC performance.

3.1 Overview
As shown in Figure 5, the proposed framework consists of two phases:

3.1.1 Pre-training Phase. In this phase, we employ the proposed domain-crossing masked
layout modeling method to pre-train the model. The masking strategy (Section 3.2) masks a

specific portion of input patches, the LUM encoder (Section 3.3) maps the input patches to the
latent space, and the LUM decoder (Section 3.4) aims to recover the desired layout patterns. During

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

54:8 B. Zhu et al.

the pre-training stage, the inputs and outputs can be target images or optimized masks. This
training scheme enables the model to acquire knowledge of the two domains. The reconstruction
target (Section 3.5) guides the pre-training process via back-propagation.

3.1.2 Fine-tuning Phase. Since our framework is targeted at OPC and HSD, we need an OPC
decoder and an HSD decoder to accomplish these two tasks according to the encoding from the
LUM encoder. We fine-tune the LUM decoder used in the pre-training phase to build the OPC
decoder. In addition, we introduce a new HSD decoder for classification. Section 3.6 demonstrates
how to fine-tune the model on these tasks.

3.2 Masking Strategy

Before training our LUM framework to restore the layout pattern, the first step is to mask a por-
tion of the layout tile suitably. Most recent mask modeling approaches, such as MAE [28] and
SimMIM [32], followed a uniformly random masking method at the patch level. Inspired by these
works, the layout pattern in our work is first divided into non-overlapping patches of size 4 X 4,
and part of the patches are randomly masked.

The masking ratio is critical for model training. A suitable ratio can ensure that the masking lay-
out patterns effectively eliminate redundancy, resulting in a task that cannot be solved by extrap-
olation from visible neighboring patches. In previous vision works, a commonly adopted masking
ratio is 75%. However, we find that such a high ratio is not suitable for our task since the meaning
of the semantic information of layout patterns is more sparse than in regular images. To determine
a suitable masking ratio, a series of experiments are investigated, and we finally set the masking
ratio as 50%.

3.3 Encoder

The LUM encoder is responsible for modeling latent feature representations of the masked patches,
which are then utilized to forecast the original signals in the masked area. The learned encoder
should be capable of adapting to different tasks. Recently, Transformer [33] has become a powerful
encoder in both vision and language areas. The transformer encoder consists of multiple layers,
of which the most important one is multi-head self-attention, allowing the model to capture in-
formation at different positions globally [33]. To deal with image inputs, Vision Transformer
(ViT) [34] splits an image into fixed-size patches, each of which is regarded as a token in sequen-
tial data. Given an input layout of size H X W X C and the patch size P, the representation is first
transformed into patches {x, xs, ..., x%v }. The Transformer encoder first packs the patches as

HW o o p?
a matrix, represented as X € R 7? *CP” Next, a fully connected layer maps the patches to the
HW
input embeddings Xy € R “Ni_To differentiate the positions of patches, positional encodings
HW
Ep € R'7 “N1 are then added to the input embeddings:

Xp =Xg + Ep. (7)

Given the embedding matrix Xp, the multi-head self-attention layer projects it onto three different
subspaces, which can be represented as

{Q.K,V} = {XpW, XpWX XpW"}, ®)

where W<, WX, and WV are three projection matrices, which project Xp onto Q, K, and V, re-
spectively. The output of the multi-head self-attention layer can be formulated as

MultiHead(Q, K, V) = Concat (Hy, ..., H,) W9, 9)

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Add & Norm

Feed
Forward

Add & Norm }

Multi-Head
Self-Attention

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling

Positional
Embedding 2

[Scaled Dot—ProcIuct Attention
[S

‘ (L'm'éarﬁ (Lin'éa.r]] [iinéar}]

1) A
(e] [k] [v]

h

54:9

Linear

1

Input X
Fig. 6. The structure of the Transformer block.

where H;,i € {1,2,...,h} is the output of a single scaled dot-product attention head as shown
in Figure 6, and h is the number of heads. H; is computed by

H; = Attention (QWiQ, KWK, VWiV)
(10)

1

Vi

ow? (kwf)"

= Softmax 141AS

For each attention head, the original inputs Q, K, V are further projected onto different subspaces
via projection matrices Wl.Q,Wl.K , and WI.V, so that different heads deal with different input to
learn richer information [33]. The attention head then computes the similarity between the
projected query and key via scaled dot-product and a softmax function is applied to obtain
the weights on the projected value. The multi-head self-attention layer concatenates all the
outputs H;,i € {1,2,...,h} from different heads and then reduces the high-dimension fea-
ture Concat (Hy, ..., Hp) to low dimension via another projection matrix WO as formulated
in Equation (9).

However, as formulated in Equations (9) and (10), the vanilla Transformer [33] is extremely
computationally expensive. Inspired by Swin Transformer [35], our encoder module introduces
three extra mechanisms to further improve the efficiency while keeping the advantage of the
Transformer [33]. The first one is the local attention mechanism. Instead of applying attention
to all patches, we group the patches into W X W windows, and a multi-head self-attention layer
is employed within each window. Such a mechanism is implemented as a window multi-head
self-attention (W-MSA) layer. Local attention improves computation efficiency but lacks global
perception. The second mechanism solves this problem by introducing shifted windows to parti-
tion the original layout pattern. Specifically, the local attention mechanism uses a regular window
partitioning strategy that starts from the top left, while the shifted window mechanism displaces
the windows by (I_%J, L%J) Figure 7 illustrates the cross-connection ability of the shifted windows
mechanism. This mechanism is called a shifted window multi-head self-attention (SW-MSA)
layer. Furthermore, the patch merging mechanism downscales the features by concatenating neigh-
boring patches, which can enable the aggregation of multiscale information. Our encoder contains
multiple stages, and Figure 8 presents a single stage, which consists of a patch merging layer and

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

54:10 B. Zhu et al.

I:] The local window

for self-attention [J APatch

Fig. 7. The shifted window approach for computing self-attention in our proposed encoder architecture. In
layer W-MSA, we adopt a regular window partitioning scheme, as shown in the left part, and self-attention
is computed within each local window. In layer SW-MSA, the window is shifted, as shown in the right part.

Output

Fig. 8. lllustration of a stage in the Swin Transformer architecture, which consists of a patch merging layer
and N; Swin Transformer blocks.

N; Swin Transformer blocks. Each Swin Transformer block includes W-MSA, MLP, SW-MSA, and
MLP layers, where MLP means multi-layer perceptrons.

3.4 Decoder

The LUM decoder is designed based on the feature pyramid network (FPN) [36], which is a
widely used and effective technique in the field of computer vision. FPN serves as a versatile feature
extractor that capitalizes on the inherent and pyramidal hierarchy of features. This allows for the
extraction of multi-level feature representations.

In our framework, the LUM decoder takes as input the output features obtained from the four
stages of the LUM encoder depicted in Figure 9. These features serve as the foundation for the
subsequent decoding process. To generate feature maps with varying levels of detail, the LUM
decoder employs a top-down pathway. This pathway utilizes convolutional layers, residual con-
nections, and a pyramid pooling module [37] to process the input feature maps. The result is the
creation of multi-scale feature maps, each containing features at different levels of abstraction.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling 54:11

Swin Stagel Conv. i, Con.
1 4
1

scalex2 scalex2

Swin Stage2 Conv. ' Conv. x8
1 2 :
8

scalex2 scalex2
x1
- Conv. Conv. /
Swin Stage3

T
x3

s

Readout
Conv. layers

scalex2 scalex2

Swin Staged Conv. ’ PPM ’

L
32

Fig. 9. LUM decoder. The inputs to the LUM decoder are the output features from the four stages of the LUM
encoder. With a top-down pathway, multi-scale feature maps can be generated, each containing different
level features.

In addition, lateral connections are introduced to integrate information from different levels of
the feature hierarchy. These connections combine feature maps from different levels and facilitate
the creation of a single consolidated feature map. This final feature map is then fed through readout
convolutional layers to produce the ultimate output, which represents the generated layout.

3.5 Target Reconstruction

Our model is able to receive or output target images or optimized masks. For example, receiv-
ing the target image and generating the optimized mask is equivalent to the OPC. Receiving the
masked target image and generating the restored target image is the layout reconstruction process.
Combining different input and reconstruction targets enables our LUM to acquire knowledge of
different domains.

To distinguish between target images and optimized masks, we design an additional type of
embedding for the LUM encoder. Specifically, given the input embeddings Xg, we apply the type

embedding by
Xg + Er, if the input is a target image,

Xp = { (11)

Xg + Epy, if the input is an optimized mask.

Similarly, we also introduce the type embedding to the LUM decoder. The embedding matrix Er
or Ey; is added to the input of the MLM decoder. We set the type embedding matrices Er, Ey;, Er,
and EM as trainable. This mechanism enables the encoder and decoder to differentiate between
the two domains.

During the pre-training stage, when given a layout tile X, we first obtain its corresponding
target image X7 and optimized mask X;. Next, we mask the images and get X7, X 5. Denoting
the mask layout modeling with f : RF*W — RH*W 'the reconstruction target can be formulated
as

Lcross(X) = ”fTT()_(T) - XT”ZZ + ”fTM()_{T) _XM||§+
I faurXar) = X7lZ + | fsrm X ar) = Xuall3-

In Equation (12), the two subscripts of f indicate the input and output domains. For example,
frm uses Er as the encoder-type embedding and Ej; as the decoder-type embedding.

(12)

3.6 Fine-tuning

In the fine-tuning phase, we adapt the pre-trained model to HSD and OPC tasks by freezing the
parameters of the pre-trained LUM encoder, and then we fine-tune the OPC decoder and train

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

54:12 B. Zhu et al.

ALGORITHM 1: LUM Fine-tuning

Input: Pre-trained LUM encoder Pepcoder;
Output: Fine-tuned OPC decoder P, and HSD decoder P4

1: Fix Pepcoders

2: Pype < Initialize OPC decoder parameter;
3: fort = 1 to Epoch do

4 Sample a train set from dataset Dyy;

5: Train Py, to minimize Lopc;

6: end for

7: Ppsq < Initialize HSD decoder parameter;
8: for t = 1to Epoch do

9 Sample a train set from dataset Dyy;
10: Train Pp;4 to minimize Lysp;

11: end for

an HSD decoder. The whole fine-tuning process is illustrated in Algorithm 1. For OPC, we simply
fine-tune the pre-trained mask layout modeling decoder to predict the optimized masks. Given the
target image X7 and the ground-truth optimized mask Xy, the loss function is defined as

Lopc(X7,Xm) = Ly(Xt1,Xnm) + Lo(X71) + Lpy(X7). (13)

The loss function (Equation (13)) involves the following components:

— The similarity between the predicted mask and the optimized mask is minimized by
Ly(X7, Xp) = || frm(X1) = Xpll3- (14)

— The L; loss minimizes the distance between the printed image and the target image, which
is formulated as

Lia(X7) = I fz(frm(Xr)) — X7} (15)

The printed image fz(fry(Xr)) is computed by the lithography simulation model, which
is described by Equations (2) and (3).

— Lpyp(X7t) improves the robustness of the OPC results by minimizing the distance between
the printed images at the maximum and minimum process corners. Specifically, the maxi-
mum and minimum process corners are modeled by lithography kernels Hy,qx and Hpin,
respectively. Given the printed images fz, (frm(Xr)) and fz, . (frm(Xr)), the PVB loss
is defined as

Lpve(X1) = | fZpmae Frm(XT)) = f2,00 (FrmXT))|3 (16)

Since the objective of HSD is very different from the OPC task, a customized HSD decoder
is specifically designed to output whether there exist hotspot regions in the layout patterns. As
shown in Figure 10, the HSD decoder is composed of three consecutive convolution layers, which
receive the output of the previous encoder and predict whether there exists a hotspot in each patch
as discussed in Section 3.2. Therefore, the output of the HSD decoder is an N X N feature map,
where each pixel value denotes the probability of the hotspot region. To guide the learning of the
HSD decoder, we adopt a loss function based on the cross-entropy loss, which is defined as

N N
Lisp(X1) = Y > ~pry10gpry = (1 = pry) log (1 = picy), (17)

x=1y=1

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling 54:13

Conv g Conv g Conv ' P
—> — — hotspot

Fig. 10. HSD decoder.

Table 1. Design Rules [9] Followed by Our
SynlLayout Dataset

Design Rule ‘ Min Size(nm) ‘
M1 critical dimension 80
Pitch 140
Tip-to-tip Distance 60

where py, and py, denote the ground truth and prediction probability of the hotspot region, re-
spectively. Once we have constructed the training data and completed the model training, those
using our model to find hotspots in test data will no longer need to perform lithography simula-
tions, greatly enhancing detection efficiency. Therefore, we only need to make a one-time effort
to achieve a once-and-for-all process.

4 Experiments

We implement our entire framework LUM with the widely used deep learning library Pytorch [38].
The model is tested on a Linux system with a 2.3 GHz Intel Xeon CPU and a single NVIDIA GeForce
RTX 3090 GPU. To verify the efficiency and robustness of our approach, we synthesized a large
layout dataset, called SynLayout Dataset, to test the performance of LUM.

4.1 SynlLayout Dataset

In previous works, the ICCAD 2012 [27] and ICCAD 2013 [39] benchmarks are two commonly used
layout datasets for hotspot detection and mask optimization. However, these benchmarks are only
used for academic research, and they contain very limited layouts. To be specific, ICCAD 2013 [39]
only contains 10 2um X 2um metal layer clips, which are too small to fit Al solutions. To create a
larger dataset, GAN-OPC [9] releases around 4k synthetic tiles of metal layer. However, its scale
still cannot meet the training requirements of deep learning models currently applied in layout-
related tasks. Previous learning models trained by these small datasets usually have unsatisfactory
performance when applied in real industrial scenarios due to weak generalization ability.

In order to further improve the generalization ability of our model, we are supposed to generate
and leverage more layout pattern data to train our LUM effectively. Therefore, we create a new
layout dataset called SynLayout following the layout generation method proposed in [40]. The
SynLayout dataset is based on the 32nm technology node, which is the same as the ICCAD 2013
benchmark [39]. We adjust the wire sizes to make sure the shapes in synthesized layouts are similar
to those in the given benchmark. To generate experimental cells, all the shapes are randomly placed
together based on a series of design rules as shown in Table 1. We synthesize 16,000 tiles, and we
split 70% of the data for training and 30% of the data for testing. Figure 11 shows synthetic layout
pattern examples that follow legal design rules.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

54:14 B. Zhu et al.

Fig. 11. Examples of synthetic layout patterns.

Table 2. Benchmark Information of Our SynLayout Dataset, ICCAD
2012 [27] Dataset, and ICCAD 2013 Dataset [39]

| Benchmark | SynLayout | ICCAD 2012 [27] [ICCAD 2013 [39] |
| Layout Count | 16000 | 10 \ 5 \

In addition, we need to obtain the corresponding optimized masks and hotspot regions of all
generated layout patterns, which act as supervised signals. Optimization-based ILT methods are
adopted to obtain the accurate optimized masks of our generated layouts. L2 loss (Equation (15)),
PVB loss (Equation (16)), and curvature loss [7] are employed in the ILT method to ensure the mask
quality while minimizing the mask complexity. To find out hotspots that cause open and short cir-
cuits, we sample a series of points, calculate their EPE values, and identify locations with EPE
violations as hotspot regions. According to the EPE violation count, there are 43,269 hotspots in
training layouts and 18,120 hotspots in test layouts. Additionally, we compare the benchmark statis-
tics between SynLayout and ICCAD 2012 [27], as well as ICCAD 2013 [39], in Table 2. In Figure 12,
we utilize t-SNE to visualize the distribution of the three datasets. T-SNE is a statistical method for
visualizing high-dimensional data by assigning each data point a location in a two-dimensional
map. Based on Table 2 and Figure 12, it is evident that SynLayout surpasses both ICCAD 2012 [27]
and ICCAD 2013 [39] in terms of layout number and diversity. Such a large dataset allows LUM to
learn from diverse layout patterns and acquire the knowledge necessary for accurate downstream
layout tasks, including both OPC and HSD. Although generating this training data may require
additional effort, it plays a vital role in training a robust and effective model.

4.2 Results Comparison

Table 3 shows the comparison hotspot detection results of our proposed framework and several
other state-of-the-art hotspot detectors. The comparison results illustrate that our model LUM has
satisfactory performance. Specifically, the average accuracy of our framework is 94.21% compared
to 91.94%, 89.76%, and 85.66% for ICCAD ’21 [42], DAC 19 [25], and TCAD ’19 [41], respectively.
Besides, the advantage of our framework is that it suppresses the false alarm effectively, which
decreases 55.2%, 30.0%, and 11.8% of the false alarm reported by TCAD ’19 [41], DAC 19 [25],
and ICCAD ’21 [42], respectively. As for runtime, it on average takes 0.22 s for LUM to detect
a hotspot on a single layout, which is a little bit slower than ICCAD °21 [42] (0.12 s) and faster
than the other two works. This is because our model is designed for multiple tasks, including
both hotspot detection and mask optimization, and the architecture of LUM is more complex than
ICCAD ’21 [42]. In contrast, the model in ICCAD ’21 [42] is only used for hotspot detection and
has a simple structure. However, we think the runtime is still comparable, and it is worth achieving
much better performance at the cost of extra limited time.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling 54:15

Fi

g. 12. T-SNE of (a) SynLayout dataset, (b) ICCAD 2012 dataset, and (c) ICCAD 2013 dataset.

(@) (b) (©

Fig. 13. Examples of OPC results. (a) shows a mask output by the pre-trained LUM without further training.
(b) is a well-optimized mask from the “Ours-Exact” setting. (c) is a mask from the “Ours-Fast” setting which
also shows satisfactory performance.

Table 3. Comparison with State-of-the-art HSD Methods on
SynlLayout Dataset

‘ Accuracy (%) | False Alarm ‘ Runtime (s) ‘
TCAD ’19 [41] 85.63 6384 0.40
DAC ’19 [25] 89.76 4629 0.28
ICCAD ’21 [42] 91.94 3241 0.12
Ours 94.21 2860 0.22

4.3 What Does LUM Learn?

Our motivation for designing LUM is to incorporate prior knowledge of mask optimization into the
model, which will improve the accuracy of hotspot detection. To prove that LUM has also learned
the process of OPC, we concatenate the encoder and the OPC decoder and ask LUM to receive the
target image and directly output the optimized masks without any fine-tuning process. Figure 13(a)
presents an example of the pre-trained results. Figure 13(b) is the well-optimized mask output by
our fine-tuned model and further refined using the optimization-based ILT method. Comparing
Figure 13(a) to Figure 13(b), the generated masks without OPC-specific training are close to the
well-optimized mask. This observation indicates that the pre-trained LUM can be equipped with
OPC-based knowledge, which contributes to the outstanding HSD results.

To provide quantitative analysis, we further conduct OPC-specific training. The methods are
tested on the ICCAD 2013 benchmark [39]. Tables 4 and 5 compare the mask printability and
runtime performance of various OPC methods. To mask a fair comparison, we adopt the same
optimization area as the works we compare with. The optimization region is the 1280x1280
region centered around the center of the layout. “MOSAIC” [43] is a pixel-based ILT method.
“DevelSet” [7] is a level set-based ILT method that incorporates DNN models to reduce the

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

54:16 B. Zhu et al.

Table 4. Mask Printability Comparison with Sate-of-the-art Methods on ICCAD 2013 Benchmark

MOSAIC [43] DevelSet [7] CTM-SRAF [44] Multi-ILT [14] Ours-Fast Ours-Exact

Benchmarks | EPE Ly PVB EPE L, PVB | EPE Ly PVB | EPE L, PVB | EPE Ly PVB | EPE Ly PVB
(nm?) (nm?) (nm?) (nm?) (nm?) (nm?) (nm?) (nm?) (nm?) (nm?) (nm?) (nm?)

casel 6 49,893 65,534 10 49,142 59,607 3 46,405 57,584 3 40,779 50,661 5 46,655 47,519 3 39,561 47,788
case2 10 50,369 48,230 1 34,489 52,010 1 33,481 45,756 2 34,201 44,322 0 33,893 37,084 0 31,261 38,279
case3 59 81,007 108,608 | 64 93,498 76,558 | 28 77,734 92,660 | 22 66,486 71,527 | 40 80,918 76,726 | 15 63,798 76,121
case4 1 20,044 28,285 2 18,682 29,047 0 13,183 26,061 0 10,942 21,500 1 12,014 22,039 0 8,939 23,679
case5 6 44,656 58,835 1 44,256 58,085 1 41,569 54,553 0 30,231 51,277 0 36,695 55,481 0 30,208 53,504
case6 1 57,375 48,739 2 41,730 53,410 1 38,608 48,134 0 30,741 44,982 0 37,338 47,979 0 30,284 47,809
case7 0 37,221 47,120 0 35,329 46,071 0 32,443 43,697 0 17,101 40,294 0 30,640 43,268 0 28,579 43,012
case8 2 19,782 22,846 0 15,460 24,836 1 15,178 20,657 0 11,935 20,357 0 12,751 20,535 0 10,813 20,192
case9 6 55399 66,331 0 50,834 64,950 | 0 49,073 60,754 | 0 35805 57,930 | 0 42,860 58,123 | 0 34,738 60,962
casel@ 0 24,381 18,097 0 10,140 21,619 0 8,231 17,426 0 8,825 18,470 0 10,323 16,544 0 7,714 16,234
Average 9.1 44,012 50,899 8 38,402 48,672 | 3.5 34,765 46,753 | 2.5 28,704.6 42,132 | 4.6 33,292 42,179 | 1.8 27,349 42,577

Table 5. Runtime Comparison with State-of-the-art Methods on ICCAD 2013 Benchmark

Benchmarks ‘ MOSAIC [43] ‘ DevelSet [7] ‘ CTM-SRAF [44] ‘ Multi-ILT [14] ‘ Ours-Fast ‘ Ours-Exact ‘

case] 318 150 121 3.49 0.01 6.6
case2 256 1.40 93 3.47 0.01 6.6
case3 321 1.29 179 3.47 0.01 6.6
case4 322 1.65 128 3.47 0.01 6.6
case5 315 0.91 73 347 0.01 6.6
case6 314 0.84 72 347 0.01 6.6
case7 239 0.76 78 3.50 0.01 6.6
case8 258 1.14 66 3.47 0.01 6.6
case9 322 121 74 3.50 0.01 6.6

casel0 231 0.42 57 348 0.01 6.6
| Average | 289 { 1.1 { 94.1 { 3.48 [o001 | 66 |

optimization time. “CTM-SRAF” [44] proposes a robust constraint-aware SRAF generation
method based on continuous transmission mask (CTM). Then, it co-optimizes the generated
SRAF with the main target pattern using an ILT method to evaluate the effectiveness of SRAF.
Multi-ILT [14] proposes a lithography simulation scheme working on multiple resolutions of a
given mask, achieving satisfactory ILT acceleration. “Ours-Fast” shows the performance of the
masks generated by our OPC decoder. Figure 13(c) shows a mask example from the “Ours-Fast”
setting and is very close to Figure 13(b), which indicates that the “Our-Fast” version of the model
also produces mask results with satisfactory performance. It can be seen that “Ours-Fast” achieves
satisfactory L2 and PVB performance with a significantly lower runtime. With acceptable runtime
overhead, “Ours-Exact” not only improves the L2 but also gets remarkable EPE results. The
superior performance indicates that our LUM-based OPC can achieve better manufacturability. In
summary, “‘Ours-Fast” achieves instant mask optimization with nice results, while “Ours-Exact”
attains outstanding performance with acceptable runtime. Our method indeed has not surpassed
Multi-ILT [14] in each metric, but overall, we think they are comparable. The primary goal of our
work is to develop a pre-trained LUM that consolidates various layout tasks within a single frame-
work. Thus, achieving results that are comparable with the state-of-the-art model, Multi-ILT [14],
on mask optimization and surpassing other state-of-the-art works on hotspot detection can be
regarded as the first step in this direction. Moving forward, we plan to investigate the creation of
specialized decoder frameworks to enhance the performance of our model on individual tasks.
Finally, we also visualize the results in Figures 14(a) and 14(b) obtained by applying both the
OPC decoder and the HSD decoder to the same layout, aiming to demonstrate that the detected
hotspot regions correspond to the potential open-circuit-prone or short-circuit-prone regions in
the optimized mask. It can be observed that as the light intensity increases, there is a significant

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling 54:17

(a) (b)

Fig. 14. HSD and OPC results of one layout. (a) shows the hotspot detection result; (b) is the corresponding
mask optimization result.

'10? I I I 100 I I I
1 Unifying Model 1 Unifying Model
Em OPC-only [HSD-only
95 - b
3 8 ¥
3 g
5 g 90 R
~ 2
=, | g
85 b
1 80
@ (b)

Fig. 15. Ablation study results of different training strategies.

possibility of short-circuit occurrence at the highlighted regions on the optimized mask. This fur-
ther demonstrates the accuracy of our LUM framework for both OPC and HSD.

4.4 Ablation Studies

LUM is trained with the intention of equipping it with the ability to understand the geometric
information of layout patterns, enabling it to be applicable to various downstream layout tasks. To
further verify the benefit of unifying hotspot detection and mask optimization, we conducted addi-
tional ablation studies by removing certain supervised loss signals. As shown in Figure 15(a), in the
case of OPC, even with the same model architecture and training data, if the training is conducted
with only the input target and output mask, the model’s performance on OPC will deteriorate. It
can be seen that the unifying model on average outperforms the OPC-only training model with
a 28.7% reduction in L, error. For HSD, if the training is conducted with only the input target
and output hotspot predictions, the model’s performance on HSD will also degrade. As illustrated
in Figure 15(b), compared with the HSD-only training model, the hotspot detection accuracy of the
unifying model achieves 6.6% enhancements. Therefore, such ablation studies can verify that dur-
ing the pre-training phase, our proposed LUM is equipped with the ability to understand the layout
geometry information, which further benefits the layout tasks, including both OPC and HSD.

In addition, we conduct ablation studies to test different masking ratios during the pre-training
stage of our model. A suitable mask ratio can help LUM better learn and predict the masked parts.
We compared the effects of 30%, 40%, 50%, 60%, and 70% masking ratios on the performance in the
OPC and HSD tasks. The experimental results shown in Figure 16 indicate that a 50% masking ratio

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

54:18 B. Zhu et al.

.1q4
95 |- B
3 | —
X [-
5 5 %
5 g
[} 2 | . S
=) g 85| B
<
1 - 80 |- B
I I I I I I I I I I
30 40 50 60 70 30 40 50 60 70
Ratio Ratio

(@) (b)

Fig. 16. Ablation study results of different masking ratios.

contributes to the best outcome. We notice that when the masking ratio is too low, although the
model achieves high accuracy in layout reconstruction during the pre-training phase, its general-
ization ability is insufficient. Conversely, when the masking ratio is too high, the model’s accuracy
in layout reconstruction is compromised, preventing it from accurately understanding the layout
geometry information.

5 Conclusion

In this work, we present a LUM, a deep-learning-based model that achieves remarkable perfor-
mance on both mask optimization and hotspot detection tasks. Our model structure is inspired by
the mask modeling method, which masks a portion of input signals and asks the model to restore
the content. Such a model can leverage more training data to improve the generalization ability.
We propose different decoders for HSD and OPC tasks while maintaining the same encoder com-
ponent. During the training stage, we design multiple reconstruction tasks to enable the model
to effectively learn the geometric information of layout patterns as well as the process of mask
optimization. The experimental results demonstrate that our model has shown remarkable perfor-
mance on OPC tasks, and the learned mask optimization knowledge is also beneficial for improving
the HSD performance. We hope to use this work to provide an approach for the layout pre-training
model. In the future, we will continue to explore how to design task-specific decoder frameworks
to further improve the model’s performance on each task.

Acknowledgments

This work is partially supported by The Research Grants Council of Hong Kong SAR (No. RFS2425-
4502 and No. CUHK14211824).

References

[1] Rayleigh. 1879. XXXI. Investigations in optics, with special reference to the spectroscope. London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 8, 49 (1879), 261-274.

[2] Jhih-Rong Gao, Xiaoging Xu, Bei Yu, and David Z. Pan. 2014. MOSAIC: Mask optimizing solution with process window
aware inverse correction. In ACM/IEEE Design Automation Conference (DAC’14). 52:1-52:6.

[3] Vivek Bakshi. 2009. EUV lithography. (2009).

[4] Yijiang Shen, Ngai Wong, and Edmund Y. Lam. 2009. Level-set-based inverse lithography for photomask synthesis.
Optics Express 17, 26 (2009), 23690-23701.

[5] Yijiang Shen, Ningning Jia, Ngai Wong, and Edmund Y. Lam. 2011. Robust level-set-based inverse lithography. Optics
Express 19, 6 (2011), 5511-5521.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

Bridging HSD and Mask Optimization via Domain-crossing Masked Layout Modeling 54:19

[6] Yuzhe Ma, Jhih-Rong Gao, Jian Kuang, Jin Miao, and Bei Yu. 2017. A unified framework for simultaneous layout de-

[11

[12

[13
(14
[15
[16
(17

(18

[19

[20

[21

[22

[24
[25

(26

[27

[28

]

—

e e o T R i

= =

—

[t/ R

—_ = O

[t

composition and mask optimization. In 2017 IEEE/ACM International Conference on Computer-aided Design (ICCAD’17).
81-88. DOI : http://dx.doi.org/10.1109/ICCAD.2017.8203763

Guojin Chen, Ziyang Yu, Hongduo Liu, Yuzhe Ma, and Bei Yu. 2021. DevelSet: Deep neural level set for instant mask
optimization. In IEEE/ACM International Conference on Computer-aided Design (ICCAD’21).

Ziyang Yu, Guojin Chen, Yuzhe Ma, and Bei Yu. 2021. A GPU-enabled level set method for mask optimization. In
IEEE/ACM Proceedings on Design, Automation and Test in Europe (DATE 21).

Haoyu Yang, Shuhe Li, Zihao Deng, Yuzhe Ma, Bei Yu, and Evangeline F. Y. Young. 2019. GAN-OPC: Mask optimization
with lithography-guided generative adversarial nets. IEEE Transactions on Computer-aided Design of Integrated Circuits
and Systems (TCAD) 39, 10 (2019), 2822-2834.

Bentian Jiang, Lixin Liu, Yuzhe Ma, Bei Yu, and Evangeline F. Y. Young. 2021. Neural-ILT 2.0: Migrating ILT to domain-
specific and multitask-enabled neural network. IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems (TCAD) 41, 8 (2021), 2671-2684.

Binwu Zhu, Su Zheng, Ziyang Yu, Guojin Chen, Yuzhe Ma, Fan Yang, Bei Yu, and Martin D. F. Wong. 2023. L20-
ILT: Learning to optimize inverse lithography techniques. IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems (TCAD) 43, 3 (2023), 944-955.

Xiaoxiao Liang, Yikang Ouyang, Haoyu Yang, Bei Yu, and Yuzhe Ma. 2023. RL-OPC: Mask optimization with deep
reinforcement learning. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems 43, 1 (2023),
340-351.

Qijing Wang, Bentian Jiang, Martin D. F. Wong, and Evangeline F. Y. Young. 2022. A2-ILT: GPU accelerated ILT with
spatial attention mechanism. In ACM/IEEE Design Automation Conference (DAC’22). 967-972.

Shuyuan Sun, Fan Yang, Bei Yu, Li Shang, and Xuan Zeng. 2023. Efficient ILT via multi-level lithography simulation.
In ACM/IEEE Design Automation Conference (DAC’23).

Guojin Chen, Hao Geng, Bei Yu, and David Z. Pan. 2024. Open-source differentiable lithography imaging framework.
In DTCO and Computational Patterning III, Vol. 12954. SPIE, 118-127.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. 2020. Generative adversarial networks. Communications of the ACM 63, 11 (2020), 139-144.

Andrew B. Kahng, Chul-Hong Park, and Xu Xu. 2006. Fast dual graph based hotspot detection. In Proceedings of Society
of Photo-Optical Instrumentation Engineers (SPIE), Vol. 6349, 2006.

Wan-Yu Wen, Jin-Cheng Li, Sheng-Yuan Lin, Jing-Yi Chen, and Shih-Chieh Chang. 2014. A fuzzy-matching model with
grid reduction for lithography hotspot detection. IEEE Transactions on Computer-aided Design of Integrated Circuits
and Systems (TCAD) 33, 11 (2014), 1671-1680.

Yen-Ting Yu, Ya-Chung Chan, Subarna Sinha, Iris Hui-Ru Jiang, and Charles Chiang. 2012. Accurate process-hotspot
detection using critical design rule extraction. In ACM/IEEE Design Automation Conference (DAC’12). 1167-1172.

Bei Yu, Jhih-Rong Gao, Duo Ding, Xuan Zeng, and David Z. Pan. 2015. Accurate lithography hotspot detection based
on principal component analysis-support vector machine classifier with hierarchical data clustering. Journal of Mi-
cro/Nanolithography, MEMS, and MOEMS 14, 1 (2015), 011003.

Tetsuaki Matsunawa, Jhih-Rong Gao, Bei Yu, and David Z. Pan. 2015. A new lithography hotspot detection frame-
work based on AdaBoost classifier and simplified feature extraction. In Design-process-technology Co-optimization for
Manufacturability IX, Vol. 9427. SPIE, 201-211.

Haoyu Yang, Jing Su, Yi Zou, Bei Yu, and Evangeline F. Y. Young. 2017. Layout hotspot detection with feature tensor
generation and deep biased learning. In ACM/IEEE Design Automation Conference (DAC’17). 62:1-62:6.

H. Y. Yang, Shuhe Li, Cyrus Tabery, Bingging Lin, and Bei Yu. 2020. Bridging the gap between layout pattern sampling
and hotspot detection via batch active learning. IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems 40, 7 (2020), 1464-1475. DOI : http://dx.doi.org/10.1109/TCAD.2020.3015903

Hao Geng, Haoyu Yang, Lu Zhang, Jin Miao, Fan Yang, Xuan Zeng, and Bei Yu. 2020. Hotspot detection via attention-
based deep layout metric learning. In IEEE/ACM International Conference on Computer-aided Design (ICCAD’20).

Ran Chen, Wei Zhong, Haoyu Yang, Hao Geng, Xuan Zeng, and Bei Yu. 2019. Faster region-based hotspot detection.
In ACM/IEEE Design Automation Conference (DAC’19). 146:1-146:6.

Yiyang Jiang, Fan Yang, Bei Yu, Dian Zhou, and Xuan Zeng. 2020. Efficient layout hotspot detection via binarized
residual neural network ensemble. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems 40,
7 (2020), 1476-1488.

Andres J. Torres. 2012. ICCAD-2012 CAD contest in fuzzy pattern matching for physical verification and benchmark
suite. In IEEE/ACM International Conference on Computer-aided Design (ICCAD’12). 349-350.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. 2022. Masked autoencoders are
scalable vision learners. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22). 16000-16009.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

http://dx.doi.org/10.1109/ICCAD.2017.8203763
http://dx.doi.org/10.1109/TCAD.2020.3015903

54:20 B. Zhu et al.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by
generative pre-training. OpenAl, 2018.

Zekai Chen, Devansh Agarwal, Kshitij Aggarwal, Wiem Safta, Mariann Micsinai Balan, and Kevin Brown. 2023.
Masked image modeling advances 3D medical image analysis. In Winter Conference on Applications of Computer Vision
(WACV’23). 1970-1980.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL’19). 4171-4186.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. 2022. Simmim:
A simple framework for masked image modeling. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’22). 9653-9663.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Annual Conference on Neural Information Processing Systems (NIPS’17).
5998-6008.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. n.d.. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning Representations (ICLR).

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. 2021. Swin trans-
former: Hierarchical vision transformer using shifted windows. In IEEE International Conference on Computer Vision
(ICCV’21). 10012-10022.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017. Feature pyramid
networks for object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 2117-2125.
Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. 2017. Pyramid scene parsing network.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 2881-2890.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library.
arXiv preprint arXiv:1912.01703 (2019).

Shayak Banerjee, Zhuo Li, and Sani R. Nassif. 2013. ICCAD-2013 CAD contest in mask optimization and benchmark
suite. In IEEE/ACM International Conference on Computer-aided Design (ICCAD’13).

Su Zheng, Haoyu Yang, Binwu Zhu, Bei Yu, and Martin Wong. 2024. LithoBench: Benchmarking AI computational
lithography for semiconductor manufacturing. Annual Conference on Neural Information Processing Systems (NeurIPS)
36 (2024).

Haoyu Yang, Jing Su, Yi Zou, Yuzhe Ma, Bei Yu, and Evangeline F. Y. Young. 2019. Layout hotspot detection with
feature tensor generation and deep biased learning. IEEE Transactions on Computer-aided Design of Integrated Circuits
and Systems (TCAD) 38, 6 (2019), 1175-1187.

Binwu Zhu, Ran Chen, Xinyun Zhang, Fan Yang, Xuan Zeng, Bei Yu, and Martin D. F. Wong. 2021. Hotspot detection
via multi-task learning and transformer encoder. In IEEE/ACM International Conference on Computer-aided Design
(ICCAD’21). IEEE, 1-8.

Jhih-Rong Gao, Xiaoqing Xu, Bei Yu, and David Z. Pan. 2014. MOSAIC: Mask optimizing solution with process window
aware inverse correction. In ACM/IEEE Design Automation Conference (DAC’14).

Ziyang Yu, Peiyu Liao, Yuzhe Ma, Bei Yu, and Martin D. F. Wong. 2023. CTM-SRAF: Continuous transmission mask-
based constraint-aware sub resolution assist feature generation. IEEE Transactions on Computer-aided Design of Inte-
grated Circuits and Systems (TCAD) 42, 10 (2023), 3402-3411.

Received 1 November 2024; revised 24 March 2025; accepted 28 March 2025

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 54. Publication date: June 2025.

