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Abstract—Inverse lithography technique (ILT) is one of the
most widely used resolution enhancement techniques (RETs) to
compensate for the diffraction effect in the lithography process.
However, ILT suffers from runtime overhead issues with the
shrinking size of technology nodes. In this article, our proposed
L2O-ILT framework unrolls the iterative ILT optimization algo-
rithm into a learnable neural network with high interpretability,
which can generate a high-quality initial mask for fast refinement.
Experimental results demonstrate that our method achieves bet-
ter performance on both mask printability and runtime than the
previous methods.

Index Terms—Design for manufacture, mask optimization,
learning to optimize.

I. INTRODUCTION

W ITH the continuous scaling-down of technology nodes,
the proximity effect and optical diffraction are becom-

ing non-neglectable, which seriously affects the yield of
integrated circuits. Resolution enhancement techniques (RETs)
are developed to reduce printing errors during the lithogra-
phy process. Optical proximity correction (OPC) is one of the
widely used RETs to compensate for lithography proximity
effects by correcting mask pattern shapes and inserting assist
features.

Typical OPC methodologies include model-based
approaches [1], [2], [3] and inverse lithography technol-
ogy (ILT)-based methods [4], [5], [6], [7], [8], [9]. For
model-based OPC, the edges of polygons in the mask are
first divided into segments, and these edges are moved under
the guidance of the lithography simulation model. ILT-based
methods represent the mask as a pixel-wise function [4], [5],
[6], [7], [10] or level-set function [8], [9], [11], [12]. Then,
the OPC process is modeled as an inverse problem, which
can be effectively solved by optimizing the misfit between the
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printed image on the wafer and the target pattern. Compared
with model-based methods, ILT-based methods optimize the
mask within a larger solution space and thus achieve better
performance.

ILT algorithms usually adopt iterative methods, such
as gradient descent to optimize the objective func-
tion, which requires a lot of iterations for convergence.
Although ILT has shown satisfactory performance on mask
optimization [13], [14], [15], the shrinking size of the tech-
nology node and increasing complexity of mask patterns pose
significant challenges to the runtime overhead. There have
been many exciting explorations of ILT acceleration in recent
years, and these works can be generally divided into two
categories. The first one is to design GPU-accelerated algo-
rithms by fully utilizing the massive computing resources in
GPUs. For example, Yu et al. [8] relied on the CUDA toolkit
to implement a GPU-accelerated Fourier transform algorithm,
accelerating a critical and time-consuming step in the lithog-
raphy simulation model. The second one is to learn the whole
ILT solver using stacked convolutional layers. As illustrated
in Fig. 1(b), related methods [5], [6], [7], [9] utilize a pre-
trained CNN-based generation model such as GAN [16], [17]
or U-Net [18], [19] to quickly approximate an initial mask
solution of the test target and then conduct further refine-
ments on the initial mask to improve the solution quality. We
summarize these methods as “generative ILT.”

Although ILT acceleration has made signification progress
with the push of previous works [5], [6], [7], [8], [9], there
are still some issues with these methods. GPU-accelerated ILT
mainly focuses on accelerating the runtime of each iteration
but does not necessarily reduce the number of iterations,
thus still causing a long time to execute the entire algo-
rithm. For example, the GPU-accelerated algorithm GLS-ILT
proposed in [8] still spends around 100.1 s optimizing a
2048×2048 mask clip, which is unacceptable, especially when
applied to a large full-chip mask. We hope that such an
optimization task should be finished within a few seconds,
and only in this way can we achieve efficient VLSI design.
As for “generative ILT” depicted in Fig. 1(b), the initial mask
solution approximated by the generation model may contribute
to reducing the number of iterations, effectively improving
the ILT runtime. However, there still exist some drawbacks.
(1) According to our empirical study, we find that the quality
of the initial solution is always low, thus demanding a long-
time refinement. Take Neural-ILT [7] as an example, when
evaluated on the ICCAD 2013 benchmark [20], the average
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Fig. 1. Three ILT acceleration methodologies. (a) GPU-accelerated ILT. (b) Generative ILT. (c) Learning to optimize ILT.

L2 loss between the target image and the wafer image of the
initial mask is around 74023.7. Such a loss result is far away
from their final loss result after refinement (37515.30) [7].
Even though the initial mask can be generated within 0.1 s by
Neural-ILT [7], it still takes a significant amount of iterations
for refinement. We suppose that such a drawback is mainly
caused by the black-box nature of generation models. We are
unaware of what these black-box models learn during the train-
ing process. The structures of these models are not specifically
customized for mask optimization tasks, making it challeng-
ing to capture the domain-specific knowledge of OPC. (2) To
model the ILT process more accurately, some works [21], [22]
adopt convolution kernels with the same size as optical ker-
nels in the lithography process. However, the optical kernel
is usually large, e.g., 35×35, and convolving such a kernel
with a 2048×2048 mask consumes excessive computation
resources. Therefore, these works fail to achieve acceleration
on large-scale OPC problems. Moreover, to reduce the model
complexity, these models are usually built on simple ILT algo-
rithms [23], [24], which only consider optimizing the design
target under the nominal process condition but neglect the
process window with different process corners.

In this work, we propose L2O-ILT, a deep learning-based
framework keeping both advantages of conventional ILT and
“generative ILT” and overcoming their issues. The basic
framework is illustrated in Fig. 1(c), which is totally differ-
ent from previous methods [5], [6], [7], [8], [9]. The novel
ILT method is inspired by the learning-to-optimize (L2O)

scheme [25], [26], [27], [28], [29] in machine learning, which
aims to incorporate prior knowledge of the optimization algo-
rithm into a learning model. Specifically, we build up an
ILT-inspired learning model by unrolling the entire algorithm.
The structure of our model is no longer stacking convolu-
tional layers like previous methods [5], [6], [7], [9]. Instead,
each layer is customized to represent each iteration of the
ILT algorithm. This representation projects the ILT problem
into a hyperspace that can be more efficiently solved by deep
learning algorithms. And the model training can be regarded
as automatically tuning the algorithm parameters, which are
hand-crafted in the conventional ILT algorithm. In addition,
such a model is inherently equipped with interpretability
and prior knowledge of mask optimization, which will con-
tribute to robustness and ensure a high-quality initial mask
for efficient refinement. Besides, a specialized optimization
mechanism called alternating optimization is designed for our
model to jointly optimize the printed image under different
process conditions. An adaptive solution space is developed
to accelerate the convergence rate of our algorithm while sav-
ing computation resources. We summarize the contributions of
this article as follows.

1) A deep learning-based and ILT-inspired neural network
called L2O-ILT is developed, which incorporates
domain-specific prior knowledge of mask optimization.

2) The network architecture is designed by unrolling the
ILT algorithm and modeling each iteration as a neural
network layer.
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3) We develop an alternating optimization mechanism and
an adaptive solution space method to improve the con-
ventional ILT algorithm and further the performance.

4) L2O-ILT is able to generate high-quality initial mask
solutions, which can be efficiently refined. Experimental
results show that our model achieves better performance
on both mask printability and runtime than previous
methods.

The remainder of this article is organized as follows.
Section II gives an introduction preliminaries about lithogra-
phy model and inverse lithography technologies. Section III
gives the detailed elaboration of the L2O-ILT model with
an alternating optimization strategy and an adaptive solution
space mechanism. Section IV details experimental results and
comparisons, followed by conclusion in Section V.

II. PRELIMINARIES

In this section, we will introduce the problem formulation
and some preliminary knowledge related to this work.

A. Lithography Simulation Model

During the lithography process, an input mask M is first
transformed through an optical projection system into the
aerial image I. The distribution of light intensity at the wafer
plane then undergoes development and etching processes to
form the printed image Z.

To simulate the lithography process, a mathematical model
is proposed in [30], which is composed of two components,
optical projection model and photoresist model. For the optical
projection process, the Hopkins diffraction model of the par-
tially coherence imaging system is used to approximate the
projection behavior. In mathematics, the aerial image I can
be obtained by convolving the mask M with a set of optical
kernels H, formulated as

I(x, y) =
N2∑

k=1

wk|M(x, y) ⊗ hk(x, y)|2 (1)

where “⊗” represents the convolution operation, hk is the
kth optical kernel of the optical kernel set H, and wk is
the corresponding weight of the coherent system. To save the
computation resources, an Nhth order approximation to the
partially coherent system is proposed in [4], represented as

I(x, y) =
Nh∑

k=1

wk|M(x, y) ⊗ hk(x, y)|2 (2)

where the kernel number Nh is 24 in our work. After opti-
cal simulation, the aerial image I is input into the photoresist
model with an intensity threshold Ith, which indicates the expo-
sure level. And the final binary printed image Z is calculated
by the following step function:

Z(x, y) =
{

1, I(x, y) ≥ Ith
0, I(x, y) < Ith

(3)

Following the ICCAD 2013 contest settings [20], Ith is set as
0.225 in our implementation.

(a) (b)

Fig. 2. (a) Visualization of PV Band measurement. (b) Visualization of EPE
measurement.

B. OPC Evaluation Metrics

Process Variation Band (PVB): In the real-world lithogra-
phy system, process variations will cause deviations in the
final printed image, leading to printing failure. Under differ-
ent lithography conditions, such as focus/defocus depth and
incident light intensity, printed images have various contour
results. PVB computes the bitwise-XOR region between the
outermost and innermost contour as shown in Fig. 2(a) to
evaluate the printing robustness.

Square L2 Error: Given the target image Ztarget and the
printed image Znominal, which represents the image printed via
nominal lithography process condition, the square L2 loss is
calculated as ||Znominal − Ztarget||22.

Edge Placement Error (EPE): EPE is used to evaluate the
difference of the contour between the target design Zt and
the image Znom. To calculate the EPE, a series of points are
sampled along the contour of the target design, as shown
in Fig. 2(b). If the distance D(x, y) between the target design
to the printed image is larger than an EPE constraint thEPE,
the point (x, y) is labeled as a EPE violation

EPE_Violation(x, y) =
{

1, D(x, y) ≥ thEPE
0, D(x, y) < thEPE

(4)

Mask Manufacturing Shot Count: Since ILT naturally gener-
ates purely curvilinear features, conventional fracturing meth-
ods require a large number of small rectangles to approximate
the shape. Mask data preparation (MDP) is used to fracture the
shapes on the masks into nonoverlapping rectangles, known as
variable shaped-beam (VSB) shots, to ensure mask printabil-
ity. The shot count is used to evaluate the complexity of mask
patterns.

With the evaluation metrics defined above, we formulate the
mask optimization problem as follows:

Problem 1 (Mask Optimization): Given a target image Zt,
the objective of mask optimization is to find a mask M, whose
printed image through the lithography process is supposed to
be close to the target image and keep stable under different
process conditions, such that the EPE, L2 loss, PV Band and
manufacturing shot count are minimized.

C. Inverse Lithography Techniques

The objective of the conventional ILT-based method is to
find an optimized mask Mopt = g−1(Zt, Cnom), where Zt is
the design target, and g(·, Cnom) stands for the lithography
process under the nominal process condition. Usually, we can
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not obtain the inverse function of g to compute the closed-
form solution. The optimal mask is searched by computing the
gradient of an objective function Fobj and using the gradient
to guide the adjustment of each pixel value.

To calculate the gradient, all variables during the lithogra-
phy process have to be continuous. Therefore, the binarized
and constrained pixel values of mask M and printed image
Z should be relaxed. To achieve this, we first introduce an
auxiliary and unconstrained variable P and assume that M is
determined by P. The relationship between them is depicted
by a sigmoid function in (6)

M = 1

1 + exp (−θMP)
(5)

where θM defines the steepness of the sigmoid function.
Then, the whole lithography process can be represented as:

P → M → I → Z. Note that the original function that maps I
to Z is a threshold function as formulated in (3), which is also
undifferentiable. Therefore, we approximate it using another
sigmoid function

Z = 1

1 + exp (−θZ(I − Ith))
(6)

where θZ defines the steepness and Ith represents the inten-
sity threshold as shown in (3). In this way, the whole process
becomes differentiable and each iteration of the optimization
algorithm can be formulated as follows:

P(j) = P(j−1) − η
∂Fobj

∂P(j−1)
(7)

where η is the step size of gradient descent. P(j) indicates the
variable P at the jth iteration. After finally obtaining the Popt
by minimizing the objective function Fobj, we binarize Popt to
Mopt, which is the final optimized mask solution.

III. L2O-ILT ALGORITHM

In this section, we first discuss an optimization mechanism
in Section III-A called alternating optimization, which solves
the issue that the conventional ILT [4] does not achieve sat-
isfactory joint optimization of design targets under different
conditions. Then, we develop our learning model L2O-ILT
in Section III-B, where each layer is constructed based on our
proposed ILT algorithm with alternating optimization, and the
whole architecture is equipped with strong prior knowledge
and highly interpretable. The model training and refinement
strategy is explained in Section III-C and III-D. A technique
called adaptive solution space is proposed in Section III-E to
help our model accelerate the convergence rate as well as keep
the solution quality.

A. Alternating Optimization

As illustrated in Section II-C, the general implementation
of ILT-based methods is to first define an objective function of
the mask, which is then optimized using numerical approach.
Therefore, the quality of final solution is closely related to
the definition of the objective function. Given an input P, the

(a)

(b)

Fig. 3. Change of loss terms and PV Band in (a) conventional ILT and
(b) proposed alternating optimization scheme.

classical pixel-based ILT [4] gives the objective function to be
minimized as follows:

Ftarget = Lnominal + Lout + Lin

= ∥∥Znominal − Ztarget
∥∥2

2 + ∥∥Zout − Ztarget
∥∥2

2

+ ∥∥Zin − Ztarget
∥∥2

2 (8)

where Znominal = g(P, Cnominal), Zout = g(P, Cout), and Zin =
g(P, Cin). Cout and Cin stand for two extreme conditions, under
which the outer-most and inner-most images will be printed.

Under the guidance of Ftarget, the printed images under dif-
ferent process conditions are jointly pushed toward the target
pattern, which is actually a desired property of an optimized
mask. However, according to our empirical study as shown
in Fig. 3(a), we find that while all three loss terms are gradu-
ally minimized, the PV Band metric is negatively optimized.
This is because minimizing ||Zout −Ztarget||22 +||Zin −Ztarget||22
cannot guarantee the minimization of ||Zout − Zin||22 in math-
ematics. We also depict the change of Lnominal, Lin, Lout, and
PV Band in Fig. 3(b). Therefore, although optimizing Ftarget
contributes to reducing the error between the printed image
and the real target, it results in a high PV Band value, leading
to a large process window. We call such an objective function
optimization “target-driven optimization” and we propose that
the optimization configuration is supposed to be improved.

It can be easily seen that convergence rates of all three
loss terms are drastically reduced after a certain number of
iterations. Based on such an observation, we replace sev-
eral iterations of optimizing Ftarget with optimizing Fpvb,
formulated as

Fpvband = ||Zout − Zin||22 (9)
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which is directly related to PV Band performance. Optimizing
Fpvband can be regarded as “PV Band-driven optimization.”
Instead of optimizing a weighted sum of Ftarget and Fpvband,
we choose to decouple the optimization of these two objec-
tives. This will make it more convenient to encapsulate basic
modules in our deep learning-based framework, which will
be shown in the following Section III-B. And according to
our experimental results shown in Fig. 3(b), we find that
alternating “target-driven optimization” and “PV Band-driven
optimization” can achieve satisfactory improvement in PV
Band while slightly affecting Lnominal, Lin, and Lout. Our
designed optimization scheme can be represented as

P(j) =
{

P(j−1) − η
∂Fpvband

∂P(j−1) , j < Q

P(j−1) − η
∂Ftarget

∂P(j−1) , j ≥ Q
(10)

where Q is a hyper-parameter to balance the performance of
the process window and the L2 error between the printed image
and target design.

B. Model Architecture of L2O-ILT

Classic ILT-based mask optimization algorithms are built
upon numerical approaches in a theoretically justified manner.
In spite of the high interpretability, the performance heavily
depends on human experiences, such as how to select appro-
priate parameters in the algorithm. Since these algorithms
are sensitive to initial conditions and parameters chosen, the
optimization results may be easily stuck in a local optimum
state. Furthermore, a large number of optimization iterations
are usually required to achieve an acceptable performance
level, and thus these algorithms can be computationally expen-
sive.

As explained in Section I, “generative ILT” methods use
learning-based models to quickly generate initial mask solu-
tions and conduct further refinement. Regardless of its higher
efficiency compared with conventional ILT, we notice that the
quality of the initial mask is always low, which still requires
a long-time correction to improve the solution quality. The
inferior mask is mainly caused by the black-box property
of generation models, structures of which are difficult to be
customized for mask optimization problems.

In accordance with the aforementioned observations, we
propose an ILT algorithm-inspired learning model, L2O-ILT,
which can generate a high-quality mask solution for fast
refinement. The structure of L2O-ILT is not simply composed
of stacking convolutional layers like “generative ILT” meth-
ods [5], [6], [7], [9]. Instead, each layer of our model is
customized with prior knowledge for mask optimization tasks.
To be specific, we unroll the entire ILT algorithm and use a
neural network layer to represent each iteration of gradient
descent as formulated in (10), where the P(j) and P(j−1) can
be regarded as the output and input of the jth layer.

Based on our proposed alternating optimization scheme
in Section III-A, two kinds of neural network layers, target-
driven block and PV Band-driven block, are, respectively,
designed as shown in Fig. 4. The architecture of L2O-ILT can
be regarded as a time-unfolded recurrent neural network. In
addition, our model can also keep the consistency advantage of

Fig. 4. Each iteration of L2O-ILT algorithm is represented as a neural
network layer.

ILT algorithms, i.e., we can still get a similar mask even if the
pattern is offset. This is ensured by the translation invariance
property of the lithography process as proved in [31].

The computation of the Target-Driven block exactly repre-
sents P = P−η(∂Ftarget/∂P). To further illustrate the concrete
computation operation, we first represent the (∂Ftarget/∂P)

as follows:

∂Ftarget

∂P
= ∂Lnominal

∂P
+ ∂Lout

∂P
+ ∂Lin

∂P
. (11)

The gradient calculations of all three terms are similar,
and here we take (∂Lnominal/∂P) as an example, which is
computed by

∂Lnominal

∂P
= 2θZθMM ◦ (1 − M)

{
Hnominal ⊗ [(

Znominal

− Ztarget
) ◦ Znominal ◦ (1 − Znominal) ◦ (

M ⊗ H∗
nominal

)]

+ H∗
nominal ⊗ [(Znominal − Zt) ◦ Znominal ◦ (1 − Znominal)

◦(M ⊗ Hnominal)]} (12)

where “◦” indicates the matrix element-wise multiplication
and “⊗” stands for the convolution operation. The PV Band-
driven block is designed in a similar way, which precisely
represents the computation of (∂Fpvband/∂P). In addition, all
convolution operations in our algorithm are implemented via
FFT convolution to save computation resources. Since the opti-
cal kernel size is quite large, given a k × k (e.g., 35 × 35)
optical kernel and N ×N mask (e.g., 2048 × 2048), the com-
putation complexity of FFT convolution is O(N2 log N2), less
than the complexity O(k2N2) of direct convolution. All the
matrix computations can be easily implemented with the deep
learning toolkit, such as Pytorch [32], which provides matrix
computing with strong acceleration implemented by CUDA
kernel.

Stacking Npvband PV Band-driven blocks and Ntarget target-
driven blocks forms a deep neural network, which is exactly
our L2O-ILT as shown in Fig. 5, and passing through the
entire neural network is equivalent to executing the ILT algo-
rithm a number of iterations. In L2O-ILT, we set both Npvband
and Ntarget as 5. The convergence rate of our L2O-ILT can
be boosted via model training. All learnable parameters, such
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Fig. 5. Stacking multiple layers forms a neural network and passing through L2O-ILT is equivalent to executing an iterative ILT algorithm. Training L2O-ILT
can be interpreted as tuning the parameter that is manually determined in the original ILT algorithm.

Fig. 6. Convergence rate comparison between conventional ILT and L2O-ILT
model during inference.

as the step size of gradient descent, updated during the train-
ing process are all from the original ILT algorithm. Therefore,
the model training can be naturally interpreted as a param-
eter auto-tuning process to achieve much faster convergence
than nonlearning ILT with hand-crafted parameters. We show
the convergence rate comparison in Fig. 6. Compared with
conventional nonlearning ILT, L2O-ILT is able to achieve
convergence within a much smaller number of iterations,
resulting in significant ILT acceleration. Passing through one
layer can be regarded as executing the original nonlearning
ILT algorithms for multiple iterations. In addition, the learn-
able parameters can also help avoid the local optimum state,
contributing to the robustness of our algorithm.

Note that the number of iterations also indicates the number
of layers in L2O-ILT. The training strategy will be explained
in Section III-C. Overall, our proposed framework seamlessly
incorporates the prior knowledge of mask optimization and
achieves ILT acceleration with deep learning, and therefore
we call it “learning to optimize ILT.”

C. Interpretable Self-Supervised Learning

In order to accelerate the convergence rate of L2O-ILT, a
specialized interpretable training strategy is proposed. As illus-
trated in Section III-B, each layer of our neural network is
equivalent to an optimization iteration, and each layer outputs
a mask that has not been fully optimized. Therefore, we can

directly supervise the intermediate-generated mask M(i) com-
puted from Z(i) using the training target design Ztrain

target. Such
a training strategy can be regarded as providing a look-ahead
mechanism, which forces Z(i) to be close to the real target
Ztrain

target. As a result, the error between the printed image Z(n)

of the final mask M(n) and Ztrain
target will be reduced efficiently.

The training loss function can be formulated as

Ltrain =
n∑

i=1

l(i)
(

M(i), Ztrain
target

)
(13)

where n is a configurable hyper-parameter, representing the
number of intermediate masks that we supervise with Ztrain

target,
as shown in Fig. 5. The loss between M(i) and Ztrain

target is
decided by its printed image Z(i), and the computation of l(i)

is calculated as

l(i) =
∥∥∥Z(i)

nominal − Ztrain
target

∥∥∥
2

2
+

∥∥∥Z(i)
out − Z(i)

in

∥∥∥
2

2
(14)

where Z(i)
nominal, Z(i)

out, and Z(i)
in stands for the printed image

through our lithography module under different conditions.
Such a training loss function design contributes to jointly opti-
mizing PV Band, L2 error, and EPE. It should be reminded
that the parameters of all lithography modules mapping from
M(i) to Z(i) are fixed and unlearnable, so as to ensure the
correctness of the lithography process.

In addition, it can be observed that our training scheme is
self-supervised learning. To be specific, we directly adopt the
target design as the supervision signal, which is totally dif-
ferent from previous “generative ILT” methods [6], [7], [9].
When given a set of training target design Z train

target, they demand
a corresponding optimized mask set M∗ acting as the “ground
truth” signal to supervise the mask output by the black-box
generation model. We argue that this training scheme is not
reasonable. This is because when given a target design, there
is no way to know what its actual corresponding mask is.
Therefore, the optimized masks M∗ utilized by previous meth-
ods [6], [7], [9] are actually approximated optimized masks,
which are obtained from conventional ILT algorithms. In this
way, the “ground truth” signals themselves are not accurate
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Fig. 7. Mask optimization result of a simple target design pattern.

to act as the supervision signals for training. Moreover, the
model training process will further accumulate the error. This
also provides another reason to explain why the initial solution
generated by these generation models is inferior.

D. Inference and Refinement

We have finished discussions about the model architecture
and training process, both of which are highly interpretable.
Overall, the model architecture is unrolling the iterative algo-
rithm, and the model training can be regarded as tuning
the parameters to improve the original manual parameter
configuration to accelerate optimization convergence.

Finally, when applied to design targets from the test dataset,
our learned L2O-ILT model is able to generate a superior
initial mask solution instantly. To further improve the mask
quality, refinement is conducted on the initial mask. When
given a test target Ztest

t , the mask refinement is achieved by
finetuning the parameters of the last layer by optimizing the
following loss function:

Lfinetune = γ

∥∥∥Z(n)
nominal − Ztest

target

∥∥∥
2

2
+ 1

γ

∥∥∥Z(n)
out − Z(n)

in

∥∥∥
2

2
(15)

where γ is an adaptive factor to balance these two loss terms,
and it is computed as the ratio between the L2 error and PV
Band of the initial mask. Because of the high-quality initial
mask, the refinement can be quickly converged within a very
small number of iterations.

E. Adaptive Solution Space

Conventional ILT algorithms [4], [5], [6], [7], [8], [9]
optimize the mask pixel within a determined wide-ranging
area, e.g., 1280 × 1280. However, we observe that the areas
of the optimized mask are always close to the targets.
Specifically, the updated pixels always lie in the neighbour-
hood of the target patterns. Therefore, we try to leverage this
prior knowledge in our framework. We propose that the space
can be suitably narrowed while keeping a high-quality mask
solution. Based on such a motivation, we design an adap-
tive solution space in our algorithm, and this mechanism can
also effectively avoid the emergence of outlier features in the
optimized masks. In addition, a smaller solution space will
also contribute to a faster convergence rate as well as saving
computation resources. The experimental results show that the
convergence rate of mask optimization will increase, as shown
in Fig. 8.

Fig. 8. Comparison of the convergence rate in fixed solution space and
reduced solution space.

We design an adaptive mechanism to dynamically adjust
the solution space according to the specific target patterns.
It is based on such an observation that the optimized mask
area always lies in the neighborhood of the target pattern.
Therefore, our adaptive solution space is achieved by expand-
ing the target pattern. Usually, this can be implemented by
convolution with a square kernel 1 ∈ R

s×s, where 1 is a
matrix in which all elements are 1, and N is the image size.
Such a dilation operation is feasible but not efficient, which
has O(s2N2) complexity. In this work, an agile algorithm
is designed to satisfy our requirements. To specific, we can
directly move the vertices to adjust the solution space. It is
noted that the layout patterns tested in this work are from
ICCAD 2013 CAD Contest [20] where all patterns are regu-
lar polygon shapes and represented as a vector of vertices as
shown in Fig. 9. Therefore, all vertices are off the shelf. And
there are no extra workloads to transfer the pixel representation
to the vertex representation. The movement direction of each
vertex 	vi = (xi, yi) is determined by its convexity-concavity
and two neighborhood vertices vi−1 and vi+1, which can be
formulated as

u = (	vi+1 − 	vi) × (	vi − 	vi−1)

= (0, 0, (xi+1 − xi)(yi − yi−1) − (yi+1 − yi)(xi − xi−1))

(16)

c = sign(uz) (17)

x′
i = xi + c · sign((xi − xi−1) − (xi+1 − xi)) · offset (18)

y′
i = yi + c · sign((yi − yi−1) − (yi+1 − yi)) · offset. (19)

In (16), to compute the cross product, we assume that vectors
(	vi+1 − 	vi) and (	vi − 	vi−1) have a 0 z-axis component. The
coefficient c is to determine whether the vertex is convex or
concave according to the positive or negative of the z-axis
component uz of u, and sign(·) represents the sign function.
We have c = 1 when the vertex is convex. (x′

i, y′
i) indicates

the coordinate of vertex vi after movement, and “offset” is a
configurable hyper-parameter to control the size of solution
space and further accelerates the convergence rate.

Adjusting the space by moving vertices requires O(p)

computation complexity, where p represents the number of ver-
tices, typically less than 100. Therefore, such an algorithm is
much more efficient than the traditional dilation operation with
complexity O(s2N2). The generated adaptive solution space
Sada can be incorporated into our original gradient descent for-
mulation in Fig. 4 to restrict the range of mask pixels update.
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Fig. 9. Adaptive solution space via the movement of vertices.

Fig. 10. Adaptation of L2O-ILT on full chip.

As shown in Fig. 9, we only allow the pixels within the space
to be updated during the optimization process. The gradi-
ent descent formulations combined with the adaptive solution
space are now represented as

P(j) = P(j−1) − η
∂Fpvband

∂P(j−1)
◦ Sada (20)

P(j) = P(j−1) − η
∂Ftarget

∂P(j−1)
◦ Sada (21)

where Sada acts as a filter. In Sada, the values within the
adaptive solution space are 1 and others are 0.

F. Applied on Full Chip

The above methodology mainly discusses mask
optimization on layout patterns of small size, i.e., 2048×2048.
With the development of semiconductors and the shrinking
size of transistors, the chip scale is constantly growing, which
is usually much larger than the patterns used in academic
research. To overcome this issue, we also explore the adap-
tion of our L2O-ILT on the full chip. Inspired by [33], our
proposed algorithm is illustrated in Fig. 10, a combination of
our L2O-ILT and the large tile global perception algorithm
proposed by [33]. As shown in Fig. 10, we adopt a sliding
window to scan over the entire chip, dividing the large full
chip into smaller chips. It is noted that each window includes
two parts, the core region and the boundary region. The
layout patterns within the boundary region in each sliding
window will be ignored, and the core part is the mask region
that we want to obtain its mask optimization result. As
discussed in [33], such a sliding-window manner can help
minimize boundary distortion effects. After feeding each tile
into our L2O-ILT framework, the optimized mask of all core
parts can be obtained, which will then be concatenated back.
The stitching result is the optimized mask of the full chip.

IV. EXPERIMENTAL RESULTS

We implement our entire framework L2O-ILT with the
Pytorch library [32] and test it on a Linux system with

TABLE I
BENCHMARK INFORMATION OF ICCAD 2013 DATASET

2.3 GHz Intel Xeon CPU and a single Nvidia GeForce RTX
3090 GPU. The evaluation data to test the model performance
are from ICCAD 2013 CAD Contest [20], which includes ten
industrial M1 designs on the 32 nm design node and also pro-
vides the lithography engine. The dataset used for training our
L2O-ILT is obtained from the authors of GAN-OPC [6].

A. Comparison With State-of-the-Art

We compare the performance of the proposed L2O-ILT
with other state-of-the-art mask optimization methods, and the
detailed results are listed in Tables II and III. We learned that
there exists offsets between the initial generated mask between
the work in [4], [6], [7], [9], and [34] and we noted that
the offset of the initial mask would slightly affect the mask
printability and complexity. To make a fair comparison, we
set two versions of L2O-ILT results following corresponding
experimental settings.

As listed in Table II, compared with classical ILT [4]
(denoted as ILT), the L2 and PV Band are reduced by
47.1% and 21.6%, respectively, and the EPE count is less
than one-third of [4]. Compared with two “generative ILT”
GAN-OPC [6], and DevelSet [9], which, respectively, adopt
GAN [16] and U-Net [18] to generate initial mask solution,
our model L2O-ILT also shows superiority. The performance
of L2 achieves 33.5% and 28.3% enhancements, and PV Band
could obtain 19.3% and 16.3% improvements. For the EPE
count, the number of our EPE is only 2.60 on average, which
is much smaller than GAN-OPC [6] (11.30) and DevelSet [9]
(8.00). As for the runtime, our model is also faster than prior
work. According to Table II, compared with ILT [4], GAN-
OPC [6] and DevelSet [9], our L2O-ILT achieves 396.712×,
508.630× and 1.523× speedup, respectively.

As for the other experimental results listed in Table III,
when following the same settings as [7], L2O-ILT also
achieves the best performance. Specifically, our model aver-
agely outperforms Neural-ILT [7] with 33.3% and 28.6%
reduction in L2 error and PV Band. And the EPE count
is only one-third of Neural-ILT [7]. Compared with A2-
ILT [34], which relies on the reinforcement learning technique
to improve the ILT performance, the L2 and PV Band of
our model are still reduced by around 30.1% and 26.6%.
Also, our average EPE count is 2.50, much smaller than the
EPE count of A2-ILT [34]. For the total runtime, L2O-ILT
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TABLE II
MASK PRINTABILITY AND RUNTIME COMPARISON WITH STATE-OF-THE-ART METHODS (EXPERIMENTAL SETTINGS FOLLOW [4])

TABLE III
MASK PRINTABILITY AND RUNTIME COMPARISON WITH STATE-OF-THE-ART METHODS (EXPERIMENTAL SETTINGS FOLLOW [7])

(a) (b)

Fig. 11. Comparison of the mask manufacturability with state-of-the-art
methods.

achieves 11.091× and 4.038× speedup in comparison with
Neural-ILT [7] and A2-ILT [34].

Besides, we also evaluate the mask manufacturability in
terms of the shot count, which stands for the number of rectan-
gles that are used to approximate the optimized mask patterns.
The comparison results are listed in Fig. 11(a) and (b). Among
the above-mentioned methods, the shot number of L2O-ILT is
reduced by 99.2%, 8.3%, and 7.2% compared with ILT [4],
GAN-OPC [6], and DevelSet [9]. Although the masks gener-
ated by L2O-ILT contain 21.7% and 28.8% more shots than
Neural-ILT [7] and A2-ILT [34], the mask printability and
runtime performance is much better as listed in Table V. The
quality and simplicity of the mask make a tradeoff, and we
think it is acceptable to remarkably improve the mask print-
ability within less runtime at the cost of a little bit higher
complexity.

In addition, the memory usage of L2O-ILT is also compared
versus other state-of-the-art methods, and the comparison

TABLE IV
MEMORY USAGE COMPARISON WITH STATE-OF-THE-ART METHODS

results are listed in Table IV. It can be seen that our proposed
model requires 7.4 GB GPU memory, which is comparable
with other state-of-the-art methods. This also indicates that we
successfully incorporate the prior knowledge of ILT into the
deep learning-based model while not remarkably increasing
the complexity of the model.

B. Evaluation of Initial Mask Qualities

To prove the benefit of our model that high-quality
mask solutions can be generated by L2O-ILT, we compare
the L2 error of the initial solutions with other “genera-
tive ILT” methods. Also, considering different experimental
settings, we split the result comparison into two groups,
as shown in Fig. 12(a) and (b). The average L2 error of
our initial masks is much lower than the initial masks
of GAN-OPC [6], DevelSet [9], and Neural-ILT [7]. (A2-
ILT [34] is not considered as “generative ILT” since it does
not adopt a generation model). Combined with the results
in Tables II and III, we can observe that for these “gen-
erative ILT” methods, there exists a large gap between the
performance of the initial mask and the final result. Therefore,
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(a) (b)

Fig. 12. Comparison of the initial mask solution with GAN-OPC [6] and
DevelSet [9], and with Neural-ILT [7].

TABLE V
NEURAL-ILT VERSUS NEURAL-L2O-ILT (NEURAL-L2O-ILT IS TO

ADOPT L2O-ILT TO REFINE THE INITIAL MASK

GENERATED BY NEURAL-ILT)

a long-time refinement is always required. As for the initial
solutions of L2O-ILT, the performance gap is really small,
and thus the refinement can be finished rapidly, i.e., within
20 iterations, which contributes to the remarkable runtime
improvement.

C. L2O-ILT Acts as Plugin

Another benefit of L2O-ILT is that our model can be
incorporated into other models like Neural-ILT [7] and
GAN-OPC [6] as a plugin, which can improve their mask
optimization performance. We take the Neural-ILT [7] as an
example. Given an initial mask solution generated by Neural-
ILT [7], the original refinement process in Neural-ILT [7] has
to finetune the entire model, including the U-Net [18], which
contains a lot of parameters. Therefore, the refinement process
is not efficient.

An improved method is to combine L2O-ILT with Neural-
ILT [7] by directly feeding the low-quality mask into our
model. As explained in Section III-D, given an initial solution
and a test target pattern, the refinement process is achieved
by tuning the last layer of our model, which includes fewer
parameters than Neural-ILT [7]. Therefore, the refinement
process is much more efficient to execute.

To verify the effectiveness of L2O-ILT as a plugin, we
conduct further experiments using the ICCAD 2013 CAD
benchmark [20]. We list the average performance of the mask
refined by our L2O-ILT along with the required runtime
in Table V, where we use Neural-L2O-ILT to denote the com-
bination of Neural-ILT [7] and L2O-ILT. It can be seen that
in spite of the low-quality initial mask, with the L2O-ILT,
the mask generated by Neural-ILT [7] can still be more effi-
ciently refined and even achieve better results in comparison
with original Neural-ILT [7]. Note that the “TAT” of Neural-
L2O-ILT has considered the generation runtime of the initial
mask.

(a) (b)

Fig. 13. Comparison of the full-chip mask optimization performance with
Neural-ILT [7].

D. Evaluation on Full Chip

We also evaluate the performance of L2O-ILT on a large-
scale chip of size 144 μm2 using the pipeline illustrated
in Section III-F. In our experiment, the large-scale chip is
divided into smaller chips of size 2048 × 2048 and the size
of the core region is set as 1024 × 1024. Such a setting effec-
tively reduces the distortion effect while achieving satisfactory
runtime performance.

We compare the performance of our proposed L2O-ILT and
Neural-ILT [7] method in terms of L2 and PV Band met-
rics. When evaluating the performance of Neural-ILT on the
full-chip, we directly replace L2O-ILT in the pipeline shown
in Fig. 10 with Neural-ILT. The presented results demonstrate
that L2O-ILT achieves a reduction of 8.0% and 12.2% in L2
error and PV Band, respectively. These results illustrate the
benefit of L2O-ILT for full-chip mask optimization.

V. CONCLUSION

In this work, we present L2O-ILT, a deep learning based-
model that achieves mask optimization acceleration and keeps
remarkable printability performance. Our model structure is
implemented by unrolling our ILT algorithm, and thus the
model structure is highly incorporated into prior knowl-
edge of mask optimization. Such an ILT algorithm-inspired
model is able to generate an initial mask solution with bet-
ter performance than previous methods, and the high-quality
initial mask can be instantly refined to obtain the final solu-
tion. The experimental results demonstrate the superiority of
our framework over current ILT acceleration works on both
accuracy and efficiency.
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