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Abstract—As silicon photonic integrated circuits (PICs) scale in
density and integration level, thermal crosstalk significantly impacts
chip performance and reliability, necessitating careful thermal-aware
design. Traditional numerical solvers are prohibitively slow for large-
scale 3D simulation, while existing machine learning surrogates struggle
with generalization, especially under the complex distributed heaters
and layered structures unique to PICs. We present ThermoPhoton,
an operator-learning neural architecture tailored for efficient, accurate
3D thermal modeling of PICs. ThermoPhoton introduces a Pseudo-3D
source representation (Pseudo-3D) that leverages device stratification,
and applies Zero Coordinate Shift (ZCS) encoding to optimize physics-
informed loss computation. Attention mechanisms further enhance the
capture of sharp thermal gradients and crosstalk. On industry-standard
benchmarks, ThermoPhoton achieves a mean absolute percentage error
of 0.07%, reduces peak GPU memory by 67.1%, and shortens training
time by 37.9% compared to prior operator-based methods, enabling fast,
reliable, and scalable thermal analysis for next-generation photonic chips.

I. INTRODUCTION

Silicon photonic integrated circuits (PICs) are rapidly emerging
as a key enabler for high-speed data processing and interconnect,
driven by escalating demands in deep learning accelerators, data-
center communications, and high-performance computing [1]-[7].
These circuits already demonstrate the capability to integrate diverse
photonic functions onto a single chip, providing scalable and cost-
effective solutions to meet the growing demands for faster and more
efficient data handling. However, as integration scale and density
continue to grow, PIC design flows often require substantial expertise
and hands-on effort, especially for complex layouts and performance
optimization [8], [9]. The management of thermal effects, particularly
thermal crosstalk, has become a critical issue that poses a threat to the
performance and reliability of photonic circuits due to the presence
of thermo-optical effects.

Thermal crosstalk occurs when heat generated by microheaters
diffuses to nearby photonic components, causing unintended optical
phase shifts that can significantly degrade system performance and
must be carefully managed to ensure reliable operation in complex
photonic circuits [10]. For instance, in reconfigurable Mach-Zehnder
interferometers (MZIs), phase shifts are controlled by microheaters.
However, the heat they generate can affect adjacent waveguides,
leading to undesired phase changes. Historically, thermal analysis of
integrated circuits has been dominated by numerical methods such
as the finite-difference method (FDM) and finite-element method
(FEM), which solve heat diffusion equations for complex geometries
with high accuracy [11]-[14]. These simulations deliver high physical
fidelity but are prohibitively computationally intensive, demanding
complete re-execution for every design change. Consequently, they
are poorly suited for iterative design cycles or real-time optimiza-
tion. Model-order reduction techniques have accelerated analysis but
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Fig. 1 Categorization of machine learning-based thermal modeling
approaches by their use of physical knowledge and data availability.

provide only partial mitigation of this limitation and often rely on
hand-crafted simplifications that limit adaptability to new layouts or
boundary conditions [15], [16].

Machine learning has recently emerged as a compelling alternative
for thermal modeling, with the potential to circumvent the high
computational cost of traditional numerical simulations. To clarify the
landscape of machine learning approaches for this task, we categorize
existing methods along two axes: the amount of incorporated physics
and the availability of data, as illustrated in Fig. 1. This framework
reveals three principal classes: physics-dominated methods, data-
driven methods, and hybrid operator learning approaches.

Data-driven approaches, such as T-Fusion [17], ARO [18], and
FaStTherm [19], learn complex mappings from structural parameters
to thermal behavior and can achieve high accuracy when large
datasets are available. However, the need for extensive labeled data
makes them less practical for photonics, where each data point
is costly to obtain, and these models often lack interpretability.
By contrast, physics-informed methods like ThermPINN [20] and
PISOV [21] incorporate governing equations directly into the learning
process, enabling reasonable accuracy with limited data. Yet, their
generalization to complex or unseen layouts is often limited due
to their case-specific optimization. To leverage the strengths of
both paradigms, hybrid frameworks such as Pi-DeepONet [22] have
been developed, integrating operator learning’s generalization power
with the physics-informed foundations of PINNs. Based on this
architecture, Liu ez al. introduced DeepOHeat [23], which applies Pi-
DeepONet to chip-scale thermal simulation and achieves significant
acceleration in thermal prediction tasks for VLSI designs.

While operator learning frameworks like DeepOHeat show consid-
erable promise, their direct application to PICs faces challenges due
to fundamental differences in thermal modulation. Unlike electronic
chips with localized heat sources, thermally tuned PICs feature
densely and uniformly distributed microheaters. This distributed
heating induces pronounced thermal crosstalk and demands signif-
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Fig. 2 Schematic of the physical setup for operator learning: the
simulation domain is a multi-layer rectangular box with distributed
microheaters. Volumetric heat generation is localized within a spe-
cific layer, with structure shown for a 3 x 3 MZI-based photonic
neural network. All six surfaces are subject to convection boundary
conditions.

icantly higher spatial resolution to resolve temperature gradients
accurately. A further challenge arises from the physical structure
of PICs. The metal heater and the optical waveguide are fabricated
in two closely spaced, yet distinct layers. The primary concern is
the thermal impact on the waveguide, which is highly sensitive to
temperature fluctuations [24]. Unlike electronic chips, where heat
sources frequently coincide with regions of interest and allow for
effective two-dimensional modeling, the vertical separation between
heaters and waveguides in PICs mandates full three-dimensional
thermal simulation to reliably capture interlayer heat transfer.

As illustrated in Fig. 2, the majority of heaters are concentrated
within a single plane, while the waveguide of interest resides in a
nearby layer. This spatial configuration motivates a critical efficiency-
enhancing strategy: we introduce a pseudo-3D source representation
(Pseudo-3D), which approximates a 3D heat source by combining a
two-dimensional heater map with a depth-wise extension informed
by prior knowledge of the PIC structure. By leveraging the phys-
ical layer structure of PICs, Pseudo-3D substantially reduces input
dimensionality and computational complexity, while preserving the
fidelity required for accurate 3D temperature field prediction.

In addition to the above, operator learning frameworks often suffer
from low training efficiency, primarily due to the computational
cost associated with enforcing physics-informed constraints through-
out the spatial domain. To address this, we incorporate the Zero
Coordinate Shift (ZCS) technique [25], which eliminates positional
redundancy in loss evaluation and enables more efficient enforcement
of the governing PDE constraints during training.

Motivated by these considerations, we introduce the following key
innovations in the ThermoPhoton framework to address the unique
challenges of 3D thermal modeling in PICs:

o« We develop ThermoPhoton, a novel operator learning-based
neural architecture specifically designed for three-dimensional
thermal simulation of photonic integrated circuits. To the best
of our knowledge, this is the first operator learning framework
tailored to the unique physical and structural requirements of
PICs.

« We propose a pseudo-3D source representation that exploits the
stratified nature of PIC fabrication, enabling a reduction of the
simulation input from three dimensions to two, while preserving
essential inter-layer thermal interactions.

o We incorporate the Zero Coordinate Shift encoding scheme,
which removes positional redundancy in physics-informed loss
evaluation and reduces the computational overhead associated
with enforcing PDE constraints.

o ThermoPhoton yields an average reduction of 67.1% in peak

GPU memory usage and 37.9% in training time compared
to DeepOHeat, while maintaining high accuracy with a mean
absolute percentage error of 0.07%.

The rest of the paper is organized as follows: Section II introduces
the foundations of thermal modeling and operator learning. Section III
describes methods to enabling ThermoPhoton. Section IV presents the
experiment results. Section V draws our conclusion.

II. PRELIMINARIES

This section reviews the mathematical foundations of steady-state
thermal modeling, as well as the general principles of operator
learning for partial differential equations.

Notation: Throughout this paper, we use u to denote the two-
dimensional heater power map (i.e., the lateral distribution ¢(z,y)),
and y = (z,y,2) to denote a spatial query location. The neural
operator Gy thus approximates the mapping u — 7'(y) for any y in
the domain.

A. Governing Equation and Boundary Conditions

The temperature distribution 7'(x,y,z) in a three-dimensional
domain © C R? is governed by the steady-state heat equation,

V : (k(x7 y? Z)VT(:I:7 y7 Z)) + Q(‘r7 y? Z) = 07 (x7 y’ Z) e Q7 (1)

where k(z,y, z) denotes the spatially dependent thermal conductivity
and Q(z,y, z) is the volumetric heat generation rate. The tensorial
nature of k(z,y, z) accounts for possible anisotropy in the medium.

The boundary O is subject to a combination of Dirichlet, Neu-
mann, and Robin conditions, which are specified as follows:

T(z,y,z) = Text(x,y,2), (z,y,2) €D,
—k(z,y,2)VT(z,y,2) 0 = gext(z,9,2), (x,y,2) €N,
—k(z,y,2)VT(2,y,2) - n = h(z,y,2) (T(z,y,2) — Teo (2,9, 7)),

(z,y,2) € Tg.

where n denotes the outward normal vector, h(zx,y, z) is the con-

vection coefficient, and To (2, y, 2) denotes the ambient temperature.
The domain boundary is partitioned into disjoint subsets I'p, I'w,
and I'r corresponding to Dirichlet, Neumann, and Robin boundaries,
respectively.

B. Operator Learning for Partial Differential Equations

Operator learning aims to approximate the solution operator Gy
that maps a given input function u and a query location y to the
solution of the PDE:

T(y) = So(u)(y), )

where u represents the input power map, and y = (z,y, z) denotes
the query location.

A prominent neural operator architecture is the Deep Operator
Network (DeepONet), which consists of a branch network that
encodes the discretized input function u and a trunk network that
encodes the spatial query y. The output is realized as

d
So(u)(y) = > be(w)ti(y), 3)

k=1

where by (u) and t(y) are the outputs of branch and trunk networks,
respectively, and 6 is the set of all trainable parameters.

The model is typically trained by minimizing a loss function that
incorporates the residuals of the governing equation and the boundary
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Fig. 3 Schematic of the ThermoPhoton neural operator architecture

. The branch network encodes the input function (the power map u),

while the trunk network encodes the query location y. The output is given by a bilinear interaction between the two.

conditions at a set of collocation points. The physics-informed loss
for steady-state problems is given by

Lphysies = AppELPDE + ABcLBC, “)

where Lppg quantifies the residual of the governing equation and
Lgc measures the residual of the boundary conditions. The weighting
coefficients A\ppg and Agc control the relative contributions of the two
terms.

Automatic differentiation facilitates the evaluation of the required
derivatives for loss computation, supporting mesh-independent and
data-efficient learning. When available, reference solution data can
be incorporated via a supervised loss term, allowing a hybrid training
strategy.

The mathematical framework summarized here provides the foun-
dation for the development of specialized operator learning ap-
proaches for physical modeling tasks, such as thermal analysis in
PICs. For theoretical background and further details, see [22], [26].

III. THERMAL OPERATOR LEARNING FRAMEWORK

Building upon the theoretical foundations above, we present the
ThermoPhoton framework, specifically designed for steady-state ther-
mal modeling in PICs. This section details the problem formulation,
neural operator structure, and the physics-informed training strategy.

A. Problem Formulation

The physical scenario considered is illustrated in Fig. 2. The
computational domain 2 is modeled as a multi-layer rectangular box,
reflecting the typical structure of a PIC. Heat generation is localized
within a designated layer containing an array of microheaters. Each
heater is assigned a specific position and power, and the lateral heater
power distribution is represented as a two-dimensional map u(z, y),
such as the 3 x 3 MZI-based configuration shown in the Fig. 2.

All boundaries of the simulation domain are imposed with Robin-
type (convective) boundary conditions to capture heat exchange with
the ambient environment on all six surfaces.

To efficiently represent both the vertical and lateral structure of
heat injection, we use a pseudo-3D source representation for the
volumetric heat generation:

Q(x,y,z) = Cu(x7y) ’LU(Z), (5)

where u(z,y) is the normalized lateral power map, w(z) is the nor-
malized vertical profile, and C' is a normalization constant ensuring
the prescribed total power.

Given a specified heater pattern u and device geometry, the
objective is to predict the steady-state temperature field T'(z,y, 2)
throughout the domain, subject to these boundary and source condi-
tions.

B. Operator Architecture and Physics-Informed Training

The ThermoPhoton operator architecture, shown schematically in
Fig. 3, extends the DeepONet paradigm to chip-scale thermal mod-
eling. The model receives as input the discretized heat source map u
and a spatial query point y = (z, y, z). The branch network encodes
the heater power distribution, while the trunk network processes
the spatial query. To enhance spatial representation and gradient
computation, positional encoding (such as Fourier features) and the
ZCS technique are applied to y in the trunk network.

The outputs of the branch and trunk networks are combined via a
bilinear interaction to produce the predicted temperature:

T(y) = So(w)(y) = Y _ br(w) ti(y), (6)

where bx(u) and ¢x(y) are the outputs of the branch and trunk
networks, respectively.

To address sharp thermal gradients and strong crosstalk in dense
layouts, residual connections and self-attention mechanisms are in-
tegrated into both the branch and trunk networks. The Pseudo-3D
module reconstructs the full three-dimensional volumetric heat source
from the two-dimensional map u, enabling accurate modeling of
interlayer effects.

The ThermoPhoton operator is trained in a physics-informed
manner by minimizing a loss function that penalizes residuals of
the underlying PDE and boundary conditions. Specifically, for each
batch, a set of collocation points {y;} is randomly sampled within
the domain and on its boundaries. At each point, the model prediction
T(y;) = Go(u)(y;) is used to evaluate the residuals of the steady-
state heat equation and associated boundary conditions:

Reve(y;) = V- (k(y;)VT(y;)) + Qv;), @)
where y; € Q.

Ro(y;) = T(y;) — Text(y3), ®)

where y; € I'p.

Rn(y;) = —k(y;) VI (y;) -0 — gext(y), Q)
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where y; € I'n.
Re(y;) = —k(y;) VT(y;) - n— h(y;)(T(y;) — T (y;)), (10)

where y; € I'r.
The total physics-informed loss is the weighted mean squared
residual over all collocation points:

Lphysies (0) = AppE le%DE + Ap R]QD + AN fRI% + Ar fRﬁ, (11)
where R2,. denotes the mean squared PDE residual over interior
points, and similarly for the boundary terms. The weights \. are
tunable hyperparameters.

Spatial derivatives in the residuals are computed via automatic
differentiation, with the ZCS technique ensuring efficient and accurate
evaluation even for batched inputs. If reference data is available, a
supervised loss term can be incorporated to further enhance accuracy.

During training, the network parameters 6 are optimized using a
two-stage protocol with the Adam optimizer [27]. In the first stage, a
relatively high learning rate is used to enable rapid exploration of the
parameter space and efficient minimization of the physics-informed
loss. Once the loss plateaus or sufficient progress is achieved, the
learning rate is reduced for a second stage of fine-tuning. The strategy
successfully mitigates convergence to suboptimal solutions while
ensuring robust, high-precision results.

C. Enhanced Network Architecture

To further improve the modeling of complex and non-smooth
thermal patterns, ThermoPhoton incorporates advanced deep learning
modules. The trunk network and any branch network handling low-
dimensional or structured data are implemented as residual multilayer
perceptrons (MLPs), where each residual block contains two fully
connected layers with nonlinear activation (typically tanh) and a
skip connection:

B = tanh (7 (tanh (3" (0"))) + shorteut(n®) ), (12)

where ?il) and CT";Z) are fully connected layers, and shortcut is a
skip mapping. This design enhances convergence and stability in deep
networks [28].

For high-resolution or image-like branch inputs, a convolutional
ResNet is used, with each residual block of the form

7D — O + 9(1) (Z(l>), (13)

where 9”) denotes a sequence of convolutions and nonlinearities,
enabling multiscale spatial feature extraction.

To capture long-range dependencies, a self-attention module [29]
follows the ResNet. Feature maps are projected into query, key, and
value tensors via 1 X 1 convolutions, attention weights are computed,
and features are aggregated globally, allowing the model to learn both
local and global thermal correlations.

D. Pseudo-3D Source Representation

A central challenge in 3D thermal modeling of PICs is the high
dimensionality of the internal heat source Q(x,y,z), which leads
to significant computational complexity. To address this, we propose
a pseudo-3D source representation (Pseudo-3D), which exploits the
layered structure of PICs to reduce input dimensionality by expressing
the 3D heat source as

Q(m,y, Z) = C'u(x>y) ~w(z), (14)

where u(x,y) denotes the normalized lateral heatmap, w(z) is the
vertical profile, and C' is a normalization constant ensuring the total
power equals Par:

C = Pmtal ) ( 1 5)

([, 0w dedy) (f, w(z) dz)

The choice of w(z) is progressively refined to balance physical
fidelity with model learnability. The uniform profile,

1, mn<z<2»

. (16)
0, otherwise

Wuniform (Z) = {
is commonly employed in engineering, as it directly represents
scenarios where heat is generated uniformly within a specified thin
film or structural layer—a typical outcome of device fabrication.

Nevertheless, the abrupt discontinuities at the layer boundaries can
impede convergence and generalization in data-driven models. To
alleviate this issue, the Gaussian profile is frequently adopted:

_ 2
wGaussian(Z) = exXp (7M) 5

252 17)

where 2o and o denote the center and width, respectively. The
Gaussian function offers a smooth, differentiable approximation of
localized heat generation, facilitating numerical optimization and
learning.

For further improvement, particularly to capture long-range thermal
diffusion, a Lorentzian-like profile can be used:

1

“TTale—=)? 18

WLorentz (Z )
where « controls the width and tail decay. This profile provides
extended support and smoother transitions, more accurately reflecting
the physical characteristics of heat spreading in multilayer structures.
This formulation ensures that the total heat input remains consistent
regardless of the specific choice of w(z).

E. ZCS-Based Gradient Computation and Implementation

Efficient evaluation of spatial derivatives is critical for enforcing
the physics-informed loss in operator learning. We employ the
Zero Coordinate Shift method, which improves both memory and
computational efficiency when computing gradients via automatic
differentiation (AD).

Instead of treating spatial coordinates y; as independent leaf
variables in AD, we introduce a shared dummy shift variable z and
define a perturbed function:

vij(2) := Go(ui,yj + 2). 19)

The gradient with respect to the spatial coordinate is then reparam-
eterized as

(20)

z=0

To facilitate efficient reverse-mode AD over batched inputs, a scalar-
valued root function is constructed:

w = Zai]‘ * Vij (Z)7
4,7

where a;; are dummy weights. The final derivative is then obtained

via
9 _ 0 (0w
8yj - 8(17;3' aZ

20

(22)

z=0
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Algorithm 1 ZCS Gradient Computation via Nested Reverse-Mode
AD
Require: Input field u, coordinates y, dummy shift z, dummy
weights a
Ensure: Gradients g;; = w
1: Perturb coordinates: 'Uij(;) +— Go(u,y; + 2)
: Construct scalar root: w < 3, . aij - vij(2)

: Inner gradient: d, « 3* -

adz
da;;

: Outer gradient: g;; <
: Return g;;

W\ oA W N

This nested differentiation transforms a many-roots—many-leaves
gradient problem into a composition of one-root—one-leaf and one-
root-many-leaves gradients, both efficiently supported by modern AD
frameworks.

The ZCS-based derivative computation is summarized in Algo-
rithm 1. This approach avoids explicit Python loops and preserves a
compact computation graph, enabling high efficiency in practice.

F. Training Dataset Design

To enhance generalization in chip-scale thermal modeling, we
introduce an inductive bias through hybrid sampling of input fields.
Rather than relying solely on smooth Gaussian random fields (GRFs),
each training sample u® (z,y) is constructed as a convex combina-
tion:

(@)

u?(z,y) = (1 - ) ulhp(z,y) +a-ull(z,y), @3

where a € [0,1] is a mixing coefficient controlling the degree of
spatial localization.

Here, the GRF component is sampled from a zero-mean Gaussian
process:

ke ~ S0, K((z,9), (=), (24)
with a squared exponential kernel
N2 N2
K = o exp (— (@ “)QZQ(Z/ v) ) 25)

The rectangular component is defined by a sum of indicator functions:

R;
ul(z,y) =Y A K, (2,y), (26)
r=1
where each rectangle R, C €2z, is randomly parameterized, and A,
is its amplitude.

Each training instance may also include sampled convection and
boundary components, denoted as h® (z,y) and Tr(,i )(a:, y), respec-
tively. The parameter « controls the structural inductive bias: o = 0
yields pure GRF (smooth) inputs, « = 1 yields fully rectangular
(discontinuous) heat maps, and intermediate values produce hybrid
structures with both smooth and sharp features. As shown in Fig. 4,
the GRF and rectangular heatmaps represent the two extremes of the
sampling process, while hybrid samples interpolate between these
regimes, enabling the operator to generalize to a wide variety of
realistic source distributions.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our ThermoPhoton on complex PICs
that incorporate multiple volumetric heat sources of varied geometric
shapes. Such randomly varying heat sources require high-resolution
3D thermal analysis, which poses a significant computational chal-
lenge.

- -

0.8 — 0.8
-

0.6 - 0.6

0.4 [ ] 0.4

0.2 = 0.2
=
0.0 - 0.0

Fig. 4 Examples of sampled heat source maps: (a) a smooth Gaussian
random field (GRF, @ = 0) and (b) a discontinuous rectangular
pattern (o = 1). Hybrid training samples are generated by convex
combination of such fields with mixing coefficient « (see Eq. (23)).

A. Experiment Setup

1) Problem Setup: To develop physically meaningful test cases,
we selected PICs composed of MZIs and Microring Resonators
(MRRs). In particular, we evaluated two MZI circuits with cuboid
heaters (0.1 mm x 0.05 mm x 0.05 mm) and two MRR circuits with
cylindrical heaters (radius 0.05 mm, height 0.05 mm). All circuits
were integrated into a PIC, which is modeled as a 120 x 120 x 120
mesh grid-based cubic structure in silicon dioxide (SiO2) with a
uniform isotropic thermal conductivity of 1.4 mW/(mm-K). Convec-
tive boundary conditions were applied to all six surfaces of the chip
(HTC = 0.5 mW/mm? K, Tym» = 298.15 K).

2) Generating Training Power Maps: We sample all the training
powers by a hybrid strategy as mentioned in Section III-F. This
approach combines GRF-based distributions with randomly posi-
tioned rectangular heat sources to better emulate realistic scenarios.
Specifically, 70% of the training samples were derived from 2D
GRFs with a length scale of 0.2. The remaining 30% consisted of
samples containing 5 to 20 randomly placed rectangular heat sources,
each matching the dimensions used in the MZI circuits. A detailed
discussion of this strategy and its empirical advantages is provided
in Section IV-D2. Corresponding to the 120 x 120 mesh grid in the
heater source layer, each power map was represented as an intensity
matrix defined over these coordinates, with dimensions matching the
input format of the branch network.

3) ThermoPhoton Settings: Our ThermoPhoton architecture con-
sists of a branch network and a trunk network, both outputting 256-
dimensional latent representations. The branch network processed a
120 x 120 power map and was implemented in two variants. The
branch network was based on the standard ResNet-18 architecture,
while the Transformer-based branch network extended the same
backbone by inserting a self-attention block with 4 heads and a head
dimension of 32 after the second stage.

We implemented the trunk network as a residual fully connected
(ResFC) module. The spatial coordinates (z, y, z) were first expanded
into a 21-dimensional input via a Fourier feature mapping [30] with
frequencies 27, 47, and 67. This vector was processed by an input
linear layer, then passed through four residual blocks, each containing
128 neurons with tanh activation, and finally through a projection
layer whose output dimension matches that of the branch network.

4) Training Settings: All models were trained for 100,000 it-
erations using physics-informed loss only, without any supervised
temperature data. We employed a two-stage optimization strategy:
the first 20,000 iterations use the Adam optimizer with a learning
rate of 1073, followed by 80,000 iterations using AdamW with
a learning rate of 10™*. The training was conducted on a single
NVIDIA H100 GPU. In each iteration, 30,000 collocation points in
the domain and 5,000 boundary points were sampled to evaluate the
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Fig. 5 Transformer-based ThermoPhoton predictions and COMSOL-generated thermal distribution on three representative PIC layouts. Error
maps show the absolute error between the prediction and the ground truth.

TABLE I Comparison of ThermoPhoton and DeepOHeat across all test cases in terms of thermal prediction accuracy.

Heaters Avg. Terr (K) MAPE (%) COMSOL
Pattern Num Temp. T (K)
Baseline  ResNet  Transformer Baseline ResNet  Transformer p-
Random Blocks 6 146.084 0.898 0.214 48.37 0.30 0.07 302.014
3 x 3 MZI 6 146.374 0.716 0.109 48.45 0.24 0.04 302.113
4 x 4 MZI1 12 147.127 0.778 0.150 48.49 0.26 0.05 303.417
2 X 2 MRR 4 125.013 0.338 0.084 41.30 0.11 0.03 302.694
3 x 3 MRR 9 137.925 1.037 0.445 45.11 0.34 0.15 305.753
Overall - 140.505 0.753 0.200 46.7 0.25 0.07 -
TABLE II Peak GPU memory and thermal prediction error.
nputs a
600 {2 g . T ’ Method GPU Mem. (GB) Avg. 7., (K) MAPE (%)
o[22 3 E : N DeepOHeat 741 144417 47.82
S T 2 % 7] )
500 s 3 8 3 i % 0§ ¢ ResNet-based branch network
— = 5 2 m o 3 2 Base model 44.1 7787 2.58
400 - . é R ' Base model + Pseudo-3D 40.5 0.226 0.08
= i i E Base model + ZCS 27.9 2.649 0.88
E 300 - E - 2 Base model + Pseudo-3D + ZCS 24.3 0.230 0.08
[ | Transformer-based branch network
200 — Base model 46.0 8.035 2.65
Base model + Pseudo-3D 40.6 0.327 0.11
100 4 Base model +ZCS 29.9 0.555 0.18
Base model + Pseudo-3D + ZCS 24.4 0.212 0.07
0 BeepOHeat ResNet Transformer

Fig. 6 Training-time breakdown for model variants (per 1000
batches). Each stacked bar shows the total wall-clock time parti-
tioned into four stages: Inputs (data loading and transfer to GPU),
Forward (network forward propagation), Loss Eval (PDE loss eval-
uation), and Backprop (gradient computation and parameter update).

PDE and boundary losses. We adopted the ZCS strategy to reduce
computational overhead, and dynamically resample collocation points
every 4,000 iterations to improve training diversity.

5) Evaluation Metrics: To evaluate the model performance, we
compared the predicted temperature fields against reference results
generated using COMSOL Multiphysics 6.2. As we focused on PIC
thermal analysis, all metrics were computed based on the average
temperature in the regions beneath each heater, following the circuit
layout specified by the corresponding PDK. We reported the average

temperature error (1.,-) and mean absolute percentage error (MAPE)
across all test cases.

B. Comparisons to SOTA Baseline

In recent years, various ML approaches, including ThermPINN,
PISOV, and DeepONet-based methods, have been proposed to address
complex thermal analysis problems. As discussed in the introduction,
direct comparison cannot be made in these studies because of diver-
gent problem definitions in these mainstream approaches. Among
them, DeepOHeat aligns most closely with our problem definition,
as it employed physics-informed losses directly as the learning
objective. Therefore, we adopted DeepOHeat as the baseline to
evaluate our proposed ThermoPhoton framework, aiming to highlight
the effectiveness of our work. We performed comparative experiments
on five PIC-based test cases as shown in TABLE I. For DeepOHeat,
we implemented a branch network with 9 fully connected layers
(256 neurons per layer) and a trunk network consisting of 9 fully
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across representative PIC cases.

[ Hybrid (a=0.3)
I Hybrid (a=0.7)
] All Rectangle (a=1
GRFs (a=0)

3.0

Avg. Terr (K)

3x3 MZI

Random Blocks 2x2 MRR

Fig. 8 Average temperature prediction error under different sampling
strategies.

connected layers (128 neurons per layer). As shown in TABLE I,
DeepOHeat yielded poor accuracy across all test cases, with an
average MAPE approaching 47% due to its inadequate handling of
3D heat sources. In contrast, our proposed ThermoPhoton framework
achieved significantly better performance, particularly when equipped
with Transformer-based branch networks. Fig. 5 further highlights
this advantage through visual comparisons, where the Transformer-
based model achieved an overall MAPE of only 0.07% and an average
error of 0.20K.

C. Overhead Evaluation

To evaluate the computational efficiency and scalability of Ther-
moPhoton, we compared four model variants based on ResNet and
Transformer branch networks. The runtime breakdown is illustrated
in Fig. 6, and the peak memory usage and prediction accuracy are
reported in TABLE II. All models were trained for 70,000 iterations
with the same condition on a NVIDIA H100 GPU and tested in
the 3 x 3 MZI circuit. Compared to DeepOHeat, which uses MLPs,
our base models adopt CNN-based branches, substantially reducing
parameter count and GPU memory usage even before applying further
optimization. We then applied the Pseudo-3D and ZCS-based gradient
computation strategies to improve accuracy, lower peak memory
usage, and decrease training runtime. When combined, Pseudo-3D
and ZCS delivered the most efficient and accurate configuration,
yielding an average 67.1% reduction in peak GPU memory usage and
37.9% reduction in training time across both architectures, relative
to DeepOHeat.

D. Hyperparameter Sensitivity Analysis

1) Validation of Pseudo-3D Source Representation: We evaluated
our Pseudo-3D by comparing three distributions, Lorentzian, Gaus-
sian, and Uniform, for projecting 2D power maps into 3D. Each
model was trained for 20,000 iterations, and models were recorded
at fixed time intervals. MSE was used across three representative test
cases to evaluate performance. As shown in Fig. 7, the Lorentzian
distribution led to faster convergence due to its algebraic decay
(1/(1 + 2%)), thereby better preserving the mid-to-long-range fre-
quency components required for heat transfer modeling. Ultimately,
the Lorentzian-based Pseudo-3D improved prediction accuracy by
approximately 50% and 80% compared to the Gaussian-based and
Uniform-based Pseudo-3D, respectively.

2) Validation of Hybrid Sampling Strategy for Training Heat
Source: To validate the advantage of the hybrid sampling training
heat source dataset strategy, we conducted comparative experiments
under different hybrid sampling ratios and assessed prediction accu-
racy in three cases. As shown in Fig. 8, hybrid datasets (0<a<1)
significantly reduced average temperature errors compared to GRFs-
only (a=0) or rectangle-only (a=1) training. This analysis suggests
that a hybrid sampling strategy (a«=0.3) can enhance model gen-
eralization, resulting in an average error reduction of 0.406 K and
2.197K across the three test cases, compared to rectangle-only and
GRFs-only training, respectively.

V. CONCLUSIONS

We propose ThermoPhoton, a novel physics-informed DeepONet
framework for high-resolution 3D thermal modeling of PICs. By
integrating two key techniques, Pseudo-3D Source Representation
and Zero Coordinate Shift. These enhancements led to a 67.1%
reduction in peak GPU memory usage and a 37.9% reduction in
training time compared to baseline DeepOHeat, while maintaining
high accuracy with a mean absolute percentage error of just 0.07%. In
future work, we aim to expand its applicability to broader PIC design
tasks, including thermal-aware placement, and plan to explore more
advanced training strategies to further enhance model accuracy and
reduce training overhead, particularly in large-scale or time-sensitive
deployment scenarios.

ACKNOWLEDGMENT

This work is supported in part by the Nansha District Key Area
S&T Scheme (No. 2024ZD007) and the Guangdong Science and
Technology Department (No0.2025B1212150003).

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 04,2026 at 05:58:15 UTC from IEEE Xplore. Restrictions apply.



[1]

[2]

[3]

[4

=

[5

=

[6

=

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 04,2026 at 05:58:15 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al., “Deep
learning with coherent nanophotonic circuits,” Nature photonics, 2017.
B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice,
H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial
intelligence and neuromorphic computing,” Nature Photonics, 2021.

K. Lu, Z. Chen, H. Chen, W. Zhou, Z. Zhang, H. K. Tsang, and
Y. Tong, “Empowering high-dimensional optical fiber communications
with integrated photonic processors,” Nature Communications, 2024.
A. Eldebiky, B. Li, and G. L. Zhang, “Nearuni: Near-unitary training
for efficient optical neural networks,” in 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), 2023.

R. Qiu, A. Eldebiky, G. Li Zhang, X. Yin, C. Zhuo, U. Schlichtmann, and
B. Li, “Oplixnet: Towards area-efficient optical split-complex networks
with real-to-complex data assignment and knowledge distillation,” in
Proc. DATE, 2024.

S. Hua, E. Divita, S. Yu, B. Peng, C. Roques-Carmes, Z. Su, Z. Chen,
Y. Bai, J. Zou, Y. Zhu er al, “An integrated large-scale photonic
accelerator with ultralow latency,” Nature, 2025.

S. R. Ahmed, R. Baghdadi, M. Bernadskiy, N. Bowman, R. Braid,
J. Carr, C. Chen, P. Ciccarella, M. Cole, J. Cooke et al., “Universal
photonic artificial intelligence acceleration,” Nature, 2025.

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design:
methods, tools and challenges,” Laser & Photonics Reviews, 2018.

Y. Wu, X. Yu, H. Chen, Y. Luo, Y. Tong, and Y. Ma, “PICBench:
Benchmarking LLMs for photonic integrated circuits design,” 2025
Design, Automation & Test in Europe Conference (DATE), 2025.

M. Orlandin, A. Cem, V. Curri, A. Carena, F. Da Ros, and P. Bardella,
“Thermal crosstalk effects in a silicon photonics neuromorphic network,”
in 2023 International Conference on Numerical Simulation of Optoelec-
tronic Devices (NUSOD), 2023.

P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra, “Efficient full-chip
thermal modeling and analysis,” in IEEE/ACM International Conference
on Computer Aided Design, 2004. ICCAD-2004., 2004.

Z. Liu, S. Swarup, S. X.-D. Tan, H.-B. Chen, and H. Wang, “Compact
lateral thermal resistance model of tsvs for fast finite-difference based
thermal analysis of 3-d stacked ics,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2014.

Y.-C. Chen, S. Ladenheim, H. Kalargaris, M. Mihajlovi¢, and V. F.
Pavlidis, “Computationally efficient standard-cell fem-based thermal
analysis,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2017.

H. Sultan, A. Chauhan, and S. R. Sarangi, “A survey of chip-level
thermal simulators,” ACM Computing Surveys (CSUR), 2019.

T.-Y. Wang and C. C.-P. Chen, “Spice-compatible thermal simulation
with lumped circuit modeling for thermal reliability analysis based
on modeling order reduction,” in International Symposium on Signals,
Circuits and Systems. Proceedings, SCS 2003.(Cat. No. 03EX720), 2004.
J. Xie and M. Swaminathan, “System-level thermal modeling using
nonconformal domain decomposition and model-order reduction,” IEEE
Transactions on Components, Packaging and Manufacturing Technology,
2013.

B. Zhang, W. Xing, X. Zhao, and Y. Sun, “T-fusion: Thermal modeling
of 3d ics with multi-fidelity fusion,” in Proceedings of the 30th Asia and
South Pacific Design Automation Conference, 2025.

M. Wang, Y. Cheng, W. Zeng, Z. Lu, V. F. Pavlidis, and W. Xing, “Aro:
Autoregressive operator learning for transferable and multi-fidelity 3d-
ic thermal analysis with active learning,” in Proceedings of the 43rd
IEEE/ACM International Conference on Computer-Aided Design, 2024.
T. Zhu, Q. Wang, Y. Lin, R. Wang, and R. Huang, “Fasttherm: Fast
and stable full-chip transient thermal predictor considering nonlinear
effects,” in Proceedings of the 43rd IEEE/ACM International Conference
on Computer-Aided Design, 2024.

L. Chen, J. Lu, W. Jin, and S. X.-D. Tan, “Fast full-chip parametric
thermal analysis based on enhanced physics enforced neural networks,”
in 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), 2023.

L. Chen, W. Zhu, M. Tang, S. X.-D. Tan, J.-F. Mao, and J. Zhang, “Pisov:
Physics-informed separation of variables solvers for full-chip thermal
analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2024.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

S. Wang, H. Wang, and P. Perdikaris, “Learning the solution operator
of parametric partial differential equations with physics-informed deep-
onets,” Science advances, 2021.

Z. Liu, Y. Li, J. Hu, X. Yu, S. Shiau, X. Ai, Z. Zeng, and Z. Zhang,
“Deepoheat: operator learning-based ultra-fast thermal simulation in 3d-
ic design,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC), 2023.

I. Teofilovic, A. Cem, D. Sanchez-Jacome, D. Pérez-Lopez, and
F. Da Ros, “Thermal crosstalk modelling and compensation methods
for programmable photonic integrated circuits,” Journal of Lightwave
Technology, 2024.

K. Leng, M. Shankar, and J. Thiyagalingam, ‘“Zero coordinate shift:
Whetted automatic differentiation for physics-informed operator learn-
ing,” Journal of Computational Physics, 2024.

L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, ‘“Learning
nonlinear operators via deeponet based on the universal approximation
theorem of operators,” Nature machine intelligence, 2021.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, 2017.

M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan,
U. Singhal, R. Ramamoorthi, J. Barron, and R. Ng, “Fourier features let
networks learn high frequency functions in low dimensional domains,”
Advances in neural information processing systems, 2020.



