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>- Photonic Integrated Circuits

» Moore’s Law 1s slowing down

» Photonic integrated circuits offers a solution
* Low transmission loss
* No electrical shorts and ground loops

 Low cost and abundant material sources
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Photonic Integrated Circuits (PICs) have emerged as a promising solution



>- Key Components of PICs
» Thermal Modulation in PICs:

* Heater increases nearby waveguide temperature

* Temperature change causes a linear phase shift

* Enables precise tuning of the chip's behavior
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Need fast and accurate thermal analysis



>- Thermal Analysis of Photonic Integrated Circuits
» PICs structure:

* Small-scale heaters High spatial resolution

2>

Full three-dimensional
thermal simulation

* The heaters and waveguides are in distinct layers

» Traditional method:
« COMSOL Multiphysics (time consuming)
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Need fast and accurate thermal prediction for PICs



> SOTAs

» ML-based methods:
* DeepOHeat! (operator learning)

e ThermPINN? (physics-informed neural networks)
e ARO?’ (multi fidelity fusion)

PDE configurations for chip design

PDE/BCs-constrained loss

Power map
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>- ThermoPhoton Framework

» Operator learning model

* Branch net encodes 2D power map

* Trunk net encodes spatial coordinates
» Physics-informed training

* Minimizing a loss function that penalizes residuals of the PDE and boundary

conditions
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>- Computational Complexity Reduction

»> Pseudo-3D heat source representation
Q(mﬂ y? Z) — C ) u(mﬂ y) ) UJ(Z),

u(x, y): normalized w(z): vertical profile, C: normalization
lateral 2D power map here we use: constant ensuring the
_ ! total power equals Pry¢q;
wLorentz(z) ~ 1 n CE(Z — 20)2 ota

entzian (

Normalized Intensity

Pseudo-3D




>- Efficient Physics-Informed Loss Evaluation

» Zero coordinate shift (ZCS) gradient computation

* Improves both memory and computational efficiency in automatic differentiation

* Instead of calculating the gradient directly for each coordinate individually, ZCS
introduces a shared dummy shift variable s

* Avoids explicit loops and preserves a compact computation graph
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>- Enhanced

Generalization

» Training dataset design
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>- Experiment Setup

» Test cases of PICs:
* Mach-Zehnder interferometers (MZI)-based PICs (3x3, 4x4)
* Microring resonators (MRR)-based PICs (2x2, 3x3)
* Random blocks
» Input:
e 2D-power map (Grid size: 120 x 120)
* Spatial coordinates (x, y, z)

» Output:
* Spatial-temporal temperature profile(Grid size: 120 x 120 x 120)
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>- Prediction Accuracy Comparison

3x3 MZI Random Blocks 2x2 MRR
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* Mean absolute percentage error.
0.07%
* Average temperature error:
ThermoPhoton
0.2K

Temperature distribution of ThermoPhoton and COMSOL

TABLE I Comparison of ThermoPhoton and DeepOHeat across all test cases in terms of thermal prediction accuracy.

Heaters Avg. Terr (K) MAPE (%) COMSOL
Pattern Num Temp. T (K)
DeepOHeat  ResNet  Transformer  DeepOHeat ResNet  Transformer )
Random Blocks 6 146.084 0.898 0.214 48.37 0.30 0.07 302.014
3 x 3 MZI 6 146.374 0.716 0.109 48.45 0.24 0.04 302.113
4 x 4 MZ1 12 147.127 0.778 0.150 48.49 0.26 0.05 303.417
2 x 2 MRR 4 125.013 0.338 0.084 41.30 0.11 0.03 302.694
3 X 3 MRR 9 137.925 1.037 0.445 45.11 0.34 0.15 305.753

Overall — 140.505 0.753 0.200 46.7 0.25 0.07 —
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>- Overhead Evaluation

Vs. DeepOHeat:

* Model Training Time:

37.9% Reduction
* Memory Usage:
67.1% Reduction

TABLE II Peak GPU memory and thermal prediction error.

Method GPU Mem. (GB) Avg.7...- (K) MAPE (%)
DeepOHeat 74.1 144.417 47.82
ResNet-based branch network
Base model 441 7.7787 2.58
Base model + Pseudo-3D 40.5 0.226 0.08
Base model + ZCS 27.9 2.649 0.88
Base model + Pseudo-3D + ZCS 24.3 0.230 0.08
Transformer-based branch network
Base model 46.0 8.035 2.65
Base model + Pseudo-3D 40.6 0.327 0.11
Base model + ZCS 29.9 0.555 0.18
Base model + Pseudo-3D + ZCS 24.4 0.212 0.07
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* Pseudo-3D mainly improves
prediction accuracy.
* ZCS is primarily used for

reducing memory usage 3



>- Conclusion and Future Work

» Key contributions:

* Novel operator learning-based neural architecture for 3D thermal simulation of
PICs

* Two key techniques, Pseudo-3D source representation and Zero Coordinate Shift
* Mean absolute percentage error 0.07% (vs. COMSOL)
* Up to 67.1% memory usage and 37.9% training time reduction (vs. DeepOHeat)

» Future directions:
* Embed into border PIC design tasks (e.g., PIC placement)

* Extension to large scale deployment scenarios

* Explore more advanced training strategies
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Thank you & Questions

Contact: lhuang913@connect.hkust-gz.edu.cn
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