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Electronics Bottleneck

e Moore's Law is slowing down

e The electronics efficiency bottlenecks (frequency, power, cooling)
— Microprocessor Frequency 1s limited to <6 GHz
— Performance scaling now relies on adding more transistors/cores

— Transistor energy efficiency has stalled
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Photonic Integrated Circuit

e Photonic Integrated Circuits have emerged as a promising solution

e Advantages
—  Low transmission loss
— No electrical shorts and ground loops
-~ Low cost and abundant material sources

— No heat dispassion when propagating or interfering

— Large photonic bandwidth and multiplexing

Computing Capability Comparison! Optical IO Chiplet?
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Routers for Photonics

e Existing routers for photonics are limited

e Lack of routers that consider matching constraints
— Matching constraints are crucial for signal integrity

e Lack of routers that consider hybrid waveguides

— Utilizing hybrid waveguides can further reduce insertion loss

Design with Matching Constraints Hybrid Waveguides
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Problem Definition

e Problem

— Constraints-aware adaptive waveguide

routing problem

e Given

— Anetlist

— Placement information

— Matching groups

—~  Waveguides and transitions
e Output

- A valid layout
e Objective

—  Minimize the insertion loss

— Satisfy the matching constraints

Waveguide and Transition
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Framework Overview

e Preprocessing
— Conduct grids for routing
— Partition regions for single-net routing
e Initial routing
— Single-net routing: obstacle-aware target-
length routing
—  Multi-net routing: matching-aware A*-
routing
e Automatic Transition Insertion
— Optimize the insertion loss using MILP
with loss matching constraint
e Postprocessing
— Convert coordinates to physical ones
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Obstacle-Aware Target-Length Routing

e Determine the priority of regions according to obstacles

- Dead region: areas fully enclosed by obstacles

— Neck region: areas with limited routing capacity

Region Partition

O

— Optical Waveguide
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B Obstacles

Neck Region
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Obstacle-Aware Target-Length Routing

e Dectour process
— Insert rectangular detour units to increase the path length and mark visited regions

— Determine detour units based on the grid size and minimum bend radius

Detour Process
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Obstacle-Aware Target-Length Routing

e Dectour process
— Insert rectangular detour units to increase the path length and mark visited regions

— Determine detour units based on the grid size and minimum bend radius

e Extended detour mode

— Bypass obstacles through the outer boundary when encountering a neck region

Detour Process Extended Detour Mode
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Matching-Aware A*-Routing

e Cost function f(x) = c(x) + g(x') + h(x) Length Penalty Terminal Penalty
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— g(x'): the cost of previous node 0, b> R
— h(x): the Manhattan distance to the target grid
e Features Bend Overlap
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— Penalize paths that are close to terminals to v
avoid overlap with bends
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MILP-Based Transition Insertion

e Objective

— Minimize total insertion loss, Zl | 01’5“0’5“1

total _— nbend prop tran

— Crossed paths are divided into separate paths
e (Constraints

- Waveguide type constraint

— Radius violation constraint

— Transition overlap constraint

— Matching constraint
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MILP-Based Transition Insertion

e Waveguide type constraint: x3 = x, and xg = x5
— Segments are divided into 3 subsegments

— x 1s a binary variable set for the waveguide type of the subsegment
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MILP-Based Transition Insertion

e Radius violation constraint: y; -A>1, y1 A +y <A—1,

Y1t+7Y2
A

— The transition location is normalized by the length of segment A

e Transition overlap constraint: 1 —y; —y, =

— vy isa0-1 continuous variable to determine the transition location

— 1 is the bend radius, y 1s the length of transition,

Radius Violation
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MILP-Based Transition Insertion

e Radius violation constraint: y; -A>1, y1 A +y <A—1,

Y1t+7Y2
A

— The transition location is normalized by the length of segment A

e Transition overlap constraint: 1 —y; —y, =

— vy isa0-1 continuous variable to determine the transition location

— 1 is the bend radius, y 1s the length of transition,

. s 4. total _ Ntotal
e Matching constraint: |0p Oq <€ MNy,n, €G
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Benchmark

e Testcases
— 10 photonic cases
e Environmental settings

— C++ for initial routing and Python for remaining components
—~ 2.00GHz Intel Xeon Gold 6338 CPU with 256GB memory
— QGurobi ILP solver

e Insertion loss value and transition specification

Waveguide | Bending Loss | Crossing Loss | Propagation Loss Transition | Transition Loss | Specification
Type (dB/bend) (dB/crossing) (dB/cm) Type (dB/transition) (pm)

Full-etched 0.01 0.20 1.67 Full-deep 0.01 20x11
Deep-etched 0.02 - 1.02 Full-shallow 0.04 20x11
Shallow-etched 0.04 - 0.57 Deep-shallow 0.05 40x11
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@] Experimental Results — Single-Net Routing

e Compared to CAFE Router!

10.2% loss improvement without transition insertion

15.3% (CAFE) and 18.7% (Ours) loss improvement with transition insertion
Runtime: CAFE 506 s, Ours 2 s (with ATI contributing 1 s)

Loss and Runtime Comparison
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0.0
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Methods
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LTE'J] Experimental Results — Multi-Net Routing

e Compared to [Wu+, DATE’25]!
— Total loss and maximum loss improved by 4.8% and 12.3%, respectively
- 3.55% ([Wu+, DATE’25]) and 0% (Ours) loss mismatch

e Compared to DP+Refinement

— The total loss and maximum loss values are nearly identical
—- 5.05% (DP+Refinement) and 0% (Ours) loss mismatch

Total Loss, Max Loss, and Runtime Comparison Loss Mismatch Comparison

I 105 = Total Loss 3.55 Loss Mismatch

[Wu+, DATE’25] 1.14 Max Loss
0.88

Runtime

(e o.98
DP+Refinement 1.00 5.05
0.86
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Conclusion

e We proposed the first optical routing framework considering hybrid waveguides
e QOur 1nitial routing algorithms

— Minimize bends and short segments while considering the target path length
— Consider the terminal location to avoid physical violations
e Our automatic transition insertion method

- Optimally assign waveguide types to reduce total loss

— Ensure compliance with matching constraint
e Experimental results have shown that our method substantially outperforms the

existing routers
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Thank you & Questions

Contact: xyu082@connect.hkust-gz.edu.cn
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