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Abstract—The logic synthesis optimization flow is crucial
to the quality of results (QoR), which applies a sequence of
transformations to a design. Recently, there has been a growing
focus on the automatic optimization of synthesis flows to improve
QoR, utilizing techniques such as Bayesian optimization and
reinforcement learning, which may fall short in efficiency due
to the exponentially large search space. In contrast, continuous
optimization offers notable efficiency advantages by leveraging
the explicit gradient. However, despite its potential, several
significant concerns remain to be addressed. On one hand, it is
essential to obtain a reliable gradient. On the other hand, a major
challenge arises from the fact that searching within a continuous
space can yield solutions that deviate from feasible ones. In this
paper, we propose an efficient approach to optimize synthesis
sequences within a continuous latent space. Specifically, the gra-
dient information is derived from a QoR surrogate model, while
the discrepancies between solutions and feasible transformations
are minimized by a diffusion model. Experimental results on
extensive benchmarks demonstrate that the proposed method not
only achieves lower area and delay but also improves efficiency
by 5X to 130X, compared with previous methods.

I. INTRODUCTION

Logic synthesis is an important process that transforms circuits
from register-transfer level design to gate-level netlist. Pre-
vious works usually represent circuits as AIG (And-Inverter
Graph) [1] or similar boolean networks like MIG [2]. Then
the synthesis process applies a sequence of logic optimization
transformations like rewrite, restructure to circuits [1], [3]. For
the same circuit, different sequences can lead to a variation in
quality-of-result (QoR) of up to 40% [4]. Thus, it is imperative
to optimize those synthesis sequences to improve the quality
of synthesized netlists.

Previous works are devoted to optimizing sequences with
techniques like reinforcement learning (RL) [5]–[7], multi-
arm bandit (MAB) [8], and discrete Bayesian optimization
(BO) [9]. Both RL and MAB methods treat the sequence
optimization task as a sequential decision-making problem.
They explore the probability of which transformation to take
by updating the Q-function, policy function, etc. The discrete
BO [9] has to sample sequences by discretely altering the
transformations for evaluating the acquisition function. While
automated methods yield significant QoR improvements over
general heuristics, their dependence on extensive discrete
searches and iterative nested updates leads to considerable

∗Equal contribution
†Corresponding author

Pre-collected sequences

Embed

… …
… Latent 

variables

QoR labels

Diffusion
Model

Train

Surrogate
Model

Train

Circuit AIG

Initial latent
variables

Optimized latent
variables

rw
rf

rs

…

MapContinuous
optimization

in latent space

…Optimization process

Training before 
optimization

…

Fig. 1 Overview of the proposed framework. Upper part: Pre-
training a surrogate model and a diffusion model. Lower part:
Continuous optimization of sequence in latent space.

overhead and inefficiency during the optimization process,
particularly as the number of transformation options increases
and the sequence lengthens. This raises a pertinent question:
Can we directly optimize sequences without searching in the
discrete space to achieve faster turnaround time?

In contrast to discrete search, continuous search transforms
the discrete search space into continuous latent space and
leverages numerical optimization techniques like gradient de-
scent to directly optimize the objective function guided by the
gradient from a surrogate model [10]. Upon convergence, the
final solution is retrieved by mapping the latent representation
in continuous latent space back to the original space.

For synthesis sequence optimization, a deep learning-based
surrogate model should first be built, which takes the circuit
and sequence embeddings as input and predicts the QoR. How-
ever, it is observed that solely relying on the gradient from the
surrogate model is problematic [11], [12]. Note that the final
sequence for synthesis should be retrieved based on the opti-
mized sequence embedding in the latent space. Unfortunately,
even though the continuous optimization converges in the first
phase, the sequence may hardly be retrieved due to a large
discrepancy between the obtained embeddings and the feasible
transformation embeddings. Some previous works explored to
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conduct an additional mapping based on a distance metric [13]
or a neural network-based decoder [14]. Nevertheless, neither
of these methods can achieve the desired performance, as
revealed in [15]–[17], since the additional mapping operation
is already out of the optimization loop, offering no assurance
against performance degradation. Therefore, to facilitate the
retrieval of final transformations from continuous space, it is
essential to ensure that the embedding discrepancy between the
final solutions and feasible transformations is minimized, such
that the final optimized sequence can be instantly retrieved.

To address the above challenges, we incorporate a novel
generative diffusion model together with a surrogate model
into the continuous logic optimization framework. The
overview of it is shown in Fig. 1. Particularly, the diffusion
model is designed to minimize that discrepancy. Different
from the previous two-stage workflows, the proposed method
can seamlessly integrate the two stages into a unified stage.
Moreover, all the computations are within the optimization
loop, which provides a higher level of assurance regarding the
quality of the final solution. The discrepancy is minimized
explicitly through a series of denoising steps, each of which
is performed together with a gradient descent step. Upon
convergence, the discrepancy between the optimized embed-
ding and the feasible embedding is minimized, and thus the
final optimized sequence can be retrieved instantly without
degrading QoR. Our contributions are as follows:

1) To the best of our knowledge, it is the first work to pro-
pose a continuous optimization approach for the discrete
logic sequence optimization problem.

2) We optimize the QoR together with the discrepancy
between optimized embeddings and feasible transforma-
tions to achieve a unified framework.

3) We leverage the gradient obtained from a surrogate model
for QoR optimization and the denoising steps based on a
diffusion model for discrepancy minimization.

4) Experimental results demonstrate that the proposed con-
tinuous optimization framework achieves substantial im-
provements in runtime and QoR compared with previous
baseline methods on logic optimization.

II. PRELIMINARIES

Some frequently used notations are shown in TABLE I for a
clearer illustration.

A. Logic Synthesis Sequence Optimization
In logic synthesis, a sequence of logic transformations
is applied to the circuit to achieve a better QoR. A
sequence s with length L is composed of transforma-
tions [s1, . . . sL], where each transformation si belongs to
an available set S, i.e., si ∈ S. In our work, S =
{rw, rwz, rf, rfz, rs, rsz, b}. These transfor-
mations have different effects on circuits represented in AIG
by reducing the number of nodes and reducing the levels.
Although ABC [1] is a relatively fast synthesis tool, the expo-
nentially increasing search space (|S|L) still hinders efficient
optimization. Given the fact that longer sequences may not

TABLE I Notations in this work.
Notation Explanation

s A sequence of discrete transformations with length L.
g(·) The function that embeds sequence into latent space.
x The sequence of transformation embeddings.

xt

The sequence of latent variables at denoising step t.
We use t = T to denote the start of denoising steps and
t = 0 as the end to align with notations in diffusion models.

F̂ (·) Surrogate model to predict QoR.
ϵt The added noise at the t-th step in diffusion process.

ϵθ(·, t) The predicted noise at the t-th step by the diffusion model.
N(µ,σ2) A Gaussian distribution with mean µ and variance σ2.
σt,αt Some constants dependent on t in the diffusion model.

necessarily lead to better QoR [8], we focus on finding a
sequence with a fixed length L that leads to minimal area
or delay, or both. It is formulated as:

min
s

F (s)

s.t. si ∈ S, i = 1, 2 . . . , L. (1)

B. Diffusion Models
Diffusion models have become the mainstream generative
models [18]–[20]. Such popularity is mainly due to their
extraordinary ability to capture the distribution of training
data and then generate data with a similar distribution as the
training data. Specifically, diffusion models will convert the
training data into pure Gaussian noise by gradually adding
Gaussian noise ϵt. Then they will learn to restore the data
from pure Gaussian through denoising steps by removing noise
ϵθ(x, t) predicted by a neural network parameterized with θ.

III. METHODOLOGIES

Our continuous optimization framework involves two models,
including a surrogate model to predict QoR and a diffusion
model to learn the distribution of feasible transformation
embeddings. The optimization process will optimize latent
variables with both the gradient from the surrogate model and
the denoising update from the diffusion model. Finally, it maps
optimized latent variables back to discrete transformations. We
illustrate the details in the following sections.

A. Training Surrogate Model
Since QoR after logic synthesis cannot be analytically formu-
lated, a surrogate model is required to bridge the gap. More-
over, it is imperative that the surrogate model can generate
the gradient information to enable continuous optimization.
Recently, various works have investigated deep learning-based
QoR prediction for logic synthesis [4], [21], [22]. Generally,
these frameworks will first encode the sequence into an em-
bedding in the latent space, i.e., x = g(s). Then a deep neural
network is trained to predict the QoR. For each design, given
a dataset comprising N data points that include sequences
and QoR labels, the surrogate model is trained by minimizing
the mean squared error between the predicted values and the
corresponding labels as shown in the following equation:

minL =
1

N

N∑
j=1

(ŷ(j) − y(j))2, (2)
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Fig. 2 (a) Latent variables optimized only w.r.t QoR. (b) Latent
variables optimized w.r.t QoR and discrepancy.

where the ŷ(j) and y(j) are the predicted QoR and the label
of the sample j, respectively.

B. Optimizing Sequences in Continuous Space
After a surrogate model is trained to predict the delay and/or
area after synthesis, we can minimize the predicted delay or
area by finding a sequence embedding in the latent space. For
simplicity, we use F̂ (·) to represent the surrogate model, and
x to represent the embedded sequence to be optimized.

x∗ = argmin
x

F̂ (x). (3)

Since the surrogate model is based on a DNN, we can get the
gradient by back-propagation. However, relying on gradient
may lead to a large discrepancy between optimized latent
variables and embeddings of feasible transformations. Fig. 2
presents an illustrative example that visualizes the embeddings
in latent space by t-SNE [23]. It poses a great challenge for
sequence retrieval, i.e., mapping the embedding in latent space
to the real sequence for logic synthesis, given the results with
large discrepancy shown in Fig. 2(a).

In this work, we propose to bridge the gap by intro-
ducing another auxiliary objective H(x) that minimizes the
discrepancy. Specifically, minimizing H(x) implies that the
optimized embedding x∗ follows the same distribution as
valid transformation embeddings so that we can eliminate
the additional yet intricate mapping to retrieve the sequence,
as depicted in Fig. 2(b). To this end, we reformulate our
optimization problem in the latent space as:

x∗ = argmin
x

[F̂ (x) +H(x)], (4)

where H(x) represents the discrepancy between an embedding
x and the valid transformation embeddings in latent space.

A widely used option for H(x) is the negative log-
likelihood (NLL). It is a commonly used objective to be
optimized in generative models to ensure the generated data
follows the same distribution as the training data. If minimized,
the optimized latent variables should be in the distribution of
the feasible transformation embeddings and the discrepancies
between them are minimized. Ideally, we can directly compute
the gradient of the objective in Equation (4) w.r.t x, i.e.,
∇xF̂ (x) +∇xH(x).

The gradient ∇xF̂ (x) is easy to obtain since it can
be computed via back-propagation. However, minimizing

… … … ……
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Fig. 3 The diffusion process (from right to left) and denoising
process (from left to right) of a diffusion model.

NLL through gradient descent leads to tractability issues
for computing ∇xH(x). Instead, a variational bound is op-
timized [24], which is the mainstream approach to train
generative models, including diffusion models [18]. Therefore,
minimizing H(x) can be resolved through training a diffusion
model.

C. Optimization with Diffusion Model
Diffusion models have shown extraordinary abilities in gen-
erating high-quality data in the training set distribution by
minimizing a variational bound. The diffusion model encom-
passes a diffusion process and a denoising process as shown
in Fig. 3. The diffusion process gradually adds noise to the
feasible transformation embeddings as shown in Equation (5)
with αt as some constants.

xt =
√
αtxt−1 +

√
1−αtϵt, ϵt ∼ N(0, I). (5)

This diffusion process converts the original data into pure
Gaussian noise following the conditional distribution:

q(xt|xt−1) = N(xt;
√
αtxt−1,

√
1−αtI). (6)

To generate in-distribution data, the denoising process tries
to remove the same scale of Gaussian noise ϵθ(xt, t) ∼
N(µθ(xt, t),σ

2
t I) generated with a mean µθ(xt, t) param-

eterized by θ:

xt−1 =
1
√
αt

(xt −
1−αt√
1− ᾱt

ϵθ(xt, t)) + σtz, (7)

where σt are some constants, ᾱt =
∑t

s=1 αs and z ∼
N(0, I). This process follows the conditional distribution:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t),σ
2
t I). (8)

The objective of training the diffusion model is to minimize
the variational bound over the negative log-likelihood through
the denoising process, as shown in Equation (9).

minLd = E[− log q(xT )−
T∑

t=1

log
pθ(xt−1|xt)

q(xt|xt−1)
] ≥

E[− log pθ(x0)]. (9)

Since the diffusion process with q(·) is irrelevant to parameters
θ of the neural network, optimizing the loss function in
Equation (9) is equivalent to learning a denoising process with
parameters θ that can minimize the variational bound over the
NLL. In practice, the diffusion model is trained by minimizing
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Fig. 4 The optimization process that gradually subtracts gra-
dient from the surrogate model and noise from the diffusion
model.

Algorithm 1 Training Diffusion Model

Input: N embedded latent sequences of transformations.
Output: A trained diffusion model parameterized by θ.

1: repeat
2: t← Random(1, T ), j ← Random(1, N).
3: ᾱt ←

∑t
s=1 αs.

4: Ld ← Loss(t, j,x(j)
0 ). ▷ Equation (10).

5: θ ← Update(θ,Ld).
6: until Diffusion model converges.

the difference between the added noise and the predicted noise
on the N pre-collected embedded sequences [18]:

minLd = Et,j,x0,ϵt [||ϵt − ϵθ(
√
ᾱtx

(j)
0 +

√
1− ᾱtϵt, t)||2],

(10)
where x

(j)
0 means the original embedded sequence of sample

j. The training details are also illustrated in Algorithm 1. The
predicted noise ϵθ(xt, t) with a mean µθ(xt, t) that dependent
on θ is updated by gradient descent on computed loss as shown
in Line 5.

Given a well-trained diffusion model, the generated latent
variable x0 through the denoising process should be in the
distribution of embeddings of feasible transformations. The
discrepancies between them in the latent space are also min-
imized. To minimize F̂ (x) +H(x) in Equation (4), the cor-
responding update rule can be calculated by back-propagation
and Equation (7), respectively. Therefore, we can combine
them as the optimization process starting from a sequence
of initial latent variables following pure Gaussian distribution,
i.e., xT ∼ N(0, I), and proceed with the iterative optimization
in a continuous latent space as:

xt−1 = xt − η(ϵθ(xt, t) + ω∇xF̂ (xt)) + σtz, (11)

where the constant coefficients are combined into η and ω for
brevity. This optimization process is also shown in Fig. 4. At
each optimization step, we will subtract the predicted noise
ϵθ(xt, t) computed by the diffusion model and the gradient
w.r.t predicted QoR ∇xF̂ (xt).

Arguably, the surrogate model may not provide accurate
prediction on a sequence consisting of noisy latent variables.
Following [25], for each optimization step, we revert the noisy
variables xt to a noise-free version x̂t to obtain a more
accurate gradient to optimize the QoR. This can be done by
the reparameterization trick used in [25], [26]:

x̂t =
xt − (

√
1− ᾱt)ϵθ(xt, t)√

ᾱt
. (12)

Algorithm 2 Continuous Logic Optimization

Input: Trained surrogate model and diffusion model; target
circuit.

Output: Optimized sequence for logic synthesis on the target
circuit.

1: Randomly sample a sequence of latent variables from
Gaussian noise: xT ∼ N(0, I).

2: for t = T to 1 do
3: Run optimization step with Equation (13).
4: end for
5: Retrieve a sequence of transformations. ▷ Section III-D.

Combining Equation (12) and Equation (11), we can have the
final update rule for solving the problem in Equation (4):

xt−1 = xt − η(ϵθ(xt, t) + ω∇xF̂ (x̂t)) + σtz. (13)

This equation illustrates our idea of optimizing sequences
in continuous space with the optimized variables in the distri-
bution of valid transformation embeddings. It generates latent
variables in a sequence to minimize QoR and prevent them
from having large discrepancies from the feasible transfor-
mation embeddings. The optimization process is illustrated in
Algorithm 2.

D. Retrieval of Optimized Transformations
Upon convergence of the above optimization, we obtain the
optimized x∗ in latent space. Owing to the denoising process
involved, the separate embeddings in x∗ will be almost aligned
with the embeddings of feasible transformation from S with
minimal discrepancy. Therefore, the final optimized transfor-
mation sequence can be retrieved instantly. Our framework can
be concluded in Algorithm 1. This optimized sequence will be
sent to ABC [1] for validating the actual QoR.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficiency of our continuous
optimization method with several baselines in terms of QoR
and runtime. We also ablate the effectiveness of our continuous
optimization with different choices of surrogate models and
the necessity of the diffusion model.

A. Experiment Setup
Target circuits are taken from EPFL15 and ISCAS89 bench-
marks [27], [28]. The PDK for technology mapping is the
open-source ASAP7 PDK [29]. Our surrogate model is an
MTL-based from [22], which consists of a 2-layer GNN, an
LSTM, and two 2-layer attention modules. It is trained by
20000 randomly generated sequences synthesized by ABC [1].
Our diffusion model has a 1-D U-Net structure [18], [30].
It has 500 diffusion/denoising steps. The experiments are
conducted on a machine with two AMD EPYC 7543 32-core
CPUs and one Nvidia RTX 3090 GPU. We target optimizing
synthesis sequences with length L = 20. For each circuit, we
train a corresponding surrogate model and a diffusion model,
which takes about 11 minutes and is a one-time effort.

We choose several state-of-the-art methods of logic op-
timization as baselines, including DRiLLS [5], abcRL [6],
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TABLE II Delay and Area Comparison. Unit of area: µm2. Unit of delay: ps.
Circuit Original DRiLLS [5] abcRL [6] BOiLS [9] FlowTune [8] Ours

Area Delay Area Delay Area Delay Area Delay Area Delay Area Delay
adder 867.43 1006.42 807.56 1005.60 941.10 1004.28 945.74 1005.69 797.05 1004.28 797.05 1003.60
arbiter 1299.64 347.26 1301.25 347.26 1299.64 347.26 1299.64 347.26 1299.64 347.26 1299.64 347.26

bar 2077.62 75.37 1680.94 76.39 1669.79 75.37 1680.94 76.39 1680.94 75.37 1669.79 76.39
cavlc 213.22 76.18 235.02 74.17 206.06 73.36 229.57 76.18 208.65 72.97 198.77 73.77
ctrl 66.29 40.44 54.33 35.34 53.86 32.94 56.68 40.49 48.03 31.09 41.78 31.09
dec 289.42 26.28 289.42 26.28 289.42 26.28 289.42 26.28 289.42 26.28 289.42 26.28
div 12888.45 17251.69 12531.56 16871.04 12130.13 16766.32 13488.61 16898.22 13768.78 16756.87 11900.00 16765.37
hyp 176053.57 89237.98 168154.61 89319.01 167755.80 89207.74 181291.68 89269.65 176048.90 89237.98 168070.20 89168.95
i2c 556.44 73.08 491.11 61.86 491.81 60.78 549.74 60.78 469.11 61.11 464.22 60.78

int2float 90.45 71.06 91.16 70.00 75.98 71.06 85.82 71.06 74.37 68.04 78.10 71.06
log2 20590.64 1614.88 22084.77 1613.17 23092.16 1571.92 24947.17 1571.80 22412.07 1570.75 20997.60 1606.55
max 1968.73 896.81 1332.00 747.25 1369.65 681.15 1580.82 637.20 1340.26 657.73 1317.22 612.07

mem ctrl 13377.19 439.94 11705.69 371.81 11138.74 360.04 10517.57 363.30 11016.25 360.52 10289.00 353.37
multiplier 19738.85 1100.52 21870.08 1098.25 21924.85 1049.30 23028.97 1093.97 22468.65 1046.04 19747.90 1046.04
priority 382.75 969.31 254.58 555.05 208.43 331.00 237.33 436.86 218.65 337.10 211.90 331.10
router 246.68 114.32 103.09 74.01 100.51 74.53 95.63 82.41 95.83 69.46 82.35 67.57

sin 4576.88 752.97 4478.85 726.67 4619.88 706.06 4896.39 714.22 4486.30 702.59 3921.83 704.74
sqrt 12109.51 21604.47 11683.06 21318.41 13991.26 21330.84 13685.81 21385.74 11736.63 21316.52 11569.62 21320.39

square 11284.68 984.70 13611.74 935.58 12658.78 934.25 13382.14 978.47 12637.56 977.54 11086.65 929.45
voter 17367.28 333.12 11398.64 294.34 11359.52 305.71 12254.71 290.33 10986.33 285.26 11150.58 283.87
c17 3.73 18.52 3.73 18.52 3.73 18.52 3.73 18.52 3.73 18.52 3.73 18.52

c432 165.77 128.00 137.13 119.37 88.42 118.82 135.29 124.42 112.19 119.55 88.67 108.55
c499 487.36 105.30 524.26 98.59 514.01 98.59 487.36 105.30 487.65 97.51 480.45 97.25
c880 207.21 92.22 230.74 91.97 221.61 91.09 226.78 94.59 197.17 90.54 206.74 89.90
c1355 494.16 107.81 524.88 100.12 557.81 97.51 507.74 114.78 502.96 97.25 483.95 99.89
c1908 465.92 142.06 452.96 130.87 436.59 131.66 447.51 131.73 410.87 129.25 426.20 127.96
c2670 631.64 88.95 522.35 94.14 506.68 88.95 554.93 99.59 491.30 86.28 463.09 83.37
c3540 871.97 175.82 705.59 164.89 692.83 160.31 777.00 169.21 627.92 158.88 677.16 157.01
c5315 1069.64 175.32 822.22 128.71 824.82 121.18 938.61 131.33 758.96 120.25 726.85 116.76
c6288 2379.73 424.29 2577.50 417.55 2594.44 415.73 2298.16 424.29 2546.76 416.58 2269.26 424.39
c7552 1635.09 151.14 1221.87 118.99 1072.60 107.16 1252.75 146.18 1058.71 105.75 1027.64 103.44
Mean 9821.22 4471.81 9415.57 4422.75 9448.09 4401.93 10070.14 4418.91 9386.73 4400.48 9097.98 4396.99
Ratio 1.079 1.017 1.035 1.006 1.038 1.001 1.107 1.005 1.032 1.001 1.000 1.000

Geo. mean 1212.81 319.57 1088.54 292.09 1056.72 281.97 1117.81 296.23 1029.10 279.15 983.51 276.69
Ratio 1.233 1.155 1.107 1.056 1.074 1.019 1.137 1.071 1.046 1.009 1.000 1.000

BOiLS [9], and FlowTune [8], all of which have open-source
implementations. We spare all 64 CPU cores when running
them for each circuit and one GPU if needed. We modify
them meticulously so that both baseline methods and ours
use the same set of transformations S to form a sequence
with a length of 20 for a fair comparison. The numbers of
optimization iterations of baselines are properly set according
to their original papers. We repeat the evaluation 30 times for
all methods and select the best sequence for comparison. For
DRiLLS [5] and BOiLS [9], which support multi-objective
optimization (delay and area), we evaluate them in a multi-
objective scenario. For abcRL [6] and FlowTune [8], designed
for single-objective optimization, we select the best results for
area and delay separately.

B. QoR Comparison

Here we compare the delay and area after logic synthesis
between our method and baseline methods. The results are
shown in TABLE II. Note that the circuit scale in these
benchmarks may vary significantly, and thus computing the
mean value over all results may undermine the significance of
small circuits (e.g., ctrl) and be biased towards large circuits
(e.g., hyp). To mitigate this bias, we also list the geometric
mean results, which reduce the disproportionate impact of
substantially large values on the overall relative comparison. It
can be seen that the proposed method can always dominate all
baselines. Particularly, we can achieve a 4% to 13% reduction
in the area and a 1% to 7% reduction in delay. This result

validates that our continuous optimization is effective and can
find superior sequences compared with baseline methods.

C. Runtime Comparison
For a fair comparison, for DRiLLS [5], abcRL [6], and
BOiLS [9], we subtract the runtime of ABC [1] interleaved
in the optimization loop so that the comparison is solely
on the optimization algorithm itself. For our method, despite
that model training may take time in our approach, it is a
one-time effort. Therefore, the actual sequence optimization
process in our approach is highly efficient. The runtime of
our method compared with previous methods is shown in
Fig. 5. It can be seen that the proposed continuous optimization
method can achieve a 5X to 130X speedup compared with
previous methods. In contrast, baseline methods like RL and
Bayesian optimization require the model to be updated during
the optimization process, and MAB searches a discrete space
without explicit gradient information. Thus the efficiency
of the baseline methods is not so high. The abcRL [6] is
much slower as it requires building graphs from AIG being
synthesized every after a transformation is applied. It is clearly
shown that our continuous space optimization method is much
more efficient than previous discrete optimization methods as
it directly optimizes the sequence in a continuous space that
avoids extensive discrete search.

D. Effectiveness of the Diffusion Model
We devise an ablation study to further validate the effective-
ness of the diffusion model. To this end, we perform extensive
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validation not only on the MTL-based model [22], but also
hybrid graph-based model (LOSTIN) [21] and convolutional
neural network-based model (CNN) [4]. Regarding the coun-
terpart without diffusion model, we perform the optimization
using only the gradient from the surrogate model, i.e.,

xt−1 = xt − ω∇xF̂ (xt). (14)

Fig. 6 presents the QoR results of continuous optimizations
with various surrogate models, with and without the incor-
poration of the diffusion model. It can be seen that no
matter which surrogate model we choose, incorporating the
diffusion model can always result in a substantial performance
improvement, which validates the general applicability of the
proposed framework. Moreover, it is noted that solely utilizing
a surrogate model to perform continuous optimization can
hardly exceed the performance of baseline methods, e.g.,
FlowTune [8]. When the diffusion model is integrated, all the
results can surpass the baselines. Please note that our contin-
uous optimization method equipped with different surrogate
models has approximately the same runtime (∼40 s) and is
still much faster than baselines.

Next, we demonstrate a visualization of the optimized
embeddings in latent space with t-SNE [23] in Fig. 7. With the
diffusion model, the optimized variables are aligned with the
embeddings of feasible transformations, allowing them to be
mapped back to transformations instantly. The corresponding
sequence in Fig. 7 is [rw; rw; rsz; rfz; rw; rf;
rf; rfz; b; rs; rw; rsz; rwz; rw; rw; rsz;
rsz; rsz; rw; rsz], which yields an area of 11900.00
µm2. In contrast, without the diffusion model, optimized
variables diverge from embeddings of feasible transforma-
tions. Mapping these latent variables back to the near-
est feasible transformations with large discrepancies gives
a sequence as [rfz; rfz; rwz; rs; rs; rsz; rs;
rs; rs; rs; rs; rwz; rs; rwz; rs; rs; rwz;
rw; rwz; rwz] and leads to an area of 22654.15 µm2,
which is 1.9 times larger than the area with a diffusion model.

V. CONCLUSION

In this paper, we propose to efficiently optimize logic syn-
thesis sequences in a continuous space. The gradient-based
optimization in continuous space alleviates the heavy runtime
burden of extensive discrete search of transformations. We
additionally incorporate a diffusion model to keep latent
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Fig. 6 Area and delay with and without diffusion model for
various surrogate models.

0 2 4 6
−12

−10

−8

−6

−4

−2

b rsz

rwz

rf
rs

rwrfz

x-coordinate

y
-c

oo
rd

in
at

e
Embeddings of transformations in S
Optimized latent variables with diffusion
Optimized latent variables without diffusion

Fig. 7 The t-SNE projection of transformation embeddings
from div design. The optimized latent variables without diffu-
sion model deviate from feasible transformation embeddings.

variables in feasible embedding distributions, allowing instant
retrieval of feasible transformations without degrading QoR.
Our experimental results show that our work is not only
significantly faster than previous methods but also reaches
better QoR.
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[10] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-
Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre,
T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical
design using a data-driven continuous representation of molecules,” ACS
central science, vol. 4, no. 2, pp. 268–276, 2018.

[11] T. Wu, T. Maruyama, L. Wei, T. Zhang, Y. Du, G. Iaccarino, and
J. Leskovec, “Compositional generative inverse design,” arXiv preprint,
2024.

[12] Q. Zhao, D. B. Lindell, and G. Wetzstein, “Learning to solve pde-
constrained inverse problems with graph networks,” arXiv preprint,
2022.

[13] J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces
using a physics-driven neural network,” Nano letters, vol. 19, no. 8, pp.
5366–5372, 2019.

[14] J. Lu, L. Lei, F. Yang, L. Shang, and X. Zeng, “Topology optimization
of operational amplifier in continuous space via graph embedding,” in
Proc. DATE, 2022, pp. 142–147.

[15] T. White, “Sampling generative networks,” arXiv preprint, 2016.
[16] Z. Dong, W. Cao, M. Zhang, D. Tao, Y. Chen, and X. Zhang, “Cktgnn:

Circuit graph neural network for electronic design automation,” arXiv
preprint, 2023.

[17] J. Chu, J. Park, S. Lee, and H. J. Kim, “Inversion-based latent bayesian
optimization,” in Proc. NIPS, 2024.

[18] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Proc. NIPS, vol. 33, pp. 6840–6851, 2020.

[19] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” 2021.

[20] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet,
“Video diffusion models,” Advances in Neural Information Processing
Systems, vol. 35, pp. 8633–8646, 2022.

[21] N. Wu, J. Lee, Y. Xie, and C. Hao, “Lostin: Logic optimization via
spatio-temporal information with hybrid graph models,” in Proc. ASAP,
2022, pp. 11–18.

[22] Y. Ouyang, S. Li, D. Zuo, H. Fan, and Y. Ma, “Asap: Accurate synthesis
analysis and prediction with multi-task learning,” in Proc. MLCAD,
2023, pp. 1–6.

[23] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of Machine Learning Research, vol. 9, no. 11, 2008.

[24] D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint, 2013.
[25] A. Bansal, H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum,

J. Geiping, and T. Goldstein, “Universal guidance for diffusion models,”
in Proc. CVPR, 2023, pp. 843–852.

[26] L. Wei, P. Hu, R. Feng, H. Feng, Y. Du, T. Zhang, R. Wang, Y. Wang, Z.-
M. Ma, and T. Wu, “A generative approach to control complex physical
systems,” arXiv preprint, 2024.
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