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Abstract—In semiconductor manufacturing, optical proximity
correction and sub-resolution assist features (SRAF) are critical
techniques for achieving high-fidelity wafer images, especially
as semiconductor device critical dimensions shrink. However,
traditional SRAF generation methods often face challenges in
scalability, adaptability, and efficiency. This paper introduces
a novel method that uses a conditional generative diffusion
model for SRAF generation to improve efficiency and flexibility.
We treat the SRAF generation task as an image-to-image
translation problem, converting the input layout to include
optimal assist features. Experimental results show that our
proposed approach achieves a 5.57× speed-up over commercial
tools while maintaining comparable accuracy in terms of edge
placement error and process variation band.

Index Terms—mask optimization, sub-resolution assist fea-
ture, EDA, diffusion model

I. INTRODUCTION

Lithography is a cornerstone of microelectronics manufac-
turing, with its precision and resolution directly impacting
chip performance and integration density. However, as the
advanced semiconductor critical dimensions (CD) approach
the wavelength of the light, optical diffraction becomes more
pronounced. Interactions between smaller and closer features
can also distort the intended pattern due to the proximity
effect [1]. Optical proximity correction (OPC) is a resolution
enhancement technique (RET) used to address these issues.
By adjusting the shapes and positions of features on the pho-
tomask, OPC helps ensure that the final pattern on the wafer
closely matches the intended design [2], [3]. Besides, sub-
resolution assist feature (SRAF) insertion is also one repre-
sentative technique to enhance the image quality, which adds
SRAFs surrounding the primary pattern, allowing isolated
and sparse patterns to receive spatial frequency augmentation.
As shown in Fig. 1, compared to basic OPC results that do
not incorporate SRAFs, these inserted features significantly
enhance the robustness of the target patterns under various
process variations, reducing the process variation (PV) band.

In general, SRAF insertion methodologies are categorized
into three classes: the rule-based approach [4], [5], the model-
based [6]–[8], and machine learning (ML)-based method [9]–
[12]. The traditional rule-based SRAF approach relies on
a set of predefined guidelines and heuristics to determine
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the placement of assist features, offering simplicity and ease
of implementation. However, rule-based methods may lack
the flexibility to adapt to novel patterns or process varia-
tions, potentially leading to suboptimal results as technology
nodes advance. In contrast, model-based SRAF methodolo-
gies utilize detailed simulations of the lithographic process
to optimize assist feature insertion. By employing optical
models that take into account factors such as diffraction
and interference, model-based approaches can achieve higher
accuracy in predicting and mitigating proximity effects. While
more robust than rule-based techniques, model-based methods
often involve complex computations and longer runtimes,
posing challenges in terms of scalability and computational
efficiency. ML-based approaches have been widely explored
for SRAF generation by leveraging historical pattern features
to train classification or generative models. For instance,
[9] proposed a framework using decision trees and logistic
regression to classify SRAF location based on constrained
constraint circle with area sampling (CCAS). The predicted
probability maps were then used to determine the SRAF
locations. As one of the popular generative models, generative
adversarial network (GAN) [13] has also been applied to
treat SRAF insertion as a keypoint detection problem [11],
utilizing heatmap-based feature encoding. Additionally, dic-
tionary learning [14] has been employed to compress features
extracted via CCAS [15] and improve their discriminability,
combined with integer linear programming (ILP) to optimize
SRAF patterns under predefined constraints [14]. While these
approaches have demonstrated promising results, they often
face limitations in terms of generalization, adaptability, and
the need for extensive feature engineering.

In this work, we introduce a novel diffusion model-based
approach for SRAF generation, without extra image pre-
processing, by formulating the problem as image-to-image
translation. By leveraging the generative capabilities of diffu-
sion models [16], our method captures complex spatial corre-
lations in SRAF patterns while achieving improved robustness
and generalization across different designs. Specifically, we
construct the SRAF generation task as a paired learning
problem, where each target pattern is associated with a
corresponding SRAF pattern. During training, given a target
pattern as input, we progressively add noise to the pattern
until it becomes pure Gaussian noise. Conversely, during
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Fig. 1 (a) Printing with OPC only; (b) Better printing with
both OPC and SRAF.

inference, we sample from Gaussian noise and utilize the
target pattern as a conditional input to guide the denoising
process. Through iterative denoising, the model ultimately
generates an optimal SRAF pattern that adheres to the re-
quired lithographic constraints. Our main contributions are
summarized as follows:

• We formulate the SRAF insertion problem as an image-
to-image translation task where the layout is transformed
to the SRAF domain.

• We introduce a new method by using a conditional
generative diffusion model to address the trade-off be-
tween local sensitivity and global consistency in SRAF
insertion.

• Compared to denoising diffusion probabilistic model
(DDPM) [16], the experimental results show that our
proposed framework achieves over 10× speed-up.

• Compared to a commercial tool, the experimental re-
sults show that our proposed framework achieves 5.57×
speed-up while achieving comparable results.

The rest of this paper is organized as follows. Section II
shows the preliminaries. Section III gives the details of
our method, and Section IV presents experimental results,
followed by a conclusion in Section V.

II. PRELIMINARY

A. Diffusion Model
The diffusion model is a probabilistic generative model,
which is mainly divided into the forward diffusion stage and
the reverse denoising stage. The training process of diffusion
model is much more stable than GANs [17], which often
suffer from mode collapse and sensitivity to hyperparameters.
Compared to variational autoencoder(VAE) [18], diffusion
model can generate more diverse and higher fidelity samples.
DDPM [16] is one of the mainstream diffusion models. The
forward diffusion process of DDPM is to generate a series of
noise samples x0 following Gaussian distribution by giving
an undamaged data sample x0 ∼ q(x0) sampled from the
real data distribution, and progressively add it to the input
sample to get the following Markov process:

q(xt|xt−1) = N(xt;
√
1− βtxt−1, βtI)

∀t ∈ (1, ..., T )
(1)

Where T is the total diffusion step, βt ∈ (0, 1) is the
predefined noise schedule, I represents the identity matrix
with the same dimension as the input sample x0, N represents
the normal distribution of the mean and variance of xt

generated, and the samples of each step are only the samples
at time t− 1.

The forward process variance parameter is chosen to be a
linearly increasing constant from β1 = 10−4 to βT = 0.02,
formally:

βt =
10−4(T − t) + 0.02(t− 1)

T − 1
(2)

The reverse propagation process starts from xT sampled from
Gaussian distribution and denoises it through the opposite
steps. It is parametrized by θ and the joint distribution can
be defined by:

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt) (3)

Starting from p(xT ) = N(xT ; 0, I), the reverse process
transforms the latent variable distribution pθ(xT ) to the
data distribution pθ(x0). And the reverse process works by
progressively removing the noise from the noisy data xt at
each timestep t, using these learned parameters to estimate
the clean data xt−1:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t), σθ(xt, t)) (4)

Where µθ(xt, t) is the learnable mean and σθ(xt, t) is the
learnable variance. In order to make the reverse Markov chain
match the forward process as well as possible, θ needs to
be continuously adjusted so that the joint distribution of the
reverse process gradually approaches the forward process.

B. Evaluation Metric
We introduce several metrics to evaluate the performance
of mask optimization results. Different generation schemes
are compared in terms of process variation (PV) band, edge
placement error (EPE), and runtime. PV band means the area
between the outer contour and inner contour for the lithog-
raphy simulation contours at a set of focus, dose conditions.
EPE means the distance between the target pattern contour
and nominal contour for the lithography simulation contour
at the best focus, dose condition.

C. Problem Formulation
When the diffusion model is combined with SRAF genera-
tion, the input to the model will be a layout clip containing
only the target pattern. This input clip represents the initial
design that needs to be optimized for lithography. We want to
output a new layout clip from the processing of the already
trained diffusion model, where the SRAF has been generated
for the target pattern. Our diffusion model is trained to insert
SRAF into images based on the image format training data.

III. PROPOSED METHOD

Our proposed diffusion model for SRAF generation encodes
the input image with the U-Net encoder [19], [20]. The
extracted features are summed with the feature map of the
condition image. At the same time, the U-Net encoder and
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Fig. 2 The proposed workflow to generate SRAF by diffusion model

decoder are used to refine the estimated SRAF layout. The
workflow of our diffusion model is shown in Fig. 2.

A. Data Preparation
In the process of data preparation, since there is no open
source image dataset with both target pattern and SRAF, we
used commercial software to generate SRAF for our target
pattern first, so as to obtain a set of training datasets. To
address this, we choose the Lithobench dataset [21] as the
basis for our research. The Lithobench dataset is a high-
quality dataset designed for lithography processes that provide
detailed vertex coordinate information on a variety of target
patterns. In our study, we first extract the vertex coordinates
of the target pattern from the Lithobench dataset. These
coordinates are from the GLP file in the dataset. Each line
in the file corresponds to the four vertices of a rectangular
target pattern. We can use commercial tool to read these
files and output the GDSII files with the target patterns
corresponding to them. Through these steps, we are able
to accurately reconstruct the target pattern dataset, ensuring
that the geometric properties of the pattern are consistent
with the design in the actual lithography process. Next, we
use the commercial tool to generate SRAF of these target
patterns. In this step, each target layout gets a corresponding
SRAF generation. Because the commercial tool can only read
GDSII files and output the corresponding generated layout,
while DDPM networks generally receive image information,
we need to convert the target pattern and the corresponding
SRAF (Fig. 3) into an image after visualization with a unified
standard. Therefore, prior to the DDPM training step, we
have two image datasets for DDPM training, Dtar and its
corresponding DSRAF .

B. Training
In essence, DDPM is a type of generative model that aims
to generate realistic data samples by progressive denoising
from a noise distribution. It is initially an unconditional model
and is relatively simple to apply because it does not require
any additional information for conditionality. However, this
also means that the generated samples are entirely dependent
on randomness within the model and cannot be generated
for orientation or specific features. Conditional DDPM builds
upon the foundation of unconditional models by incorporating

Fig. 3 SRAF generation task can be cast as an image
translation problem where layout with target contacts (a) is
translated to SRAF (b)

additional input information, such as class labels, textual
descriptions, or other auxiliary data, into the denoising pro-
cess. In practice, conditional DDPM explicitly incorporates
conditional variables into the denoising network, allowing
the model to consider these conditions during the generation
process and produce samples that meet specific criteria. The
advantage of conditional models is their ability to generate
more guided samples. This feature makes conditional DDPM
particularly valuable in tasks that require precise control over
the generated content. In existing image generation tasks, the
condition input to DDPM is generally set to the class label.
However, in our experiment, since the generation of SRAF
is highly related to the location of the target pattern, it is
impossible to set separate label information for each layout,
so we decided to modify the condition input interface of
DDPM to accept a single binary image, which means a two-
dimensional matrix, as condition input. Algorithm 1 displays
the complete training procedure with DDPM learning SRAF
generation. In our training process, the input to DDPM is
the images in DSRAF , and Dtar will be the condition to
control the direction of image generation. In step 2 ∼ 4, xk

is randomly sampled from DSRAF , and the corresponding
target pattern is extracted from Dtar. A time t is randomly
sampled from 1 to T to represent the level of added noise.
Step 5 random sampling of a two-dimensional Gaussian noise.
Step 6 ∼ 7 calculate the noise at time t and combine it with
xk; The neural network is trained to predict the noise added
to xk based on the information in xt and Ck after the noise
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Algorithm 1 Training

Input: Total diffusion steps T , target and SRAF image
datasets Dtar, DSRAF

1: repeat
2: xk ∼ DSRAF ▷ Sample an image with SRAF

pattern
3: Ck ∼ DTar ▷ Corresponding target pattern
4: t ∼ Uniform({1, . . . , T})
5: ϵ ∼ N(0, In×n)
6: ᾱt =

∏t
i=1(1− βi)

7: xt =
√
ᾱtxk +

√
1− ᾱtϵ ▷ Add noise

8: Take gradient descent step to Lsimple

9: until converged

is added in step 8.
Mathematically, the loss function used for training the

DDPM can be given as [16]:

Lsimple = Et,xk,Ck,ϵ||ϵ− ϵθ(xt,Ck, t)||2 (5)

where ϵ is the added Gaussian noise, xk and Ck denote the
paired conditional inputs and target image, and ϵθ(xt,Ck, t)
is a neural network that predicts the noise added from time
0 to time t.

In DDPM, a U-Net architecture is employed as the core
model for noise prediction. The U-Net is characterized by
its distinctive U-shaped structure, composed of an encoder,
a decoder, and residual connections that link the two. The
encoder’s role is to downsample the input image into feature
representations, while the decoder upsamples these features
to predict the target noise. The skip connections serve to con-
catenate features from the encoder to the corresponding layers
in the decoder, thereby preserving and utilizing contextual
information effectively. In our work, ϵθ can be expressed in
the following form:

ϵθ(xt,Ck, t) = D(E(F (xt) +G(Ck), t), t) (6)

In this architecture, the U-Net’s decoder D is conventional
and its encoder is broken down into three networks: E, F ,
and G. The last encodes the input image, while F encodes the
segmentation map of the current step xt. The two processed
inputs have the same spatial dimensionality and number of
channels. We sum these signals F (xt) + G(Ck). This sum
then passes to the rest of the U-Net encoder E. Within the
convolutional modules of the U-Net, we utilize the wide
residual network (WRN) [22] as its foundational structure.
Compared to standard residual networks, WRNs have fewer
layers but more channels, achieving a favorable balance be-
tween computational efficiency and representational capacity.
For the downsampling and upsampling operations within
the U-Net, we employ strided convolutions and transposed
convolutions, respectively, both with a stride of 2.

C. Sampling

The DDPM sampling process starts with pure noise xt and
iteratively denoises it using the reverse process. For each time
step t = T, T − 1, . . . , 1, DDPM predict the previous step

Algorithm 2 Sampling

Input: Total diffusion steps T , target image C
1: xT ∼ N(0, In×n)
2: for t = T, . . . , 1 do
3: Use Equation (8) to calculate xt−1

4: end for
5: return x0 ▷ SRAF prediction

xt−1 by sampling:

xt−1 = µθ(xt, t) + σθ(xt, t)ϵ (7)

This process involves many steps (typically more than 1000)
to produce high-quality images. Therefore, we modify the
reverse diffusion process to speed up sampling. The improved
reverse process is the same as [23]. It uses a deterministic
trajectory that removes the randomness and speeds up the
generation. This means that it does not need to sample from
the Gaussian distribution at each step as DDPM does, but
directly calculates the result of denoising with condition
information:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt,C, t)

√
αt

)
+
√
1− αt−1 · ϵθ(xt,C, t)

(8)

This sampling procedure is detailed in Algorithm 2. The input
to the trained model is the total diffusion steps T and target
image C. Step 1 randomly samples an input noise from the
standard normal distribution. In Step 2 ∼ 3, from time T to
1 we use the trained DDPM model to calculate xt−1. Step 5
outputs the SRAF prediction for the input target image.

D. Post Processing
Ideally, after training, the DDPM model can be able to output
specific SRAF generation for each input target pattern, which
means the output is still in the form of a binary image, we
need to convert it back to GDSII format. However, this layout
is not guaranteed to follow all SRAF manufacturing rules
such as minimum spacing. Since we did not specify the shape
of the SRAF in the model, the SRAF may not be a perfect
rectangle in the resulting image. The pixel-level noise in the
generated image also affects the converted GDSII layout.
In order to solve these problems, we keep only the SRAFs
of sufficient size during the format conversion process and
rearrange these SRAFs to ensure that they are rectangular.

IV. EXPERIMENTAL RESULTS

A. Implementation Details
We implement our framework with PyTorch. Both mask
optimization and evaluation are conducted under a Linux
system equipped with a 2.1GHz Intel Xeon Platinum 8352V
32-core processor and 1 Nvidia 4090 GPU. We selected the
via part from the Lithobench dataset [21] as the target pattern.
It is a dataset of more than 120,000 via layouts, from which
we extracted 10,199 as examples. After using the commercial
tool to generate the SRAF for via, we separated the target
pattern and the generated SRAF for each result in images
with the same size of a high-resolution scale 2048× 2048.
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Fig. 4 (a) shows the result without post-processing and (b)
shows the results after post-processing

We set the total diffusion step T = 50 for all experiments
so that the number of neural network evaluations needed
during sampling matches other image generation tasks. We set
the forward process variances to constants increasing linearly
from β1 = 10−4 to βT = 0.02. These settings are the same
as [16] because these constants were chosen to ensure that
the reverse and forward processes have approximately the
same functional form while keeping the signal-to-noise ratio
at xT as small as possible. The optimization process consists
of 20 iterations, adopted with Adam optimizer [24]. Post-
processing was required after the training was completed,
which was the same as the prediction mentioned above. We
first replace all irregular SRAFs with the smallest rectangles
that can accommodate them, then eliminate all rectangles
whose length and width are both less than 10nm (which are
regarded as noise), while retaining the target pattern and the
rectangular SRAFs that meet the conditions. Fig. 4 shows
the effect of the post-processing procedure. Since the final
output picture size is set to 256 × 256, we need to adjust
the resolution of the two images to be consistent before
combining. In MRC, all the results are successfully verified.

B. Comparison with Commercial Tool
To demonstrate the efficacy of our proposed approach, we
compare the layouts generated from the DDPM approach (de-
noted Ours), the proposed efficient approach with improved
sampling (denoted Ours-E), as well as those obtained from
the commercial tool SRAF generation (denoted CT). The
performance of the two different methods, under the same
setup, can be visualized in Fig. 5 which shows the result for
SRAF generation using our model and CT for two layout clips
in the testing dataset.

By examining the results in Fig. 5, we can conclude that
although the diffusion model’s prediction of SRAF generation
does not exactly match the commercial tool results, it has
learned the rule of how the commercial tool methods generate
SRAF for the target pattern.

To quantify the quality of our proposed approach, we
integrate the SRAF generation with a complete mask op-
timization flow using the commercial tool. We collect the
PV band, EPE, and runtime values for each contact and plot
the data in histograms as shown in Figs. 6 to 8. Although
our generative model is not as good as the commercial tool
in EPE performance, it has significantly improved PV band
performance. In view of this situation, we use the score

(a)

(b)

Fig. 5 SRAF generation for two clips in the test data. (a)
Commercial tool. (b) Ours.

Case1 Case2 Case3 Case4 Case5 Case6
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CT
Ours

Ours-E

Fig. 6 The comparison of EPE distribution across different
cases.

function provided in [25] to make a comprehensive evaluation
of our model’s effect:

Score = Runtime+4×PV band+5000×EPE violation
(9)

With the given scoring function, our approach successfully
achieves a better result (lower score), which is shown in
Fig. 9. In the dataset, the via size is all 70nm × 70nm, so
it is reasonable to use this dataset for runtime comparison.
The average runtime for our model and the commercial tool
are 3.2s and 17.83s, respectively. Although we are using a
different programming language from the commercial tool,
we still obtain over 5× speed-up from machine learning-based
SRAF generation compared to the commercial tool. We also
check the runtime of the OPC from different SRAF generation
approaches and ensure that they are approximately the same.

C. Ablation Study
As mentioned in Section III, we use the improved sampling
method to replace the original method in DDPM. Here we
treat the variance as a hyperparameter that can be manually

564
Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:06:44 UTC from IEEE Xplore.  Restrictions apply. 



Case1 Case2 Case3 Case4 Case5 Case6
0

10

20
PV

ba
nd

(×
1
03
n
m

2
) CT

Ours
Ours-E

Fig. 7 The comparison of PV band distribution across differ-
ent SRAF generation cases
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Fig. 8 The comparison of runtime distribution across different
SRAF generation cases
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Fig. 9 The comparison of score distribution across different
SRAF generation cases

adjusted and set to 0. We hope that the improved method can
generate high-quality images in fewer time steps, making the
sampling process faster. We also compare the performance
in Figs. 6 to 9. The experimental results show that Ours-E
significantly reduces the runtime by more than 10× while
achieving comparable quality.

V. CONCLUSION

In this paper, a conditional generative diffusion mode is
used for the first time for SRAF generation. We cast the
SRAF generation problem as an image-to-image translation
task where the layout is translated from its original domain
to the SRAF domain. Experimental results show that our
proposed framework achieves more than 5× speed-up over
the commercial tool while achieving comparable results.
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