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Abstract—With the rapid advancement of semiconductor tech-
nology and the continuous miniaturization of circuit feature
sizes, hotspot detection has become an increasingly critical yet
challenging task in physical verification workflows. In recent
years, numerous deep learning frameworks have been developed
to address hotspot detection. However, the performance of these
learning-based frameworks is heavily dependent on the quality
of the datasets used. However, obtaining a large labeled hotspot
dataset with high quality is an extremely time-consuming process.
Recently, masked image modeling (MIM) has drawn significant
attention for its ability to learn from vast amounts of unlabeled
data and has demonstrated effectiveness across a wide range
of image tasks. Despite its success, the application of MIM to
layout analysis, particularly in the context of semiconductor
design, remains largely unexplored. Motivated by the princi-
ples of MIM, we propose a transfer learning framework that
leverages pretraining through masked layout modeling (MLAM)
and subsequently fine-tunes the model on limited labeled hotspot
detection datasets. Experimental results on our custom layout
datasets demonstrate the effectiveness of our approach.

Index Terms—Hotspot detection, EDA, deep learning

I. INTRODUCTION

As semiconductor technology advances rapidly, the compo-
nents of integrated circuits are shrinking in size. This trend
presents a significant challenge for chip manufacturers, as it
becomes increasingly difficult to ensure the printability of
layout designs with reduced feature sizes. Consequently, a
precise and efficient technique for hotspot detection is essential
to accurately find out defects in the layouts.

Broadly speaking, hotspot detection methods fall into three
categories: lithography simulation, pattern matching, and ma-
chine learning. Lithography simulation is a traditional ap-
proach that offers high accuracy but suffers from long process-
ing times. In contrast, pattern matching and machine learning
methods provide more efficient hotspot identification. Pattern
matching techniques [1]–[4] involve using a library of known
hotspot patterns to scan new designs and identify matches
as potential hotspots. For example, Wen et al. [2] propose a
density-based layout encoder that can discriminate between the
hotspots and non-hotspots via principal components analysis
(PCA). While this method is faster, it struggles to detect
new, previously unidentified hotspots, which limits its practical
utility.

Traditional 
Hotspot 

Detection Model

train
……

Label

Hotspot Dataset

Fig. 1 Traditional training of learning-based hotspot detection
model.

Machine learning-based hotspot detection methods [5]–[8],
on the other hand, demonstrate strong generalization capabili-
ties and deliver satisfactory results. Particularly, deep learning-
based approaches [9]–[14] have shown significant improve-
ments in both accuracy and efficiency. For instance, Yang et
al. [9] propose to extract layout features with discrete cosine
transform and utilize a CNN architecture for hotspot detection.
The performance is further improved with the proposed bias
learning algorithm because of the imbalanced dataset. Inspired
by the object detection problem in computer vision, Chen
et al. [13] propose a large-scale detector to detect multiple
hotspots within large layouts simultaneously. Despite signif-
icant advances in learning-based approaches, several critical
limitations remain unresolved. A primary challenge stems
from the substantial demand for precisely annotated hotspot
data to train reliable detection models, as shown in Fig. 1.
However, with the shrinking size of technology nodes, man-
ual hotspot annotation becomes an extremely labor-intensive
and expertise-dependent process. Current deep learning-based
hotspot detection models are usually trained and test on small
datasets, e.g., ICCAD 2012 benchmark [15]. Such data scarcity
constrains the models’ ability to generalize across diverse
layout patterns and advanced technology nodes.

As a promising solution to these challenges, self-supervised
learning (SSL) paradigms [16] have emerged as powerful
alternatives that autonomously derive supervisory signals from
intrinsic data structures. Recent breakthroughs demonstrate
SSL’s dual capability in mitigating data dependency while
learning transferable representations for dense prediction tasks.
A particularly successful instantiation is masked signal mod-
eling, which operates through a reconstruction mechanism:
strategically masking portions of input data and training
models to recover the masked content. This approach has
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Fig. 2 Our proposed transfer learning-based layout analysis
model.

fundamentally transformed natural language processing and
computer vision, where architectures like BERT [17] and
ViT [18] have established new paradigms for pre-training
large-scale models on unannotated corpora followed by task-
specific fine-tuning.

Drawing inspiration from the self-supervised learning
paradigm, we propose a transfer learning-based hotspot de-
tection framework as shown in Fig. 2. Our approach begins
with the creation of a substantial dataset of layout designs,
from which we randomly mask a portion of the layout tiles.
During the pre-training phase, our designed layout analysis
model (LAM) is asked to reconstruct the original patterns from
partially masked layouts. Such a pre-training process allows
the LAM to utilize a large amount of masked layout data for
thorough model pre-training without annotation requirement.
Besides, it also enables the model to capture both missing
geometric features and spatial dependencies through layout
reconstruction tasks. After pre-training, we can fine-tune the
pre-trained LAM with limited labeled hotspot dataset while
achieving satisfactory performance.

The main contributions of this paper are listed as follows:
• We propose a self-supervised learning scheme, masked

layout modeling, which does not require any human-
labeled data.

• We design a layout analysis model, which is equipped
with strong abilities to capture geometric features and
spatial dependencies of layout patterns.

• We create a large layout dataset using layout generation
techniques, which solves the data-hungry issue.

• Experimental results show that our model achieves re-
markable performance on hotspot detection task.

II. PRELIMINARIES

In this section, we will introduce some preliminary knowl-
edge related to this work.

A. Hotspot Detection

In chip manufacturing, designed layout patterns are trans-
ferred onto silicon wafers through the lithographic process.

However, this process is subject to numerous variations, which
can reduce manufacturing yield by causing potential open-
circuit or short-circuit failures. Regions of layout patterns
that are particularly sensitive to these lithographic process
variations are referred to as hotspot regions. To enhance
manufacturing yield, it is essential to develop an efficient
and accurate hotspot detection technique to pinpoint defect-
prone areas in layouts. An effective hotspot detector should
maximize the accurate identification of hotspots. To evaluate
the performance, we define the following metrics.

Accuracy.. The ratio between the number of correctly detected
hotspots and the number of ground truth hotspots.

False Alarm.. The number of non-hotspots that are predicted
as hotspots by the classifier.

With the evaluation metrics defined above, we formulate the
hotspot detection problem as follows:

Problem 1 (Hotspot Detection). Given a collection of clips
containing hotspot and non-hotspot layout patterns, the ob-
jective of hotspot detection is to train a detector to locate and
classify all hotspots and non-hotspots, such that the detection
accuracy is maximized and the false alarm is minimized

B. Masked Image Modeling

Masked image modeling (MIM), as a self-supervised learn-
ing paradigm, reconstructs semantic representations from par-
tially corrupted visual inputs. Originating from the masked
language modeling (MLM) framework in natural language
processing, MIM initially struggled to gain prominence in
computer vision. Early explorations like Denoising Autoen-
coders (DAE) [19] conceptualized image masking as a form of
structural noise, while context encoder [20] pioneered region-
level reconstruction by predicting pixel values in large masked
rectangular regions.

The advent of vision transformers reinvigorated MIM re-
search through NLP-inspired architectures. iGPT [21] in-
troduced pixel clustering for masked content classification,
whereas ViT [18] explored patch-level mean color prediction
as a pretext task. BEiT [22] advanced this direction by employ-
ing discrete variational autoencoders (dVAE) [23] to tokenize
pixels into learnable visual codes. A pivotal breakthrough
emerged with MAE [24], which demonstrated that recon-
structing raw pixels from heavily masked inputs (up to 75%)
could yield semantically meaningful representations. MAE’s
asymmetric encoder-decoder design, featuring a streamlined
decoder, significantly improved computational efficiency. This
innovation was further refined in SimMIM [25], where decoder
complexity was reduced to a single linear layer without
performance degradation. Despite these advancements, exist-
ing MIM methodologies remain predominantly validated on
natural image datasets.

C. Transfer Learning

Transfer learning is a machine learning paradigm that
leverages knowledge gained from source domain to improve
the performance of a model on a related but distinct target
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domain. Unlike traditional methods that train models from
scratch, transfer learning aims to mitigate data scarcity or
computational inefficiency by reusing pre-trained models or
learned features. This approach is particularly valuable when
the target domain has limited labeled data or requires rapid
deployment. The core idea revolves around identifying trans-
ferable patterns, representations, or parameters that generalize
across domains. Common techniques include fine-tuning pre-
trained neural networks, feature extraction, and domain adap-
tation. Transfer learning has become foundational in fields like
natural language processing and computer vision, where it sig-
nificantly reduces training costs while maintaining competitive
performance. Transfer learning has also been widely used in
the EDA area. For example, [26] proposes a transfer learning-
based framework for transistor sizing that transfers knowledge
in different circuits. In the case of timing prediction, since
collecting the timing data requires running a time-consuming
tool-chain, Zhang et al. [27] propose a transfer learning frame-
work that leverages abundant data from preceding technology
nodes to enhance learning on the target technology node.

III. ALGORITHMS

In this section, we provide a detailed explanation of the
architecture of our layout analysis model (LAM).

A. Overview

The proposed LAM adopts the typical structure of MIM
(Masked Image Modeling) models, incorporating an encoder-
decoder architecture. As our framework is based on transfer
learning, the pre-training and fine-tuning tasks differ, as illus-
trated in Fig. 2.

Pre-training Phase.. In the pre-training phase, we employ
the proposed masked layout modeling method to pre-train
the LAM. The masking strategy (Section III-B) obscures
specific portions of the input patches, while the LAM encoder
(Section III-C) maps these input patches into a latent space.
The LAM decoder (Section III-D), in turn, aims to reconstruct
the original layout patterns. This training approach enables the
model to effectively learn the spatial features of the layout. The
reconstruction target guides the pre-training process through
back-propagation, ensuring the model captures meaningful
layout representations.

Fine-tuning Phase.. Since the ultimate goal of our frame-
work is hotspot detection, we design an additional decoder
specifically to accomplish this task using the encoded rep-
resentations from the LAM encoder. Leveraging the strong
feature-capturing capabilities of the pre-trained LAM encoder,
the hotspot detection decoder is designed to be lightweight.
This lightweight structure allows the model to be fine-tuned
efficiently on a limited labeled hotspot dataset while still
achieving satisfactory performance.

B. Masking Strategy

Several random masking methods have been proposed in
related previous works: (1) Context encoder [20] introduces

patch

masked 
patch

Fig. 3 A layout is divided into uniform patches, which are
randomly masked.

a central region masking strategy; (2) BEiT [22] proposes a
more complex block-wise masking approach; (3) more recent
methods, such as MAE [24] and SimMIM [25], first divide an
image into several uniform patches and then adopt a uniformly
random masking strategy at the patch level, experimenting
with different masked patch sizes and masking ratios. Most
random masking schemes are patch-based, as operating on a
patch-by-patch basis is more convenient. Each patch is either
fully visible or fully masked. Prior works demonstrate that
uniformly random sampling with a suitable masking ratio
effectively eliminates redundancy, creating a self-supervisory
task that cannot be easily solved through extrapolation from
visible neighboring patches. In this work, we also adopt the
random patch masking approach as shown in Fig. 3 for its
simplicity and effectiveness.

C. Encoder

The encoder’s primary objective involves learning latent
feature representations from masked image patches, which are
subsequently decoded to reconstruct original pixel signals in
occluded regions. Contemporary architectures predominantly
employ Transformer networks [28], which have demonstrated
superior performance across vision-language tasks through
their global contextual modeling capabilities.

Inspired by the success of Transformer, our LAM encoder
is designed based on the vision Transformer (ViT) [18] block,
which is illustrated in Fig. 4. It processes visual inputs by
first decomposing images of dimension H × W × C into
P × P patches, generating a sequence of N = HW

P 2 token
embeddings. This transformation begins with linear projection
layers that map flattened patches into an embedding space
XE ∈ RN×NH , effectively converting spatial information into
sequential representations. To preserve positional relationships,
spatial encoding is subsequently incorporated through additive
positional embeddings EP ∈ RN×NH , resulting in position-
aware inputs XP = XE +EP .

The multi-head self-attention mechanism then processes
these enhanced embeddings through parallel attention opera-
tions. Initially, the input features are projected into query/key/-
value subspaces using learnable parameter matrices:

Q,K,V = XP [W
Q,WK ,W V ] (WQ/K/V ∈ RNH×dk)

(1)
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Fig. 4 The vision Transformer block.
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Fig. 5 The self-attention mechanism.

Each attention head independently computes scaled dot-
product attention as illustrated in Fig. 5:

Hi = Softmax

(
QWQ

i (KWK
i )⊤√

dk

)
V W V

i (2)

where WQ
i ,WK

i ,W V
i ∈ Rdk×dk/h represent head-specific

projection matrices. These parallel computations enable the
model to capture diverse interaction patterns across different
feature subspaces.

The final multi-head output is obtained by concatenating all
attention heads and applying dimensional reduction:

MultiHead(Q,K,V ) = Concat(H1, ...,Hh)W
O (3)

where WO ∈ Rdk×NH serves as the output projection matrix.
This hierarchical design achieves three critical objectives:
diversified feature learning through orthogonal subspace pro-
jections, adaptive attention focusing via position-sensitive sim-
ilarity weighting, and efficient dimension management through
controlled parameter growth.

D. Decoder

The decoder resamples latent vectors back into the original
image space. As suggested in previous studies [24], [25], a
lightweight decoder design is recommended to reduce training
time. In our task, we also observe that a lightweight de-
coder not only decreases computational complexity but also
enhances the encoder’s ability to learn more generalizable
representations. These representations can then be efficiently
processed and interpreted by the decoder.

The LAM decoder is designed based on the widely used
Feature Pyramid Network (FPN) architecture [29], which is
significantly more lightweight compared to the LAM encoder.
FPN is a neural network architecture specifically designed
to improve multi-scale feature representation by leveraging
the hierarchical nature of convolutional neural networks. The
shallow layers of FPN capture high-resolution, low-level de-
tails, while the deeper layers extract low-resolution, high-level
semantic features. Additionally, FPN introduces a top-down
pathway to propagate high-level semantic information from
deeper layers to shallower ones. This is further enhanced by
lateral connections that merge top-down features with corre-
sponding bottom-up layers, creating a more comprehensive
multi-scale representation.

The output of the LAM decoder is the reconstructed layout.
The pre-training loss is calculated based on the difference
between the raw layout and the reconstructed layout, as defined
below:

Lpretrain = ∥f(X)−X∥22, (4)

where X represents the masked layout pattern and X indicates
the original layout pattern. f(X) stands for the output of our
model. Therefore, our pre-training process does not require
any human-labeled data.

E. Fine-tuning

Algorithm 1 LAM Fine-tuning

Input: Pre-trained LAM encoder Pencoder;
Output: Fine-tuned hotspot detection decoder Phsd

1: Fix Pencoder;
2: Phsd ← Initialize HSD decoder parameter;
3: for t = 1 to Epoch do
4: Sample a train set from dataset DM;
5: Train Phsd to mimimize LHSD;
6: end for

In the fine-tuning phase, we transfer the pre-trained model
to hotspot detections tasks by freezing the parameters of the
pre-trained LAM encoder, and then we fine-tune a hotspot
detection decoder.

Our decoder employs a customized architecture to determine
the presence of hotspot regions within layout patterns. It
comprises four sequentially connected convolutional layers
that process feature maps from the preceding LAM encoder
stage. This configuration enables patch-level hotspot classi-
fication according to the spatial partitioning scheme defined
in Section III-B.

The decoder generates an N ×N probability matrix where
each scalar value pxy ∈ [0, 1] quantifies the local likelihood of
hotspot occurrence. To optimize the detector’s parameters, we
implement a binary cross-entropy loss function formulated as:

LHSD(X) =

N∑
x=1

N∑
y=1

[−pxy log p̂xy − (1− pxy) log (1− p̂xy)] ,

(5)
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where pxy ∈ 0, 1 denotes the ground truth label for position
(x, y), and p̂xy represents the predicted probability of hotspot
presence at that location.

IV. EXPERIMENTS

A. Experimental Settings

In existing hotspot detection research, the ICCAD-2012
benchmark [15] has been extensively adopted as a standard
layout dataset. However, being primarily designed for aca-
demic research, this dataset contains a limited number of
layout patterns. Machine learning models trained on such
restricted data typically exhibit limited generalization capac-
ity when deployed in practical industrial applications, often
resulting in suboptimal performance.

To address this data scarcity, GAN-OPC [30] introduced a
layout synthesis methodology capable of generating approxi-
mately 4,000 artificial metal-layer tiles. While representing a
significant improvement, this scale remains insufficient for the
training requirements of our framework. To enhance model
generalization, we require substantially more diverse layout
patterns for effective training of our Lithography-Aware Model
(LAM).

Following the methodology outlined in [30], we conse-
quently developed GenLay - a new synthetic layout dataset
comprising 12,000 distinct patterns. Fabricated for the 32nm
technology node, GenLay ensures strict compliance with 32nm
design rules through its generation algorithm while maintain-
ing pattern diversity.

The dataset is partitioned into three subsets: 70% for pre-
training the LAM framework, 20% for fine-tuning the hotspot
detection module, and 10% reserved for performance evalua-
tion. For hotspot annotation, we employ advanced lithography
simulation tools [31] to identify sensitive lithographic regions.
This process involves: (1) Generating optimized photomasks
through multi-objective optimization, (2) Performing edge
placement error (EPE) analysis across critical sample points,
and (3) Designating regions with EPE violations exceeding
process specifications as confirmed hotspots.

B. Pre-training and Fine-tuning Results

The GenLay dataset we develop enables the LAM to learn
from diverse layout patterns and acquire the knowledge neces-
sary for precise downstream layout tasks. While generating this
training data may require extra effort, it is crucial for training
a robust and effective model. As depicted in Fig. 6, during
the training phase, LAM optimizes its parameters through
an iterative process, progressively enhancing its ability to
accurately interpret layouts. This phase is also vital for fine-
tuning the model, enabling it to generalize well to new, unseen
data, with the performance changes illustrated in Fig. 7.

C. Hotspot Detection Results Comparison

TABLE I presents the comparative evaluation results of
our proposed method against leading hotspot detection frame-
works. The experimental data highlight LAM’s exceptional
detection capabilities, achieving a mean accuracy of 92.10%,

2

4

6

·104

Iteration

L
os

s

Fig. 6 Loss curve of pre-training phase.

60

80

100

Iteration

A
cc

ur
ac

y(
%

)

Fig. 7 Accuracy curve of hotspot detection fine-tuning phase.

which surpasses ICCAD’21 (88.91%) [32], DAC’19 (86.76%)
[13], and TCAD’19 (83.63%) [33] by substantial margins.

Our framework significantly excels in reducing false alarms
compared to existing methods. The system achieves false
positive rates that are 53.8%, 33.6%, and 11.4% lower than
those reported for TCAD’19 [33], DAC’19 [13], and IC-
CAD’21 [32], respectively, demonstrating enhanced opera-
tional reliability.

Regarding computational efficiency, LAM completes
hotspot detection for each layout in an average time of 0.26
seconds. Although slightly slower than ICCAD’21, which
records a time of 0.12 seconds [32], our solution remains
highly competitive. It supports a multi-task architecture that al-
lows concurrent hotspot detection and mask optimization. De-
spite the complexity of this design compared to ICCAD’21’s
single-task approach, the modest time difference of 0.14 sec-
onds represents a reasonable compromise, especially consid-
ering LAM’s substantial improvements in detection accuracy
and false alarm reduction.

TABLE I
COMPARISON WITH OTHER SOTA METHODS.

Accuracy (%) False Alarm Runtime (s)
TCAD’19 83.63 7094 0.40
DAC’19 86.76 4931 0.28

ICCAD’21 88.91 3692 0.12
Ours 92.10 3272 0.26

D. Ablation Study

We conduct ablation studies to evaluate the impact of differ-
ent masking ratios during the pre-training stage of our model.
Identifying an optimal mask ratio is crucial as it enhances
LAM’s ability to learn and predict the masked parts effectively.
We assessed the effects of 30%, 40%, 50%, 60%, and 70%
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Fig. 8 Ablation study results of different masking ratios.

masking ratios on the performance of hotspot detection tasks.
The experimental results, depicted in Fig. 8, reveal that a 50%
masking ratio yields the best performance.

We observed that a lower masking ratio, although resulting
in high accuracy during the layout reconstruction in the pre-
training phase, leads to insufficient generalization capabilities.
On the other hand, an excessively high masking ratio compro-
mises the model’s accuracy in reconstructing layouts, thereby
hindering its ability to accurately interpret layout geometry
information.

V. CONCLUSION

In this work, we introduce a transfer learning framework
based on masked layout modeling (MLAM) for hotspot de-
tection in semiconductor layouts. By leveraging MLAM, we
successfully pre-trained our LAM to learn crucial geometric
features and spatial dependencies without extensive manual
annotation. Experimental results show that our model outper-
forms existing hotspot detection methods. Additionally, the
adaptability and scalability of our approach suggest potential
applications beyond hotspot detection in semiconductor man-
ufacturing. Overall, this research advances the use of machine
learning in EDA and lays the groundwork for further ex-
ploration of self-supervised learning paradigms in specialized
fields.
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