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Abstract—While large language models (LLMs) have shown
remarkable potential in automating various tasks in digital chip de-
sign, the field of Photonic Integrated Circuits (PICs)—a promising
solution to advanced chip designs—remains relatively unexplored
in this context. The design of PICs is time-consuming and prone
to errors due to the extensive and repetitive nature of code
involved in photonic chip design. In this paper, we introduce
PICBench, the first benchmarking and evaluation framework
specifically designed to automate PIC design generation using
LLMs, where the generated output takes the form of a netlist.
Our benchmark consists of dozens of meticulously crafted PIC
design problems, spanning from fundamental device designs to
more complex circuit-level designs. It automatically evaluates both
the syntax and functionality of generated PIC designs by comparing
simulation outputs with expert-written solutions, leveraging an
open-source simulator. We evaluate a range of existing LLMs, while
also conducting comparative tests on various prompt engineering
techniques to enhance LLM performance in automated PIC design.
The results reveal the challenges and potential of LLMs in the
PIC design domain, offering insights into the key areas that
require further research and development to optimize automation
in this field. Our benchmark and evaluation code is available at
https://github.com/PICDA/PICBench.

I. INTRODUCTION

Photonic Integrated Circuits (PICs) represent a groundbreaking
advancement in chip design, harnessing the properties of light
to enable faster data processing and greater energy efficiency.
As the demand for high-performance computing and commu-
nication systems continues to rise, PICs have emerged as a
critical solution to meet these requirements [1]–[4]. However,
unlike the maturity of electronic design automation (EDA) tools,
the development of photonic design automation (PDA) tools
capable of supporting automated design pipelines for circuit
simulation and layout remains at an early stage. The design
and layout of photonic circuits and components still heavily
rely on manual input, which introduces significant inefficien-
cies. Photonic designs are inherently complex, often requiring
repetitive, low-level coding for devices and connections. This
process is time-intensive and prone to human error, particularly
as the size and complexity of the designs increase. Consequently,
there is an urgent need for a comprehensive set of tools to
fully automate photonic circuit design and layout processes.
Advancements in large language models (LLMs) [5]–[7] offer a
promising opportunity to address these challenges and accelerate
the development of PDA solutions.

Recently, LLMs have demonstrated significant potential in
automating code generation for hardware designs, which offers
substantial support to engineers in designing and verifying these
systems. RTLLM [8] introduced a benchmark framework com-

prising 30 designs spanning diverse complexities and scales for
Verilog generation. Then VerilogEval [9] proposed an extensive
dataset of 156 problems and a robust testing procedure to
facilitate the systematic evaluation of generated code. Beyond
Verilog generation, SPICEPilot [10] investigated the capabilities
of LLMs in generating SPICE code. Another work ChatEDA
[11] demonstrated the ability to generate code for interacting
with EDA tools using natural language instructions.

Nevertheless, the application of LLM in photonic circuit
design has been limited to a few works. Li et al. [12] uti-
lized LLM generating FDTD code for simulating the photonic
crystal surface emitting laser (PCSEL) structure and AI code
for subsequent optimizations of the PCSEL model. However,
their approach was not fully automated, as it relied heavily on
human experts to iteratively specify requirements and debug
errors. Liu et al. [13] presented an automated framework that
translates natural language prompts into Python code capable of
generating GDSII files using an open-source library. However,
their framework was tested on only seven simple device designs,
leaving the performance and scalability of LLM-based solutions
insufficiently evaluated. The absence of a reliable and automated
testing framework, coupled with limited datasets and the lack of
a standardized benchmark, significantly hinders both the devel-
opment and fair evaluation of LLM solutions in PICs design.
To address these challenges, a comprehensive benchmark is
needed—one that encompasses a wide range of design problems,
includes a reliable and automated evaluation framework to min-
imize testing variance, and clearly distinguishes the correctness
and efficiency of solutions.

In this paper, we introduce PICBench, an open-source and
comprehensive benchmark for PIC design using natural language
to generate simulation-ready netlists. The benchmark includes 24
meticulously crafted PIC design problems, covering a wide range
of design complexities and scales. Each problem features clear
descriptions and is accompanied by ground-truth designs created
by human experts, serving as a golden result for evaluation.
Leveraging an open-source simulator SAX [14], PICBench en-
ables efficient and automated evaluation of any LLM-generated
results.

Our contributions are summarized as follows:
• We introduce PICBench, the first comprehensive open-

source benchmark for PIC design using LLMs, comprising
24 carefully designed PIC design problems.

• We proposed a simple but efficient feedback-based method
that further enhances the model’s proficiency in PIC design
tasks.
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Fig. 1 PICBench framework that automated design generation
and evaluation.

• We exhaustively evaluated the state-of-the-art commercial
LLMs with our benchmark on both syntax and functionality.

II. PRELIMINARY

In this section, we will first introduce the open-source PIC
simulator SAX [14] and then present our description of the PIC
design task based on natural language instructions.

A. SAX
SAX is a Python library designed for S-parameter-based circuit
simulation and optimization in the frequency domain, leveraging
JAX for automatic differentiation and GPU acceleration. It
provides a functional approach to modeling photonic integrated
circuits, allowing users to define components and circuits using
standard Python functions and dictionaries. Given a JSON netlist
specifying input/output ports, required components, their con-
figurations, and detailed interconnections, SAX can efficiently
perform mathematical analysis and simulate circuit behavior.

B. Task Description
Here we describe the PIC design task based on natural language
instructions as follows:
• Given the natural language description of the desired circuit

functionality and specified configurations, the objective is to
understand and respond to user requirements and generate
the simulate-ready netlist of this design.

III. PICBENCH

In this section, we will first present an overview of our PICBench
framework and then introduce the details.

A. Framework
Fig. 1 illustrates PICBench’s flow: user provides a natural
language description of their PIC design task to the LLM. The

Create a Mach-Zehnder interferometer (MZI) with a single input and output, 
featuring a path length difference of ΔL. A phase shifters with a length of L 
should be applied to the top arm to modulate the phase of the optical 
signal. Use the built-in multimode interferometer (MMI) component for 
splitting and combining the optical signals, and the built-in phase shifters 
to achieve the desired phase modulation. 

Parameters:
ΔL = 10 microns;
L   = 10 microns

Problem Description

Fig. 2 Example of problem description.

LLM’s output, a simulation-ready netlist, is then directly fed
into SAX for simulation. If the simulation tool reports errors,
the tool’s outputs are returned to the LLM as a new prompt
with a request to rectify the errors. Simultaneously, the error
information is reviewed and summarized into restrictions by
human inspection, which are then incorporated into the initial
system prompt. If the simulation tool successfully generates
a frequency response, PICBench tests the functionality of the
generated design by comparing it with the golden results. The
process terminates when both syntax and functionality tests are
passed. Otherwise, the process iterates up to a user-specified
number of trials.

B. Detail Description of Our Benchmark

PICBench collects 24 meticulously crafted, commonly encoun-
tered PIC design problems, spanning a wide range of design
complexities and scales. TABLE I shows the detailed description
of all 24 problems provided in our benchmark, including 6
optical computing circuits, 7 optical interconnects circuits, 9
optical switches, and 2 fundamental devices. These problems ex-
hibit significant variation in their target functionalities, including
examples such as optical switches, optical modulators, and more.
In addition to the diverse functionalities, our benchmark also ex-
hibits rich variation in the implementation. For instance, optical
switches in our benchmark share the common functionality of
switching signal connections. However, we include all widely
used architectures of optical switches, such as crossbar, Spanke,
Benes, and Spanke-Benes, with configurations ranging from 4×4
to 8 × 8. Notably, we do not include any purely device-level
design problems in our collection, as these lack connections,
and the components section in each netlist inherently addresses
device-level designs. The foundational devices we include are
not simple device components. They involve connections among
more than two components and can serve as the basis for
constructing more complex circuits.

For each design, we provide three key components: a detailed
problem description, the correct design, and its corresponding
frequency response. The problem description is a natural lan-
guage description of the desired circuit functionality, including
the required configurations and the number of input and output
ports, as illustrated in Fig. 2, which provides an example of the
MZI ps problem. Human designers then manually craft correct
design based on the description, producing golden solution for
evaluation. To streamline the evaluation process, the correct
design is subsequently fed into the simulator, and its frequency
response is directly saved. This frequency response serves as a
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TABLE I Benchmark Description

Design Description

Optical Computing

Clements 4× 4 A 4× 4 MZI mesh arranged using the Clements method
Clements 8× 8 An 8× 8 MZI mesh arranged using the Clements method
Reck 4× 4 A 4× 4 MZI mesh arranged using the Reck method
Reck 8× 8 An 8× 8 MZI mesh arranged using the Reck method
NLS A Non-Linear Sign gate with a signal channel and two additional ancilla channels
U-matrix block A fundamental block representing a 2× 2 unitary matrix of arbitrary values

Optical Interconnects

Direct modulator An optical direct modulator
QPSK modulator An optical QPSK modulator
8-QAM modulator An optical 8-QAM modulator
64-QAM modulator An optical 64-QAM modulator
WDM mux A WDM multiplexer
WDM demux A WDM demultiplexer
Optical hybrid A 90◦ optical hybrid

Optical Switch

OS 2× 2 A fundamental 2× 2 optical switch
Crossbar 4× 4 A 4× 4 optical switching network based on Crossbar architecture
Crossbar 8× 8 An 8× 8 optical switching network based on Crossbar architecture
Spanke 4× 4 A 4× 4 optical switching network based on Spanke architecture
Spanke 8× 8 An 8× 8 optical switching network based on Spanke architecture
Benes 4× 4 A 4× 4 optical switching network based on Benes architecture
Benes 8× 8 An 8× 8 optical switching network based on Benes architecture
Spanke–Benes 4× 4 A 4× 4 optical switching network based on Spanke–Benes architecture
Spanke–Benes 8× 8 An 8× 8 optical switching network based on Spanke–Benes architecture

Fundamental Devices MZM A Mach-Zehnder modulator
MZI ps A Mach-Zehnder interferometer with a phase shifter

reference for verifying the correctness of the design’s function-
ality.

C. Code Generation and Evaluation
Since the netlist required by SAX does not follow a general
format, we designed a system prompt template to maximize the
efficiency of instructing LLMs to generate high-quality, error-
free designs. As shown in Fig. 3, the template consists of three
components:

1) Required format: This part provides the schema for the
required format. It defines the structure of the netlist to
ensure compliance with SAX’s requirements.

2) API document: This part includes detailed documentation
of the built-in components provided by SAX or defined by
us. It specifies port definitions and configurable parame-
ters, offering a comprehensive reference for implementing
various components within the netlist.

3) Restrictions: This part establishes a set of clear restrictions
designed to standardize and streamline the generation of
netlist JSON content.

This structured approach promotes uniformity across all gen-
erated netlists, minimizes errors and ambiguity, and ensures that
the outputs are both precise and efficient.

Once the design is successfully generated, its evaluation is
automatically conducted, focusing primarily on two aspects:
syntax and functionality.

Syntax correctness is the most fundamental requirement for
ensuring logical functionality and executable code, as functional-
ity cannot be assessed without first confirming syntactic validity.
To verify syntax, the design is tested using the SAX simulator. If
no errors are detected and a frequency response is successfully
generated, the syntax is considered valid.

Functionality correctness is also evaluated through simula-
tion to determine whether the generated design performs as
expected. However, unlike traditional testbenches used in RTL
design [8], where specific input signals are crafted to verify
the correctness of outputs, our simulations are conducted in
the frequency domain. In this context, the input corresponds
to a range of frequencies rather than discrete signals, and the
response at any single wavelength alone does not provide a
conclusive indication of success or failure, nor does it enable
precise and efficient feedback. Therefore, we simply compare
the simulation results between generated code completions and
golden reference solutions. Since the built-in components are
limited, we manually construct all required components based
on the descriptions provided in the API document, ensuring that
all problems in our benchmark are successfully evaluated.

D. Error Classification Loop
The PIC netlist design generation problem involves a specialized
language and task that is rarely encountered during the pre-
training of existing LLMs, leading to inherent limitations in

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:08:27 UTC from IEEE Xplore.  Restrictions apply. 



You are a professional Photonic Integrated Circuit (PIC) designer. Your task 
is to generate a JSON netlist based on the user's design requirements. This 
netlist should specify input/output ports, the necessary components, their 
configurations, and detailed connections between them. You only complete 
chats with syntax correct JSON code and the format is as follows:
<<<JSON format>>> 
{
  "netlist":{
    "instances": {
      "<component_name1>": "<component>",
      "<component_name2": {'component': '<component>', 'settings': 
{'<parameter>': <value>}}
      ...
    },
    "connections": {
      "<component_name>,<port>": "<component_name>,<port>",
      ...
    },
    "ports": {
      "<port_name>": "<component_name>,<port>",
     ...
    }
},
  "models":{
    "<component>": "<ref>",
 ...
  }
}
 

You have access to the following built-in devices, only these devices are 
permitted unless otherwise specified:
<<<API document>>>
mzi:
    description: Mach-Zehnder interferometer with one input and one output
    input ports: I1  output ports: O1
    parameters: delta length..
…
 

Note that:
1. Your answers should be professional and logical.
2. The analyses should be as detailed as possible. For example, you can 
think it step by step.
3. The response must consist of two sections:
   - analysis: A detailed explanation of how the netlist was generated. Start 
by <analysis>.
   - result: The generated netlist JSON content. Start by <result>. Only the 
JSON content is required in the result.
4. Never specify extra parameters unless explicitly stated in the 
instructions; always use default values. If a difference between two 
parameters is specified, use the default value for one and adjust the other 
by the specified difference.
5. The default unit is micron.
6. Unless otherwise specified, use built-in components to implement 
whenever possible. Never specify extra parameters if the instruction do not 
specify, always use the default value.

System Prompt

Fig. 3 System prompt template for code generation.

their performance on such tasks. Despite employing in-context
learning and providing several examples, LLMs often confuse
the PIC netlist format with other netlist formats. For instance,
in a PIC netlist, each port can only be connected once, and
duplicate connections to the same port are prohibited. However,
LLMs frequently generate connections containing multi-pin nets,
as seen in traditional VLSI netlists, which is incorrect.

To effectively employ LLMs in PIC design generation, we
employ an automatic error classification feedback method. Since
the specific aspects causing LLM failures are uncertain, errors
are iteratively inspected and summarized during the generation
process. For each conversation, if a syntax error is detected, a
human expert inspects the error information, identifies common
errors, and summarizes them into general restrictions to prevent

TABLE II Restrictions for the PIC design task, listing the main
failure types and corresponding constraints to maintain valid
syntax.

Failure Types Restrictions
Use undefined models Only built-in devices are permitted unless oth-

erwise specified; never use undefined models.
Bind the I/O ports Input or output ports in the ports section

represent only the system’s start or end points;
they must not appear in any internal connections.

Mess up ‘Instances’ and
‘models’ part

When specifying built-in components, the
model reference must appear in the models
section like ‘‘...: "<ref>"’’ rather than
‘‘"<ref>" : ...’’. The instances
section only instantiates these components.

Extra contents found in
JSON

Only the required JSON netlist elements should
appear in the output. Do not include comments,
advice, or code block markings.

Duplicate connections to
the same port

Each port can only be connected once; duplicate
connections to the same port are prohibited.

Wrong connections for
dangling ports

If a specific port mapping is not explicitly re-
quired, omit it rather than introducing arbitrary
or unused port names.

Wrong ports number The total number of input and output ports must
align with the design specification. Each input
port typically starts with I, and each output port
with O.

Wrong ports Ensure all connections and ports are valid
and consistent with the defined instances
and models. Do not generate invalid or unde-
fined mappings.

Wrong component name Underscores are prohibited in component names.
Other syntax error \

the recurrence of similar errors. TABLE II summarize all the
common error types we collected during our trials and the
corresponding restrictions that we collect as prompt. These
domain-specified restrictions are then integrated into system
prompt to improve understanding of PIC modules and coding
styles, and provide valuable insights into the primary reasons
for failures. This prompt-tuning approach effectively addresses
poor code generation, significantly enhancing LLM performance
for PIC design tasks.

E. Error Feedback Loop

Due to the inherent hallucination tendencies of LLMs, even
when comprehensive restrictions are provided to mitigate trivial
errors, the same issues may persist. Inspired by real-world cod-
ing practices—where code is rarely correct on the first attempt,
and iterative feedback from simulation and synthesis tools is
critical for meeting design specifications—we adopt a feedback-
based method that efficiently leverages error information from
each query and the simulator.

For each problem, the initial query follows the standard
process introduced in Section III-C. However, if the simulator
detects a syntax error, our correction feedback loop is triggered.
The error is first classified into specific categories, as outlined
in Section III-D, enabling the precise identification of its cause
without requiring the LLM to interpret abstract error messages
which can directly inform code refinement. Next, the error
category, along with detailed error reports and a crafted feedback
prompt, is fed back to the LLM to refine the previously generated
code in a manner similar to human debugging. If the evaluation
instead identifies a functional error, the feedback loop provides
a concise prompt “The syntax is correct, but a functional error
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Iter 0: LLM initial response and evaluation 

Here are the errors in previously generated code. 
Please follow the restrictions and write entire code by fixing the 
errors in previous code. 
Please only give me the code in the <result> part, for anything beside 
the code, please properly comment it out in <analysis> part.

Feedback Prompt

eval_MZI_ps: Wrong ports error, 
Instance mmi2 does not contain port I2. Available ports: ['I1', 'O1', 'O2'].

Evaluation information

{
…
 "connections": {
  "mmi1,O1": "waveBottom,I1", "waveBottom,O1": "mmi2,I1",
     "mmi1,O2": "phaseShifter,I1", "phaseShifter,O1": "mmi2,I2"},
…
}

Iter 1: Correction Feedback

System Prompt

Problem Description

Evaluation: Syntax Error

{
…
 "connections": {
  "mmi1,O1": "waveBottom,I1", "waveBottom,O1": "mmi2,O1",
     "mmi1,O2": "phaseShifter,I1", "phaseShifter,O1": "mmi2,O2"},
…
}

Evaluation: PASS

LLM Response

LLM Response

Fig. 4 An example of solving MZI ps by GPT o1-mini with
feedback

has occurred. Please review the problem description carefully”.
The feedback loop will continue iteratively until the code passes
or the maximum number of iterations is reached.

Fig. 4 gives an example of MZI ps to illustrate this process,
Initially, the LLM generates a result that incorrectly connects to
non-existent port I2. This error is automatically classified as a
“Wrong Ports Error.” The classification, combined with detailed
error information and a crafted feedback prompt, is then fed
back to the LLM. After one iteration of the correction feedback
loop, the error is resolved, and the code passes the test.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup
We implemented the PICBench in Python. The quality of the
given PIC design was evaluated using the open-source simula-
tion tool SAX, which specializes in S-parameter-based circuit
simulations. We constructed the S-parameters for essential de-
vices, including waveguides, couplers, MMIs, MZIs, MRRs and
phase shifters, to simulate the frequency-domain response of the
specified PIC over the wavelength range of 1510 to 1590 nm.

PICBench is compatible with a wide range of LLMs as long as
they provide a Python API. In our experiment, we extensively
evaluated the capabilities of five notable LLMs developed by
leading companies, using PICBench:

• GPT-4: The free commerical model developed by OPENAI.
• GPT-4o: The flagship commercial model that is widely

recognized for its versatility and high accuracy across
various domains.

• GPT-o1-mini: A smaller GPT-based model optimized for
STEM reasoning, with a focus on mathematical and tech-
nical problem-solving.

• Gemini 1.5 Pro: Developed by Google, an emerging
model that integrates hybrid architectures to improve code
generation and context handling.

• Claude 3.5 Sonnet: Developed by Anthropic, emphasizing
significant improvement in graduate-level reasoning, knowl-
edge acquisition, and coding abilities.

We adopted the widely used Pass@k metric [15] to measure
code generation correctness. A problem is considered solved if
any of the k generated samples passes the corresponding unit
tests. For each task, n samples (default n = 5) are generated, of
which c samples pass, and an unbiased estimator of Pass@k is
computed as:

pass@k := EProblems

[
1−

(
n−c
k

)(
n
k

) ]
. (1)

To analyze the impact of error feedback (EF), we queried the
selected LLMs both without and with feedback for n iterations
where we set n = 1 and n = 3.

B. Results
1) Impact of error feedback
TABLE III presents the comprehensive evaluation results for

both syntax and functionality across all five selected LLMs,
using 0, 1, and 3 error feedback iterations with PICBench,
evaluated through the Pass@k metric.

Without correction feedback, GPT-4 demonstrates the highest
syntax accuracy, with 16.67% for Pass@1 and 41.67% for
Pass@5, establishing its strength in pattern recognition and
abstraction capabilities.

When error feedback is incorporated, there is a clear improve-
ment in both syntax and functionality scores across Pass@1
and Pass@5 evaluations. Claude 3.5 Sonnet demonstrated the
most significant improvement in both syntax performance and
functionality in response to feedback, highlighting its excellent
self-correction and adaptive learning capabilities. At Pass@1, its
syntax score increased from 13.33% without feedback to 35.83%
with one feedback iteration, and further soared to 75.83% with
three iterations. Similarly, its functionality success rate improved
from 1.67% to 24.17%.

Moreover, even one round of feedback can raise Pass@1
metrics beyond the Pass@5 results obtained without any feed-
back. This further emphasizes the impact of feedback on model
performance. For example, Gemini 1.5 pro achieves a syntax
score of 33.33% with one feedback iteration at Pass@1, which
is notably higher than its Pass@5 syntax score without feedback
(16.67%).

Overall, the feedback method, aided by simulator diagnostics,
rapidly accelerates debugging and enables iterative improve-
ments in code generation. By revealing each model’s evolving
logic and capacity for self-refinement, this approach delivers
notable gains in both code quality and reliability.

2) Impact of restrictions
To investigate the impact of the restrictions introduced in

Section III-D, we queried the selected LLMs using the same
approach described in Section IV-B1.

As shown in the TABLE IV, the application of restrictions
greatly enhances the performance of LLMs across all evaluated
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TABLE III The Syntax and Functionality (Func.) evaluation for different LLMs. EF denotes the error feedback.

LLM

Pass@1 Pass@5

Without EF With 1 EFs With 3 EFs Without EF With 1 EFs With 3 EFs

Syntax Func. Syntax Func. Syntax Func. Syntax Func. Syntax Func. Syntax Func.

GPT-4 16.67 6.67 34.17 6.67 54.17 10.83 41.67 12.50 70.83 16.67 100.00 29.17
GPT-o1-mini 8.33 4.17 33.33 15.00 63.33 23.33 29.17 16.67 66.67 25.00 91.67 33.33

GPT-4o 14.17 4.17 40.83 15.00 59.17 20.00 37.50 4.17 70.83 25.00 87.50 41.67
Claude 3.5 Sonnet 13.33 1.67 35.83 14.17 75.83 24.17 20.83 8.33 70.83 20.83 100.00 37.50

Gemini 1.5 pro 9.17 8.33 33.33 16.67 50.00 20.83 16.67 12.50 66.67 20.83 87.50 33.33

TABLE IV The Syntax and Functionality (Func.) correctness evaluation for different LLMs with our proposed restrictions. EF
denotes the error feedback.

LLM

Pass@1 Pass@5

Without EF With 1 EFs With 3 EFs Without EF With 1 EFs With 3 EFs

Syntax Func. Syntax Func. Syntax Func. Syntax Func. Syntax Func. Syntax Func.

GPT-4 + restrictions 20.00 4.17 38.33 17.50 71.67 30.00 58.33 12.50 58.33 20.83 100.00 45.83
GPT-o1-mini + restrictions 13.33 9.17 50.00 22.50 84.17 33.33 25.00 12.50 79.17 33.33 100.00 50.00

GPT-4o + restrictions 60.83 20.00 86.67 31.67 95.00 36.67 87.50 37.50 100.00 37.50 100.00 50.00
Claude 3.5 Sonnet + restrictions 54.17 15.83 80.83 29.00 90.00 43.33 87.50 37.50 100.00 45.83 100.00 62.50

Gemini 1.5 pro + restrictions 64.17 21.67 88.33 32.50 95.00 38.33 91.67 37.50 100.00 45.83 100.00 54.17

conditions, with notable improvements in both syntax and func-
tionality. While all models benefit, the degree of improvement
varies, with Gemini 1.5 pro showing the most dramatic en-
hancements across both syntax and functionality dimensions. For
instance, Gemini 1.5 pro’s syntax score improves from 9.17%
to 64.17% in Pass@1 and from 16.67% to 91.67% in Pass@5,
while its functionality score increases from 8.33% to 21.67% in
Pass@1 and from 12.50% to 37.50% in Pass@5 with restrictions
applied, demonstrating its robust in-context reasoning and real-
time adaptability. The results highlight the potential for further
optimization by leveraging the in-context learning ability of
LLMs, enhanced with high-definition circuit knowledge.

V. CONCLUSION

In this paper, we propose a comprehensive open-source bench-
mark for PIC design generation using LLMs, featuring 24
meticulously crafted PIC design problems. We also introduce
a feedback-based prompt engineering technique that iteratively
refines designs and enhances the models’ design generation
capabilities. Our comprehensive evaluation of various state-of-
the-art commercial LLMs highlights the significant impact of
feedback mechanisms and the utilization of in-context learning
capabilities on model performance. The results underscore both
the challenges and opportunities for LLMs in the PIC design
domain, providing targeted insights for future research and
development to advance automation and efficiency in this field.
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