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Abstract—Photonic integrated circuits (PICs) design has been
challenged by the complex physics behind various integrated
photonic devices. Inverse design offers an effective design automa-
tion solution for obtaining high-performance and compact pho-
tonic devices using computational algorithms and electromagnetic
(EM) simulations. However, the challenge lies in transforming the
fabrication-infeasible device geometries obtained from computa-
tional algorithms into reliable while optimal physical design. In-
corporating fabrication constraints into the optimization iterations
can extend running time and lead to performance compromise. In
this work, we proposed a novel DRC-aware photonic inverse design
framework, leveraging the bi-level optimization to enable end-to-
end gradient-based device optimization. Our method can guarantee
all intermediate devices on the optimization trajectory adhere
to fabrication requirements and rules. The proposed workflow
eliminates the need for a binarization process and fabrication
constraint adaption, thus enabling a fast and efficient search
for high-performance and reliable integrated photonic devices.
Experimental results demonstrate the benefits of our proposed
method, including improved device performance and reduced EM
simulations and running time.

I. INTRODUCTION

Silicon photonic integrated circuits (PICs) have become a critical
technology in the past decades, with the production of opti-
cal transceivers in data center communications, alongside the
successful prototype demonstrations in computing and sensing
[1]-[3]. The benefits of silicon photonics include its compati-
bility with complementary metal-oxide-semiconductor (CMOS)
fabrication processes, and the ability to manipulate light across
multiple dimensions with a compact footprint, such as optical
mode, wavelength, polarization, and amplitude [4]. While elec-
tronic design automation (EDA) tools have facilitated the scaling
of electronic integrated circuits, PIC design confronts distinct
challenges, including the immature design automation ecosys-
tem and the need for a diversity of photonic elements, each
with complex interactions with light. Consequently, PIC design
typically involves a tailored, hands-on process that demands a
thorough understanding of photonics at the component level,
often leading to a time-intensive development cycle [5].
Photonic inverse design has offered an effective solution for
design automation of novel integrated photonic devices [6]-[10].
By specifying desired device function and performance metrics,
advanced algorithms and electromagnetic (EM) simulations can
be used to search for the optimal configuration of materials and
geometries inside a given blank area. The use of the adjoint
method in recent years has facilitated a more efficient device
optimization process [6]-[10], which is based on gradient infor-
mation obtained from two simulations: the forward simulation
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Fig. 1 (a) Photonic integrated device inverse design with the

proposed bi-level optimization framework. (b) Optimization tra-

jectory of an on-chip photonic MC device, every design on the

optimization trajectory adheres to the DRC requirement.

predicts the behavior of light within a given device structure,
while the adjoint simulation involves perturbing the EM fields
to assess the impact of small changes in the device geometry on
the performance metrics [9], [11]. While gradient-based inverse
design algorithms can search for advanced device topology, the
resulting structures often feature geometries that may not pass
the design rule check (DRC) [8]. Two of the most challenging
rules include minimal feature size and minimal spacing, since the
optimized structures can manifest exceedingly small features and
tight spacings beyond fabrication limits [7], [8], [10]. Currently,
the majority of silicon photonics foundries rely on the use
of 130nm to 180nm CMOS node toolset [1]. GlobalFoundries
has recently offered 45nm CMOS-silicon photonics monolithic
technology [12]. Fabrication beyond the lithography limits can
result in pattern collapses, performance degradation, and a low
fabrication yield.

To include fabrication limitations in the previous methods, un-
constrained continuous optimization with binarization schedul-
ing is employed [7], [9], [10]. A high-performance yet infeasible
design is obtained first, followed by applying the fabrication
constraints into the design region to guarantee its manufactura-
bility. However, these methods generally suffer from extensive
iterations. This is largely due to its continuous optimization
approach, where the material density in the design region is
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iteratively adjusted to converge towards an optimal solution.
Secondly, another issue causing long iterations arises from the
need for applying binarization after the completion of continuous
optimization. Finally, a significant challenge arises from the
inherent contradiction among binarization functions, fabrication
constraints, and device performance. As a clear device contour
is necessary for fabrication, however, the binarization function
that transfers a continuous topology into a discrete and binary
structure can introduce a saturation zone. Such saturation zone
can hinder the device contour from evolving towards a design
that is both performant and fabrication feasible. Always-feasible
photonic inverse design framework has thus been proposed
to utilize an always-feasible design generator [13]. However,
back-propagating the adjoint gradient becomes difficult due
to the non-differentiable generation process. Thus a gradient
estimator is needed in the scheme. An optimization-based fea-
sible design generator is firstly demonstrated with optimization
unrolling [14]. However, this scheme is not suitable for devices
with large footprints, as the memory and computational costs
increase with the size of the footprint.

In this paper, we present a DRC-aware optimization frame-
work for integrated photonic device inverse design. As shown
in Fig. 1(a), our method formulates the DRC-aware photonic
inverse design problem into a bi-level optimization problem,
which consists of an inner-level and an outer-level optimization
problem. The inner-level optimization serves as a conditional
design generator, which can generate a DRC-feasible device
according to a given reward matrix. The reward matrix that
controls the feasible design generation is then optimized at
the outer-level. We then show under the bi-level optimization
framework, the gradient of the device’s figure-of-merit (FOM)
with respect to the reward matrix can be derived mathematically.
The reward matrix is then updated using implicit differentiation.
An example optimization trajectory is demonstrated in Fig. 1(b).
The main contributions of this paper are summarized as follows:

+ We propose a new prior condition for DRC-aware photonic
devices topology generation, which can be used to im-
plement an optimization-based conditional feasible design
generator.

o We propose a bi-level optimization framework for photonic
device inverse design using implicit differentiation, which
ensures every device on the optimization trajectory is binary
as well as adheres to the DRC requirements.

o We design and perform experiments to compare our method
with the state-of-the-art photonic inverse design methods in
terms of device performance and optimization efficiency.
Experimental results show that our framework can reduce
more than 53% required EM simulations and running time,
as well as maintain better device performance.

II. PRELIMINARIES

Throughout this paper, we focus on the gradient-based photonic
device design. For PIC devices, a 2D binary image Y represents
a design with two materials like silicon and silica. The FOM
of a PIC device can be defined with its scattering coefficients
(S-parameters). Physically, scattering coefficients describe the
power transmission on multiple optical dimensions, such as

wavelength and optical modes. With a defined scalar FOM F,
the gradient of FOM with respect to the device design % can be
obtained through two EM simulations, which is also known as
the adjoint method [7]-[9]. Hence, for a specific photonic device
design task, we can treat the EM simulator as a differentiable
function. The simulator calculates the FOM F' in the forward
pass, which is F' = simulator(Y’) and the gradient % will
be returned in the backward pass. With the gradient information,
the photonic device design problem can be fully automated with
optimization algorithms.

Photonic Device Inverse Design. Given a FOM F, the
problem of photonic inverse design aims to find a physical device
topology Y such that the scalar FOM F' is optimized. Fig. 2(a)-
(d) show the EM simulator setup for the four typical on-chip
photonic devices for benchmark [13], which are waveguide bend
(WB), mode converter (MC), power splitter (PS) and wavelength
multiplexer (WM). The FOM definition and design region size
for these devices are shown in TABLE 1. For WB, MC, and PS,
the optimized devices are expected to operate at the wavelength
Ao = 1550nm. The WM can direct light of A\; = 1520nm and
Ao = 1580nm to the two output ports respectively. Under these
settings, FOM for the 4 devices is normalized in the range of
[0,1], where O indicates no power transmission (worst) and 1
indicates no power loss (best).

TABLE I Photonic device design tasks.
Device  Design region FOM F
WB 3um X 3um 521()\0)
MC 3um X 3um ST]Wl—*TMO (/\0)
PS 3um X 2.4um 521()\0) + 531()\0)

WM 3um X 3um 0.5(S21 (A1) + S31(A2))
Design Tasks = Source = FOM Monitor Trans. Direction
0.5um
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Fig. 2 Simulator setup. (a) WB, (b) MC, (c) PS, (d) WM.

DRC violations. Photonic integrated devices often exhibit
a complex topology, tailored for manipulating light at micro
and nano scales. Occasionally, these complex shapes exceed
the limits of current fabrication capabilities. To ensure manu-
facturability, Design Rule Checking (DRC) is employed prior
to fabrication for most PIC foundry. Typical DRC violations,
illustrated in Figure 3, include issues related to feature size,
spacing, sharp angles, and area.

B
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Fig. 3 Example of DRC violation in PIC device physical layout.
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Fig. 4 The workflow of the proposed DRC-aware integrated
photonic device inverse design framework.

III. PROPOSED METHOD

The overall workflow of our framework is illustrated in Fig. 4.
Our framework comprises two optimization problems: an inner-
level optimization problem and an outer-level optimization prob-
lem. The inner-level optimization is essentially a process for
generating DRC-feasible designs. The generated feasible design,
denoted as Y, is governed by the reward matrix R. Utilizing
gradient information from the device simulator, implicit differ-
entiation is employed to calculate the gradient of the device’s
FOM with respect to the reward matrix. Subsequently, the reward
matrix is updated to enhance the device FOM.

A. DRC-Feasible Design Generation

As illustrated in Fig. 5(a), an effective strategy for achieving a
design compatible with the DRC involves utilizing two circular
brushes of solid and void types to paint a design, each with
specified diameters ds and d,, respectively. This approach is
grounded in two fundamental guidelines: first, ensuring the
design is comprehensively filled; and second, maintaining a
clear separation between solid and void elements to prevent
overlap. Under these parameters, the finished design must adhere
to minimum feature sizes and spacing of at least ds and d,,
correspondingly. Additionally, the design’s minimal curvature
radius should not be less than the smaller value between ds/2
and d, /2. Here we show such a “painting” process can be equiv-
alently converted to an optimization problem. Our method is
based on the parametrization method called two-phase projection
(TPP) [15], where a device design Y is parameterized by a
design auxiliary variable X. The detailed procedure is shown
in Fig. 5(b). Firstly, the design auxiliary variable X is activated
element-wisely by the void selectivity function w,(.) and solid
selectivity function wg(.) to obtain X, and X, respectively.
As the name indicates, w, (.) keeps void pixels (< 0), and w;(.)
keeps solid pixels (> 0) in design auxiliary variable X. The two
selectivity functions are formulated as [15]:

1 + Ag o 1 + Oy
ws(®) = a0 = Ty O
where @, = a; = 0.002 and n; = —In(as),n, = —In(ay,).

X, and X are then convoluted with two 2D circular kernels
h, = h(x,y; %”) and hy = h(z,y; %) to obtain p, and p
respectively. h(x,y;r) can be formulated as:

1(b— /2% +y?
h(x,y;b)=g#,x2+y2§b27 2)

where b is the radius of the kernel and a is a normalization factor
such thatd©, > h(z,y;b) = 1. p, and ps are then mapped to
pv and p, through two thresholding functions. Finally, p, and
ps are summed together to obtain the device design Y. The final
device design Y is bounded by 0 <Y < 1, where zero denotes
the void material (silica), one denotes the solid material (silicon),
and intermediate values near 0.5 denote undetermined blank
regions. The whole procedure is summarized in Algorithm 1.

Algorithm 1: twoPhaseProjection (X,ds, d,)

1 gy = wy(X) @ h(z,y;: %);
2 py, = wy(X) ® h(z,y; g“);
3p,=1—e BBt peP// thresholding, =38
4 p,=—-1+ ePhy — uve’ﬁ;
s Y = Pat(+p,).
2 b

6 return Y,

In the parametrization example shown in Fig. 5(b), solid and
void pixels in the design auxiliary variable X are situated at a
distance > (ds+d,)/2. As a result, both solid and void phases in
the final device design Y are able to maintain the size defined
by the kernel diameter d, and d,. However, if two pixels of
different phases in the design auxiliary variable X projecting
different phases are spaced too closely, which is the case shown
in Fig. 5(c), phase mixing in the final element density Y will
occur. In this case, phase clarity is lost and minimal feature size
and spacing are not preserved. Noticing that when phase mixing
happens, an extra blank region near the value 0.5 will form in
Y due to the cancellation of the solid and void phase. Hence,
by optimizing X such that there is no blank region left in Y,
phase clarity can be enforced. To penalize the blank region in
Y, the following function can be used:

gle) =1—[2z - 1], 3)

The function graph of g(z) is given in Fig. 5(c). With g(z),
the minimal feature size and spacing conditions in Y can be
satisfied if the following inequality holds:

c(Y) =mean(g(Y)) <k, )

where mean (. ) represents the reduced mean operation and e
denotes a small positive number. To randomly generate a DRC-
feasible design Y that satisfies minimal feature size ds and
spacing d,, we can randomly sample X as the initial point
to minimize ¢(Y) by X. Minimizing ¢(Y") actually means
two facts. Firstly, each pixel in the final design Y should be
pushed to either solid or void. Secondly, minimal feature size
and spacing defined by d; and d, should be preserved, otherwise
extra blank regions will form due to the cancellation of solid and
void phases, which is just the case shown in Fig. 5(c).

B. Conditional Feasible Design Generation

To optimize a feasible photonic device, controlled feasible design
generation is needed. Here we define the conditional feasible
design generation loss L and show a feasible design can be
generated according to a control variable by minimizing the loss:

L=-nmean(ROY)+7c¢(Y). ®)

In Equation (5), ® denotes the element-wise matrix multipli-
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Fig. 5 (a) Demonstration of painting a DRC-feasible design with two circular brushes; (b) Two-phase projection (TPP)
parameterization; (¢) An example when phase mixing occurs and function graph of g(xz) for blank region penalization; (d) Bi-level
optimization framework for DRC-aware photonic integrated device inverse design.

cation and 7 is the penalty weight, R is the control variable,
referred to as the reward matrix. The first term of L ensures
the similarity between the reward matrix R and device design
Y and minimizing ¢(Y') guarantees the design is feasible to the
fabrication conditions. Thus, minimizing the loss L can generate
a device design that both keeps faithful to the reward matrix R
and satisfy the DRC requirements. Hence, conditional feasible
design generation can be equivalently converted to solving an
optimization problem:

X* = in L.
arg min (6)
With X*, the feasible device design Y* conditioned on a
given reward matrix R can be obtained by:

Y* = twoPhaseProjection(X™, ds,d,). @)

An intuitive example of the proposed optimization-based condi-
tional feasible design generator is shown in Fig. 5(d).

C. Gradient-based Bi-level Optimization

With the conditional feasible design generator, the feasible pho-
tonic device optimization problem can be equivalently converted
to finding a reward matrix R such that the FOM of the generated
feasible design Y * is maximized. The optimization problem can
be formed as follows:

m}%n F(Y™), ®)
s.t. (5),(6),(7), 9)

In Equation (8), F' is the FOM used to evaluate the device
performance, which is obtained from a device simulator. Math-
ematically, this is called a bi-level optimization problem [16],
[17], where the inner-level problem defined in Equation (6)
is used for the conditional feasible design generation and the
reward matrix R controlling the design generation is optimized
at the outer-level to improve device FOM. To enable gradient-
based optimization, the gradient of F' with respect to R needs

to be obtained, which can be expanded by the chain rule:
dar  dF dY* dX*
dR _dy* “ax* " 4R
By using the first-order optimality condition and implicit
function theorem [16], [18]-[20], the gradient of F' with respect
to R can be formulated as:
d’L

dF _ dF dY* -
dR dY* = dX* dX*2
implicit gradient

Equation (11) indicates once a feasible design parameterized by
X* is obtained by solving the inner-level function L to a local
minimal, the gradient of the FOM F' with respect to the reward
matrix R can be immediately obtained. Some issues need to be
addressed here. Firstly, it is obvious that our inner-level objective
L is a non-convex function, thus suffers from the problem called
non-singleton inner-level solutions in the bi-level optimization
problem [21]. The problem can be simply explained by when
the reward matrix R is updated according to the gradient, we
may not reach the same local minimal of L in the next time. The
problem can be alleviated by reducing the required iterations
when solving the inner-level objective L to a local minima.
In our problem, we always use Xy = R as the initial point
when solving the inner-level objective. The second problem
lies in the computation of implicit gradient in Equation (11).
For a M x N design, directly computing the Hessian matrix
inversion leads to the time complexity O((MN)?). Such a
complexity is not acceptable even if optimizing a small device.
Hence, approximation is needed when computing the implicit
gradient. Our method to update the reward matrix R is implicit
differentiation (ID), where the inverse Hessian is approximated
with the Neumann series [19]:

2L\ a d2L \’
(dX*2> Na;(I_adX*Q) .

dF'/dR in Equation (11) can then be obtained by using efficient

(10)

» d*L
dRIX* "

(1)

(12)
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vector-Hessian products (VHP) and vector-Jacobian product
(VIP) with automatic differentiation frameworks. Detailed pro-
cedures are summarized in Algorithm 2. With the Neumann
series approximation, the space complexity is reduced to O(MN),
which can be used to deal with photonic device design with large
footprints. The complete framework is illustrated in Fig. 5(d).

Algorithm 2: Implicit Differentiation (ID)

1 Initialize reward matrix R;
2 while not converged do

3 X =R;

4 for i =1to T do

s || X=X -~

6 end

7 R =R - [ -gradipprox(R, X);
8 end

9 return R;

Algorithm 3: gradApprox (R, X)

1 Y* = twoPhaseProjection(X, ds, dy);

2 ¢ = grad(simulator(Y™), X); // g= &
3v=grad(f(X,R), X); // v=4&

4p=q;

s for j=1to T do

6 v=v—«-grad(v,X,grad_outputs = gq);

7 p=p+v;
8 end
-1
2
9p=—Qaxp; // p= dd)?* X _(dd)(£2)
10 p =grad(v, R, grad_outputs =p);
11 return p;

IV. EXPERIMENTAL RESULTS
The proposed framework is implemented with Pytorch [22] and
TorchOpt [18] with GPU acceleration. Other algorithms for
fabrication-constrained photonic device inverse design are also
implemented for comparison, including geometry constraints
(GC) [9], analytical constraints (AC) [7], strictly feasible design
generator (SFDG) [13] and adaptive projection (AP) [10]. All the
methods are evaluated by four silicon photonics device design
tasks, including WB, MC, PS, and WM shown in TABLE 1.
70nm, 110nm, and 150nm feature size and spacing conditions
are tested in the experiment. For each fabrication condition
and algorithm, 20 devices are optimized for each design task
using different algorithms. We use the open-source EM simulator
Meep [23] to build device simulators. 2D finite-difference time-
domain (FDTD) EM simulation is used for all design tasks. We
use the simulation mesh precision of 25 points per um and
material mesh precision of 100 points per um in the device

TABLE II Comparison to existing methods.

Methods Parametrization Optimizer

GC [9] Density pixels MMA

AC [7] Density pixels,Level-set ~ L-BFGS-B,SGD
SFDG [13]  Binary pixels Adam

AP [10] Density pixels L-BFGS-B
Ours Binary pixels Adam,SGD

simulator setup. The EM simulation is run on the CPU. All
the experiments are conducted on a computer with AMD EPYC
7763 CPU and NVIDIA GeForce RTX 3090 GPU.

A. Implementation

In our approach, we adjust the penalty weight for the blank
region in the inner-level objective function L to 7 = 0.5. To
deal with the inner-level optimization, we employ the Adam
optimizer, maintaining a constant learning rate of v = 0.05 and
setting 81 = 0.9 and By = 0.999 to manage the gradient decay
and second-moment exponential moving averages, respectively.
The optimization process is iterated 7' = 50 times. Additionally,
we incorporate o = 0.05 into the Neumann series to facilitate an
approximation of the inverse Hessian in implicit differentiation.
For optimizing the outer level, we opt for the stochastic gradient
descent (SGD) method. The learning rate has been meticulously
optimized for various device design tasks to achieve the best out-
comes. We compared our methods with four existing fabrication-
constrained photonic inverse design algorithms, which are shown
in Table II. There are three different methods to parameterize a
design in previous works. The density pixels and binary pixels
methods both use a 2D image to represent a design. The density
method allows the pixel values to change continuously while
only binary pixels are allowed in binary pixel methods. For the
density method, generally, a binarization function (also called
the projection function) is needed during the optimization to
binarize the design [9], [10]. For the level-set parametrization,
the device’s counter is implicitly represented by the intersection
between the zero-plane and the level-set function [7].

B. Algorithm Comparison

In this section, we compare different design algorithms in terms
of the optimized device performance and efficiency.

Device performance: We investigate the average and best
performance of the four device design tasks to evaluate the
performance of our proposed algorithm. The FOM of each
device is within [0, 1], where 0 indicates no power transmission
(worst) and 1 indicates no power loss (best). The results are
revealed in TABLE III. Our method surpasses the performance
of four baseline methods, both in terms of average and peak
device performance. Specifically, in average device performance,
it achieves improvements of 36.0%, 0.4%, 6.8%, and 21.7% over
the GC, AC, SFDG, and AP methods, respectively. Similarly,
peak device performance demonstrates enhancements of 5.2%,
0.1%, 1.1%, and 15.5% compared to the same methods.

Efficiency: The iteration curve examples of the MC design
task using different algorithms are shown in Fig. 6(a). For GC,
AC, and AP methods, ripples on the iteration curve are due to
the strength adjustment of the binarization function in continuous
optimization. It is worth noting that for the two methods, binary
design can only be achieved near the end of optimization,
potentially increasing the number of iterations required. For
GC and AC methods, in the final stage of binarization, the
fabrication constraints are introduced to the optimizer, where
an abrupt upward trend in the convergence curve of the FOM
can be observed. This phenomenon typically arises when the
newly introduced constraints limit the feasible solution space,
forcing the optimization algorithm to explore areas that were
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TABLE III Comparision in terms of average FOM, best FOM and required simulations (RS) to reach a successful device.

Task GC AC SFDG AP Ours
Avg Best RS Avg Best RS Avg Best RS Avg Best RS Avg Best RS

70nm WB 0.636 0940  153.0 | 0.975 0.993 177.7 0.928 0.977 52.5 0.946 0957 159.0 | 0.976 0.987 39.4
70nm MC 0932 0974 1424 | 0981 0.995 98.3 0.963 0.998 82.1 0.944  0.963 1184 | 0.982 0.998 29.0
70nm PS 0.582 0910  160.0 | 0.996 0.999 99.5 0.848 0.999 82.0 0980 0998 1104 | 0.996 0.999 41.6
70nm WM | 0.777  0.925 151.0 | 0.957 0.977 115.7 0.957 0.978 201.8 | 0905  0.926 89.5 0.962 0.982 48.6
110nm WB | 0498 0915 1340 | 0.962 0.983 183.6 0.927 0.970 73.3 0.790  0.848 - 0.970 0.991 38.0
110nm MC | 0.843 0956 137.2 | 0.982 0.997 200.7 0.945 0.998 90.3 0.778  0.873 - 0.983 0.995 4.3
110nm PS 0.622 0952  148.0 | 0.993 0.998 101.2 0.932 0.999 75.6 0968 0984 111.6 | 0.995 0.999 48.4
110nm WM | 0.848 0913 178.7 | 0.953 0.980 127.2 0.911 0.974 2392 | 0.718  0.729 - 0.959 0.982 98.5
150nm WB | 0.730  0.995 165.7 | 0.966 0.996 191.3 0.932 0.968 86.6 0.573  0.658 - 0.972 0.996 64.6
150nm MC | 0931 0968 1624 | 0.967 0.996 101.2 0.900 0.997 1053 | 0529  0.667 - 0.970 0.992 91.4
150nm PS 0.540 0959 1725 | 0.990 0.998 110.6 0.856 0.998 136.9 | 0967  0.971 1024 | 0.990 0.999 61.3
150nm WM | 0.679 0906 172.1 0.945 0.977 137.7 0.872 0.911 3540 | 0.530  0.730 - 0.958 0.978  130.0
Sum 8.618 11.313 1877 | 11.667 11.889 1644.7 | 10.971 11.767 1579.6 | 9.628 10.304 - 11.713  11.898 735.1

- indicates no successful device (FOM > 0.9) is obtained in all optimizations.
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Fig. 6 (a) Convergence curves of optimizing 110nm MC device; (b) Average FOM under different DRC conditions.

previously deemed sub-optimal. The adaption of optimization
constraints can greatly increase the required iteration. AC em-
ploys a two-stage approach, initially acquiring a design through
continuous optimization with gradual binarization. The result of
the continuous optimization phase acts as the starting point for
the level-set evolution, where the constraints are subsequently
introduced. Both SFDG and AP are constraint-free methods. The
fabrication constraints are implicitly enforced by restricting the
design space. The SFDG method employs a gradient estimator
to update the design. This approach causes the iteration curve to
exhibit characteristics like a noise process, potentially leading
to convergence issues. The AP method simply uses the pixel
size that is identical to the required feature size condition.
Consequently, the possible design space is greatly reduced. This
can be verified in Fig. 6(b), the average FOM achieved by the
AP method drops fast when the feature size condition increases.
Our method demonstrates a smoother convergence curve in
comparison to other methods. Crucially, as all intermediate
devices along the optimization path are binary and conform to
fabrication conditions, our algorithm can be halted as soon as
the target FOM is achieved. This capability significantly reduces
the number of iterations required. In photonic device inverse
design, the dominant computation overhead comes from the EM
simulation. Hence, we compare the required simulations (RS)
when a device with FOM > 0.9 can be obtained using different
algorithms. For those constraint-based methods including GC
and AC, we examine the FOM and constraint violation simulta-
neously such that the target FOM and fabrication conditions can
be satisfied. For the algorithm AP, which uses density pixels with
a size identical to the required minimal feature size and spacing,
an extra requirement is that the degree of binarization should
be larger than 99%. The required simulations under different

design tasks are also summarized in TABLE IIl. Among all the
12 design tasks, our method achieves the minimum RS to obtain
the successful devices. Our method can reduce 60.8%, 55.3%,
and 53.5% required EM simulations compared with GC, AC,
and SFDG methods. In our device simulator setup, the average
running time of one EM simulation is around 10.44s. Hence,
our method can save running time of 992.9s, 791.3s, and 735.2s
compared with GC, AC, and SFDG methods on average. We
attribute the improvement to the fact that our method avoids
the procedure of applying binarization and adaption to the
optimization constraints, which are used in GC and AC methods.
For the AP method, since the parametrization has restricted the
density pixels to have the same size with the minimal feature size
condition, the design freedom has been largely limited. Under
the feature size conditions of 110nm and 150nm, the AP method
can only successfully search for the PS device with a FOM > 0.9
while failing in the remaining design tasks.

V. CONCLUSION
In this work, we proposed a novel DRC-aware inverse design
framework for fabrication-constrained photonic device design
automation. Compared with the state-of-the-art methods, the
experimental results show that our method can reduce more
than 53% of required EM simulations, while achieving better
optimization performance in benchmark device design tasks.
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