2025 Design, Automation & Test in Europe Conference (DATE 2025)

Location 1s All You Need: Efficient Lithographic
Hotspot Detection Using Only Polygon Locations

Yujia Wang*, Jiaxing Wang*, Dan Feng*, Yuzhe Ma' and Kang Liu*
*Huazhong University of Science and Technology, THong Kong University of Science and Technology (Guangzhou)
*{yujiawang, wangjiaxing, dfeng, kangliu} @hust.edu.cn, Tyuzhema@hkust-gz.edu.cn

Abstract—With integrated circuits at advanced technology
nodes shrinking in feature size, lithographic hotspot detection
has become increasingly important. Deep learning, especially
convolutional neural networks (CNNs) and graph neural net-
works (GNNs) have recently succeeded in lithographic hotspot
detection, where layout patterns, represented as images or graph
features, are classified into hotspots and non-hotspots. However,
with increasingly sophisticated CNN architectural designs, CNN-
based hotspot detection requires excessive training and inference
costs with expanding model sizes but only marginally improves
detection accuracy. Existing GNN-based hotspot detector requires
more intuitive and efficient layout graph feature representation.
Driven by the understanding that lithographic hotspots result
from complex interactions among metal polygons through the light
system, we propose the absolute and relative locations of metal
polygons are all we need to detect hotspots of a layout clip. We
propose a novel layout graph feature representation for hotspot
detection where the coordinates of each polygon and the distances
between them are taken as node and edge features, respectively.
We design an advanced GNN architecture using graph attention
and different feature update functions for different edge types of
polygons. Our experimental results demonstrate that our GNN
hotspot detector achieves the highest hotspot accuracy and the
lowest false alarm on different datasets. Notably, we employ one-
third of the graph features of the previous GNN hotspot detector
and achieve higher accuracy. We outperform all CNN hotspot
detectors with higher accuracy, up to 32x speed up in inference
time, and 64 x reduction in model size.

Index Terms—lithography, hotspot detection, GNN, polygon,
location

I. INTRODUCTION

As transistors’ feature sizes continue to shrink in integrated
circuits, even minor process variations in optical lithography
can lead to printing defects of certain sensitive layout patterns.
These printing defects, known as lithographic hotspots, have a
profound impact on manufacturing yield and must be addressed
as early as possible in the design stage.

In traditional physical design, lithography simulation [1],
as depicted in Fig. 1, is used to detect lithographic hotspots.
While this method is accurate, it is computationally intensive
and time-consuming, making it almost impractical to use in
the early physical design loop for iterative optimization of
defect layouts. Pattern matching (PM)-based approaches [2]-
[4] are proposed to accelerate the hotspot detection process
by collecting the feature characteristics of a series of known

Kang Liu is partly supported by National Natural Science Foundation of
China No. 62202190, Hubei Natural Science Foundation No. 2023AFB237,
and the Knowledge Innovation Program of Wuhan-Shuguang. Yuzhe Ma is
supported in part by National Natural Science Foundation of China No.
62204066. Kang Liu is the corresponding author.

Hotspot layout clip Simulation output

error
L markers

Non-hotspot layout clip Simulation output

Fig. 1: Layout clips and lithography simulation results. Er-
ror markers overlapping with the ROI indicate lithographic
hotspots. Minor variations in the polygon distance (circled area
in the layout clips) can result in different lithography results.

hotspot patterns in a library, and any incoming layouts are
compared against this feature library for hotspot detection.
While they achieve a much faster turnaround time than lithog-
raphy simulation, they cannot detect hotspot patterns that have
not seen before. To address the generalization issues of PM
solutions, machine learning (ML) [5]-[8] and deep learning
(DL) [9]-[12] methods have evolved over the past ten years for
improved generalization and, thus, higher detection accuracy
than PM and preserve the advantage of fast detection speed
compared to lithography simulation. ML- and DL-based hotspot
detectors learn a mapping function from layout features to their
ground-truth lithography labels from massive training samples,
and generalize to unseen layouts after deployment.

Thanks to the expressive capability of neural networks, a line
of DL solutions apply convolutional neural networks (CNNs)
for feature extraction and binary classification, where layouts
are directly represented as images and taken as inputs by a
CNN. State-of-the-art (SoTA) CNN-based hotspot detectors
use sophisticated designs such as Discrete Cosine Transform
(DCT) [9], binarized neural networks (BNNs) [11], Inception
blocks with attention modules [10], and neural architecture
search (NAS)-based architectures [13] to extract more dis-
tinctive features, resulting in enhanced classification accuracy.
However, as the CNN models become increasingly complex,
their training and inference costs and the resulting model sizes
escalate significantly. Yet, the corresponding rise in detection

978-3-9826741-0-0/DATE25/© 2025 EDAA

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:10:54 UTC from IEEE Xplore. Restrictions apply.

accuracy is not commensurate and marginally improves. Instead
of using CNNs for hotspot detection, recently, a graph neural
network (GNN)-based hotspot detector [12] is applied to layout
clips represented as graphs comprising nodes and edges. These
extracted layout graph features are further processed by a GNN
for binary classification, which yields improved computational
efficiency and comparable accuracy than CNN methods.

It is worth noting that lithographic hotspots are not random
occurrences; they emerge from the intricate interactions among
metal polygons of a layout through the light system during
lithography, where the shapes and locations of metal polygons
play a crucial role. For instance, corner-to-corner distances,
positions of jogs, and line-ends can all contribute to the
emergence of hotspots [14]. Even minor variations, such as the
distance between metal polygons, as depicted in Fig. 1, can lead
to strikingly different lithography results. However, as critical
features for differentiating hotspots from non-hotspots, these
variations in polygon shapes and locations pose a significant
challenge to learn by end-to-end CNNss solely based on training
loss optimization. In [12], only part of this critical location
information is extracted, along with several features that are
not directly related to lithographic hotspots.

In this work, inspired by the fundamental causes of litho-
graphic hotspots where shapes and locations of metal polygons
and their relative positions determine the hotspot nature of a
layout, we leverage their graph representations and a GNN for
lithographic hotspot detection. We view the layout as a graph
with different polygons as the nodes and their interactions as
the edges. Such a graph representation with shape and location
information of all the metal polygons preserves the complete
geometric information of the layout design, encapsulating all
the necessary details for hotspot detection. Specifically, we
break down complex polygon shapes horizontally into separate
rectangles and use their coordinates and the distances between
them as node and edge features, respectively, by which polygon
locations are preserved and their shapes are implied. We design
a GNN architecture using different feature update functions
for different edge types as well as graph attention for more
efficient feature extraction. Compared to the previous GNN-
based method [12], we achieve higher detection accuracy with
one-third of the graph features and reduced model size. We also
outperform prior CNN-based methods with higher accuracy,
smaller model size, and much faster inference time by one order
of magnitude. Our main contributions are listed below:

o A novel layout graph feature representation using only
polygon locations for lithographic hotspot detection where
coordinates of partitioned rectangles and their distances
are extracted as node and edge features.

« An advanced GNN architecture using graph attention and
different feature update functions for different edge types
of polygons.

o Experimental results and insights into our GNN hotspot
detector that achieves the highest accuracy, the smallest
model size, and a highly efficient inference cost compared
to all prior CNN and GNN solutions.

o A thorough comparative study that explores various layout

graph features and network components on the accuracy
of GNN hotspot detectors.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Graph Neural Networks

GNN is a type of neural network that processes graph-
structured data G = (V,E), where V are the graph nodes
and E are the graph edges. A GNN typically consists of
several message-passing layers and one readout layer. In the k-
th message-passing layer, each node v € V' combines message
information with each neighbor node w € N(v) with node
feature h% and each edge e, ., with edge feature h’: using
a message function 1)*. The neighbor messages are aggregated
as m~*1 using operation D based on which the node v updates
its node feature h¥ through a node feature update function ¢,
as shown in Equation 1 and Equation 2.

mitt = 0 gk(nk nk nk)
weN (v) v
hett = gr(hl, mith))

Similarly, the edge feature h’gv ., of edge e, ,, can be updated
as expressed in Equation 3 and Equation 4.

mE = B Rk Rk Bk) 3)
hEFL = gb(nk, ,mEt!) 4)
k k k

Typically, ¥F, ¢F, ¥F, and ¢* are multi-layer perceptions
(MLP) that share cross nodes and edges at the same layer,
and aggregation operation s usually sum, mean, or max.
In the readout layer, all the node features hX* from the last
message-passing layer K combine to provide a global graph
representation y using a readout function for downstream tasks.

B. Problem Formulation

Generally, lithographic hotspot detection is a binary classifi-
cation problem in which a hotspot detector predicts layout clips
into hotspots and non-hotspots. In this work, we use a GNN-
based hotspot detector. We use the following metrics to evaluate
the detection accuracy and define our problem as follows.

Definition 1: Hotspot Accuracy (HA)—The ratio of real
hotspot clips that are successfully detected as hotspot.

Definition 2: False Alarm (FA)—The number of actual non-
hotspot clips that are misclassified as hotspot.

Problem 1: Hotspot Detection—Given a set of layout clips
with verified hotspot/non-hotspot labels, we train a GNN-based
hotspot detector that maximizes HA and minimizes FA.

III. PROPOSED METHOD
A. Motivation and Overall Framework

Several types of layout geometric information highly corre-
late with the occurrences of lithographic hotspots [7]. As shown
in Fig. 2, we list three major types of geometric features of
metal polygons affecting layout printability.

(1) Corner, including convex and concave corners as marked
by circles and squares respectively in Fig. 2a. A particular
corner may interact with its nearby patterns and cause a hotspot.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:10:54 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (©)

Fig. 2: Major types of layout geometric information related to
lithographic hotspots, including (a) corner, (b) width, and (c)
distance of metal polygons.

(2) Width is the distance between two parallel borders of a
polygon as shown in Fig. 2b. The smaller the width, the easier
it is to cause pinching and an open circuit.

(3) Distance measures the gap between borders of two
adjacent polygons as shown in Fig. 2¢c. The smaller the distance,
the easier it is to cause bridging and a short circuit.

Essentially, width contains the shape dimension of part of
the complex metal polygon, and distance reflects the relative
locations and, thus, the interactions between two adjacent metal
polygons. The corner information encodes both the shape and
location information of a complex metal as well as its internal
connectivity. Inspired by these findings, we propose a layout
graph construction scheme that encodes the location and shape
information of all the metal polygons and their connectivity
for further GNN classification, which we consider as critical
information for hotspot detection. We illustrate our layout graph
construction and feature representation scheme in Fig. 3 and
summarize the GNN hotspot detection process as follows.

Step 1: Polygon decomposition. We decompose complex
polygons in the layout clip horizontally into simple rectangles.

Step 2: Graph construction. We represent partitioned rect-
angles as the graph nodes. Two types of edges are built, one
is the internal edges between connected rectangles from the
same polygon, and the other is the external edges between
rectangles from separate polygons that have a distance smaller
than a threshold, as shown in Fig. 4.

Step 3: Feature representation. We take the coordinates of
rectangles as node features. External edges use the distance as
edge features and internal edges have a distance of 0.

Step 4: GNN classification. We take the feature representa-
tions of layout graphs as inputs to our GNN hotspot detector
for binary classification of hotspots and non-hotspots.

B. Layout Graph Construction

We describe our layout graph construction and feature rep-
resentation scheme in details as follows.

Polygon decomposition. Layout clips consist of complex
polygon shapes, and their interactions precipitate lithographic
hotspots. However, considering each polygon as one single
graph node loses critical information for hotspot detection,
as interactions exist internally within a metal polygon. For
instance, the corner information of a polygon involves both
horizontal and vertical parts of the same metal and contains rich
information about local printability. In addition, metal polygons
have drastically different shapes and expand over irregular areas

within the layout clip; it is difficult to describe the polygon
location and shape in a simple and unified format. Therefore,
we propose to decompose each polygon into horizontally
separate rectangles, and each rectangle is a graph node.

Graph construction. After decomposing metal polygons to
obtain nodes of layout graphs, we add connections between
interacted rectangles as graph edges. We define two types
of edges between partitioned rectangles, namely (1) internal
edges and (2) external edges. We first place edges between
connected rectangles from the same polygon due to their intrin-
sic interactions presented as corners (Fig. 4b). We additionally
add external edges between adjacent polygons when their
projections overlap (grey area in Fig. 4d), and their distance is
smaller than a predefined threshold ¢. For instance, in Fig. 4c,
rectangles with distance d; and do (smaller than t) are added
with external edges, and rectangles with distance d3 (larger than
t) have no edge connection. External edges indicate interactions
between rectangles from different polygons. In our layout graph
construction, we set ¢ to 65 nm, which is half of the pitch size
of our dataset.

Feature representation. With nodes and edges constructed
for the layout graph, we define node and edge features to
represent the location and shape information of partitioned
rectangles and their interactions for hotspot detection. We
propose using the vertex coordinates of each rectangle in the
layout plane as node features, which can precisely reflect
the location and shape information. The smaller the distance
between rectangles with external edges, the more likely it is
to cause a hotspot. So we take the distance as external edge
features. Internal edges have a distance of 0. Specifically, we
define the following node and edge feature representations of
our layout graph: (1) node feature: coordinates of the top-left
and bottom-right vertices of the partitioned rectangles, which
directly provide their absolute locations and, at the same time,
imply their shape dimensions, e.g., (z1,y1) and (x2,y2) for R;
in Fig. 4d; (2) edge feature: distance between two rectangles
with external edges, which measures the smallest gap between
their closest parallel borders, e.g., d in Fig. 4d.

C. GNN Architecture for Hotspot Detection

Our GNN architecture for hotspot detection consists of
graph feature update as well as readout and classification, as
shown in Fig. 5. Similar to convolutional layers in CNNs
that extract image features, message-passing layers in GNNs
extract graph features from input node and edge features. In
each message-passing layer, each node aggregates information
from its neighbor nodes and associated edges to capture the
local graph structure and updates its feature representation. By
stacking multiple message-passing layers, information propa-
gates between nodes in the graph. After the k-th message-
passing layer, each node will contain information from its
neighbors as far as k-hops away. Taking into account the
number of rectangles originating from the same polygon that
naturally become neighbors and closely interact, as well as
the nearby rectangles coming from different polygons within
a certain distance, we stack four message-passing layers in our
GNN architecture that is adequate to capture the local optical

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:10:54 UTC from IEEE Xplore. Restrictions apply.

Layout clip Layout graph
node features edge features
feature
graph
decomposition construction representation V1 [20’ O’_40’ 60} €12: [20}
vi:[30, 60'_, 70,80]| | ej [30]
Fig. 3: Layout graph construction and feature representation.
w2
q\ By o T _______ . (x3,53) R Ih
. ,,II 2 2
dy
» (x4,y4)
= N1 S s e TN
e 1 h‘I Ry
L >] L >] L] (2,92)
Wy
(a) (b) (© (@

Fig. 4: Building (a) layout graph with (b) internal and (c) external edges; (d) geometric information of two adjacent rectangles.

Layout graph |V] x 4 [V] x 64 [V] x 64 [V] x 64

features |B| x 1 |E| x 64 |E| x 64 |E| x 64

Message-Passing Global Max Pooling

Global Average Pooling

64
64 128 64 2 2
—_— — —_— —— HS/NHS
64
Concat Fully Connected SoftMax

Fig. 5: GNN Architecture of our proposed hotspot detector.

proximity effect and polygon interactions. We also empirically
find that using four message-passing layers results in the best
detection accuracy.

Edge feature update. To distill more efficient feature charac-
teristics of the interactions, i.e., edges, between graph nodes, we
apply different update functions for internal and external edges.
Specifically, in the k-th message-passing layer, we update the
edge features h as shown in Equation 5 and Equation 6.

®)

ey,w

b = U (k) & UM (i)

€v,w

hk‘+1

ev,w

-

€y, w

@ mk-‘,—l)

€v,w

(6)

Here, h* and h” represent the features of nodes v and w. @ is
concatenation. U* and H* are one-layer MLPs. r denotes the
type of e, that belongs to either internal or external edge.

Node feature update. Analogously, we update node features
as expressed in Equation 7 and Equation 8.

1 L
o IN()

m Z av,wsf(Uk(hﬁj) ©® hl:ji)
weN (v,r)

)

it =hy 4y myt ®
Here, N(v,r) is the set of neighbor nodes connected with
node v with either internal or external edges. S¥ is the edge-
dependant node feature update function using a two-layer MLP.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:10:54 UTC from IEEE Xplore. Restrictions apply.

Inspired by Graph Attention Networks (GAT) [15], we in-
troduce graph attention in our architecture to learn the different
importance of neighbor nodes that contribute differently to the
update of node features. The attention coefficients «, ,, are
computed as follows in Equation 9.

exp(aT LeakyReLU (R T1))

Qo = ev,w 9)

Y ien(v) exp(aTLeakyReLU(RE)

€y,

Here, a is a learnable vector controlling the attention that node
v receives from its neighbors.

Readout and Classification. After layout graph feature
extraction by all K message-passing layers, the aggregated
feature representations of all the metal polygons and their
interactions can be obtained as shown in Equation 10.

y=GMP({hE |ve V)@ GAP{h |veV}) (10

Here, GM P and GAP denote global max and global average
pooling, respectively, which concatenate to provide a global
graph representation y that is further classified by a two-layer
MLP into hotspots and non-hotspots with improved accuracy.

We compare the differences between our GNN hotspot
detector and prior GNN method [12] in Section V-D.

IV. COMPARATIVE STUDY OF LAYOUT GRAPH FEATURES
ON GNN HOTSPOT DETECTION

In addition to the coordinates and distance of metal polygons
that we use as layout features for GNN hotspot detection,

various other layout information potentially affects lithographic
hotspots. To provide a thorough evaluation of various layout
features on detection accuracy, we conduct a comparative study
that enumerates all the layout features we see related to hotspots
and provides their graph representations categorized as node
and edge features. We provide experimental results of using
these layout features for hotspot detection later in Section V.

A. Additional Node Features of Layout Graph

Width and height. The width and height of rectangles
encode their shape information, e.g., (wy, hy) of Ry in Fig. 4d.

Weight. Different rectangles have different influences, i.e.,
weights, in affecting lithography result of a layout clip based
on their locations. As lithography simulation examines printing
defects within the predefined ROI area centered in the layout
clip, the closer a rectangle is to the layout center, the more
important it is and, thus, the higher its weight. Similar feature
representation using polygon weights is used in prior work [14].

B. Additional Edge Features of Layout Graph

The overlap projection of two adjacent polygons reflects their
interactions and can be represented as edge features of a layout
graph for hotspot detection.

Offset. Offset reflects the relative location of two adjacent
rectangles, denoted as the coordinate shift of the top-left
vertices of two rectangles, e.g., (z1 — x3,y1 — y3) in Fig. 4d.

Length. The length of the overlap projection also measures
the relative location of two rectangles, e.g., [in Fig. 4d.

Orientation. Orientation indicates the horizontal or vertical
direction of the overlap projection. Horizontal and vertical
hotspots occur when lithography illumination is asymmet-
ric [16]; such orientation feature is used in [5], [12].

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Datasets and Baselines

We evaluate our proposed GNN-based hotspot detector on
two commonly used datasets, one is the smaller ICCAD
2012 [17], and the other is the augmented dataset in VTS
2018 [14] that contains a massive number of layout clips and
used by other works [18]—[21]. Details of these two datasets are
listed in Table I. Layout clips in ICCAD 2012 are partitioned
with a resolution of 1200 nm x 1200 nm, and VTS 2018
layout clips have a resolution of 1110 nm x 1110 nm. When
represented as images for CNN-based hotspot detection, layout
metal areas have pixel values of 1, and the background is O.

We compare our location-based GNN hotspot detector with
three SOTA DL-based solutions, including TCAD’19 [9] and
TCAD’22 [10] based on CNNs and DATE’22 [12] based on
GNN. TCAD’19 computes DCT coefficients of layout clips as
inputs to a CNN with four convolutional layers and two fully
connected layers. TCAD’22 uses five Inception blocks with
CBAM attention and three fully connected layers for more dis-
tinctive feature extraction. DATE’22 extracts five node features
and four edge features for GNN-based hotspot detection.

We train our models for 20 epochs with a batch size of 128
and an initial learning rate of 0.001 using the Adam optimizer
for cross-entropy loss optimization. We implement our codes in

Python 3.10 and PyTorch 1.12.0 on servers with an Intel Xeon
W-3455 CPU and NVIDIA GeForce RTX 4090 GPU.

B. Performance of DL-based Hotspot Detection

We show in Table I the detection accuracy and inference time
per layout clip of various DL-based hotspot detectors on two
datasets and their model sizes.

Accuracy. Our GNN achieves the highest HA and the lowest
FA on both ICCAD 2012 and VTS 2018 datasets. Specifically,
we see more advantage in detection accuracy of our GNN
than other DL models on the larger and much more difficult
VTS 2018 dataset. The other GNN architecture, DATE’22, also
outperforms two CNNs on VTS 2018. TCAD’22 generally
performs better than TCAD’19 on both datasets.

Inference time. Our GNN requires significantly less infer-
ence time than CNNs with up to 31.8x and 29.2x speed up
on two datasets, respectively, when compared to the slowest
TCAD’19. Generally, GNNs are much faster than CNNs by
one order of magnitude. Our GNN takes slightly longer but
comparable inference time than DATE’22 that also uses a GNN.

Model size. Our GNN has the smallest model size compared
to all three baselines, and only takes approximately 1/2.5 and
1/64 of the sizes of TCAD’19 and TCAD’22, respectively.

Discussion. TCAD’19 achieves less accurate detection re-
sults than others as its use of DCT coefficients in frequency do-
main loses critical spacial information of layout clips, which is
crucial for hotspot detection. TCAD’22 outperforms TCAD’19
on both datasets due to its more complex network architecture
that includes attention modules and Inception blocks, which
help CNNs focus on more important and distinctive features
between hotspots and non-hotspots. In contrast to CNN hotspot
detectors that extract layout features from entire layout images,
GNN solutions directly extract layout information pertaining
to lithographic hotspots as graph features for classification. By
extracting the most comprehensive and critical information of
layout clips using polygon locations, our GNN achieves the
highest detection accuracy than all prior methods.

Besides the accuracy advantage, GNN’s use of layout graph
features largely reduces input size, obviating the need for
complex feature extraction architectures like CNNs. Thus, it
results in more efficient inference costs and smaller model sizes.

C. Layout Graph Features on GNN Detection Accuracy

We show in Table II our comparative study on the detec-
tion accuracy of GNN-based hotspot detectors using different
combinations of node and edge features. We mainly group the
layout graph features into two categories, one provides location
information of metal polygons using coordinates with shape
implied, and the other represents only shape information with
width and height. Additional node features include rectangle
weights, and additional edge features include offset, distance,
length, and orientation, as we described in Section IV.

We see far better detection accuracy when using polygon
location than shape information for GNN hotspot detection.
Specifically, using coordinates and distance as node and edge
features results in the highest HA on both datasets. With more
features added to the nodes and edges, overall accuracy does not

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:10:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Layout statistics and hotspot accuracy (%), false alarm, inference time (us) per layout clip, and model size of various
hotspot detectors. L.T.: inference time. Note that TCAD’22 already applies down-sampling on layout inputs for computational
efficiency. (We report the original accuracy numbers as claimed in the baseline papers on ICCAD 2012 dataset.)

Dataset Training Validation TCAD’19 (2.108 MB) TCAD’22 (53.235 MB) DATE’22 (0.840 MB) Ours (0.835 MB)
#HS #NHS #HS #NHS HA FA LT. HA FA LT. HA FA ILT. HA FA ILT.

ICCAD 2012 1204 17096 2524 13503 98.40 3535 281937 9877 2510 1244.16 9842 1731 4399 9897 1068 88.60

VTS 2018 250509 268466 999 19001 93.69 1174 213570 95.60 1041 1306.12 96.40 1026 6450 98.50 984 73.05

TABLE II: GNN hotspot detection accuracy with different
combinations of node and edge features of layout graph.
(Coord: coordinate, Wgt: weight, W: width, H: height, Ofst:
offset, Dist: distance, Len: length, Orient: orientation.)

Polygon Node Edge ICCAD 2012 VTS 2018
HA FA HA FA
Coord - 98.02 632 9740 1164
Location Coord Qfst 98.49 763 98.00 1235
(w/ shape Coord D%st 98.97 1068 98.50 984
implied) Coord D%sl, Len . 98.61 869 97.90 993
Coord Dist, Len, Orient 98.42 850 97.50 921
Coord, Wgt Dist, Len, Orient ~ 98.57 952 98.00 988
W, H - 92.47 830 90.59 2928
W, H Ofsst 90.1 636 94.60 1489
Shape W, H D%st 93.38 804 92.89 2777
W, H Dist, Len 92.79 726 92.39 2745
W, H Dist, Len, Orient 95.01 979 90.59 2720
W, H, Wgt Dist, Len, Orient 95.37 1078 91.59 1371

increase. When using shape information for hotspot detection
on VTS 2018, the combination of width, height and offset
provides overall the highest detection accuracy, whereas using
only node features of width and height has the lowest accuracy.
We find that adding rectangle weights to node features does not
necessarily improve detection accuracy.

Discussion. Coordinate and distance as node and edge
features denote the absolute and relative locations of metal
polygons on the layout clip and imply their shapes, which retain
all the geometric information of a layout clip. In contrast, width
and height only provide the shape of partitioned rectangles, the
precise shape and location of original complex polygons are
not accurately described. As a result, GNN hotspot detection
using polygon locations obtains higher detection accuracy than
using polygon shapes. Due to GNN’s limited learning capacity,
adding more features to the layout graph does not necessarily
increase or even hurt accuracy. Assigning weights to rectangles
does not improve detection accuracy when the graph features
include the coordinates, as such weight information is embed-
ded in the rectangle locations and can be properly implied.

D. Comparisons Between DATE’22 and Our Method

We summarize the differences of our GNN hotspot detector
and DATE’22 in terms of layout graph features and network
architectures in Table III. One key difference is that DATE’22
uses shape information (width and height) with relative loca-
tions as graph features, whereas ours use the precise locations
(coordinate) for hotspot detection, which contains more com-
prehensive information of layout clips. We additionally use

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:10:54 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparisons between DATE’22 and our method.

GNN Features & Components DATE’22

Witdh and height v
Coordinates v
Min distance of external edges
of internal/external edges

Ours

Node

Distance
Orientation
Coordinates of overlap/junction

Edge

ANIENNENENN
\

Edge-dependent node update function
Edge-dependent edge update function
Graph attention

Readout global max pooling v
Readout global average pooling

Architecture

SNENENENEN

TABLE IV: Detection accuracy using combinations of graph
features and GNN architectures from DATE’22 and our method.

Graph features Architecture ICCAD 2012 VTS 2018
HA FA HA FA
DATE’22 DATE’22 9842 1731 9640 1026
DATE’22 Ours 98.65 1464 96.60 1137
Ours DATE’22 9893 817 9740 940
Ours Ours 98.97 1068 98.50 984

separate update functions for internal and external edge fea-
tures. We introduce graph attention to focus on more important
neighboring nodes and edges, as well as global average pooling
along with global max pooling in the readout layer for more
efficient layout feature extraction.

We perform an ablation study using layout graph features
and network architectures from DATE’22 and our method and
report their detection accuracy in Table IV. We find that our
graph features and architecture combine to yield the best overall
detection accuracy with the highest HA. Despite using fewer
layout graph features than DATE’22 for hotspot detection, we
achieve large enhancements in both HA and FA using either
architecture from DATE’22 or our method. The simpler GNN
architecture from DATE’22 and our more concise yet critical
graph features result in less FA but inferior HA, especially
when evaluated on the more comprehensive VTS 2018 dataset.

VI. CONCLUSION

In this work, we propose a novel GNN-based lithographic
hotspot detector that uses polygon locations. Compared to all
prior DL-based solutions, it has the highest detection accuracy,
the smallest model size, and highly efficient inference costs.

REFERENCES [21] T. Zhang, H. Yang, K. Liu, and Z. Xie, “Apple: An explainer of
ml predictions on circuit layout at the circuit-element level,” in 2024

[1]1 C. A. Mack, “Thirty years of lithography simulation,” in Optical Mi- 29th Asia and South Pacific Design Automation Conference (ASP-DAC).
crolithography XVIII, vol. 5754. SPIE, 2005, pp. 1-12. IEEE, 2024, pp. 374-379.

[2] S.-Y. Lin, J.-Y. Chen, J.-C. Li, W.-Y. Wen, and S.-C. Chang, “A novel
fuzzy matching model for lithography hotspot detection,” in Proceedings
of the 50th Annual Design Automation Conference, 2013, pp. 1-6.

[3] W.-Y. Wen, J.-C. Li, S.-Y. Lin, J.-Y. Chen, and S.-C. Chang, “A fuzzy-
matching model with grid reduction for lithography hotspot detection,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 11, pp. 1671-1680, 2014.

[4] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang, and C. Chiang, “Accurate

process-hotspot detection using critical design rule extraction,” in Pro-

ceedings of the 49th Annual Design Automation Conference, 2012, pp.

1167-1172.

D. Ding, X. Wu, J. Ghosh, and D. Z. Pan, “Machine learning based

lithographic hotspot detection with critical-feature extraction and clas-

sification,” in 2009 IEEE international conference on IC design and

technology. 1EEE, 2009, pp. 219-222.

H. Zhang, B. Yu, and E. F. Young, “Enabling online learning in lithog-

raphy hotspot detection with information-theoretic feature optimization,”

in 2016 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). IEEE, 2016, pp. 1-8.

[7]1 D. Ding, J. A. Torres, and D. Z. Pan, “High performance lithography
hotspot detection with successively refined pattern identifications and
machine learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 11, pp. 1621-1634, 2011.

[8] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new lithography
hotspot detection framework based on adaboost classifier and simplified
feature extraction,” in Design-Process-Technology Co-optimization for
Manufacturability IX, vol. 9427. SPIE, 2015, pp. 201-211.

[9] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Young, “Layout hotspot
detection with feature tensor generation and deep biased learning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 6, pp. 1175-1187, 2019.

[10] H. Geng, H. Yang, L. Zhang, F. Yang, X. Zeng, and B. Yu, “Hotspot
detection via attention-based deep layout metric learning,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 41, no. 8, pp. 2685-2698, 2022.

[11] Y. Jiang, F. Yang, B. Yu, D. Zhou, and X. Zeng, “Efficient layout hotspot
detection via binarized residual neural network ensemble,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 40, no. 7, 2021.

[12] S. Sun, Y. Jiang, F. Yang, B. Yu, and X. Zeng, “Efficient hotspot detection
via graph neural network,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022, pp. 1233-1238.

[13] Y. Jiang, F. Yang, B. Yu, D. Zhou, and X. Zeng, “Efficient layout hotspot
detection via neural architecture search,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 27, no. 6, pp. 1-16,
2022.

[14] G. R. Reddy, C. Xanthopoulos, and Y. Makris, “Enhanced hotspot
detection through synthetic pattern generation and design of experiments,”
in 2018 IEEE 36th VLSI Test Symposium (VTS). 1EEE, 2018, pp. 1-6.

[15] P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” in International Conference on Learning
Representations (ICLR), 2018.

[16] J. W. Park, A. Torres, and X. Song, “Litho-aware machine learning
for hotspot detection,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 7, pp. 1510-1514, 2017.

[17] J. A. Torres, “Iccad-2012 cad contest in fuzzy pattern matching for physi-
cal verification and benchmark suite,” in Proceedings of the International
Conference on Computer-Aided Design, 2012, pp. 349-350.

[18] K. Liu, B. Tan, R. Karri, and S. Garg, “Poisoning the (data) well in ml-
based cad: A case study of hiding lithographic hotspots,” in 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2020, pp. 306-309.

[19] Z. Cheng and K. Behdinan, “Deep learning hotspots detection with
generative adversarial network-based data augmentation,” Journal of
Micro/Nanopatterning, Materials, and Metrology, vol. 21, no. 2, pp.
024 201-024 201, 2022.

[20] K. Liu, B. Tan, R. Karri, and S. Garg, “Training data poisoning in ml-cad:
Backdooring dl-based lithographic hotspot detectors,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 6, pp. 1244-1257, 2020.

[5

—_

[6

=

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:10:54 UTC from IEEE Xplore. Restrictions apply.

