
2025 Design, Automation & Test in Europe Conference (DATE 2025)

 978-3-9826741-0-0/DATE25/© 2025 EDAA

 OpenC2: An Open-Source End-to-End Hardware
Compiler Development Framework for Digital

Compute-in-Memory Macro
Tianchu Dong, Shaoxuan Li, Yihang Zuo, Hongwu Jiang, Yuzhe Ma, and Shanshi Huang†

Microeletronics Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
{tdong351, slieu, yzuo099}@connect.hkust-gz.edu.cn, {hongwujiang, yuzhema, †shanshihuang}@hkust-gz.edu.cn

Abstract—Digital Compute-in-Memory (DCIM), which inserts
logic circuits into SRAM arrays, presents a significant advance-
ment in CIM architecture. DCIM has shown great potential
in applications, and the diversity of applications requires rapid
hardware iteration. However, the hardware design flow from user
specifications to layout is extremely tedious and time-consuming for
manual design. Commercial EDA tools are limited by restrictive
licenses and the inability to specifically optimize the datapath,
which calls for an open-source end-to-end hardware compiler
for DCIM. This paper proposes OpenC2, the first open-source
end-to-end development framework for DCIM macro compilation.
OpenC2 provides a template-based generation platform for DCIM
macros across various technologies, sizes, and configurations. It
can automatically generate a datapath-optimized, compact DCIM
macro layout based on a hierarchical physical design methodology.
Our experiment results show that OpenC2’s compact design on
FreePDK45 delivers over 30% area reduction and over 40% im-
provement in area efficiency compared to AutoDCIM on TSMC40.

I. INTRODUCTION

The success of deep learning (DL) depends on both algorithm
advances and hardware development. The conventional Von-
Neumann architecture faces the “memory wall” problem, leading
to the popularity of CIM techniques. DCIM [1], a type of CIM
architecture inserting logic circuits into SRAM arrays, has shown
impressive hardware performance improvement in accelerating
vector-to-matrix multiplications (VMMs) in DL algorithms. It
offers enhanced accuracy and robustness compared to traditional
analog CIM approaches. However, current DCIM designs are
highly dependent on time-consuming manual efforts. The first
end-to-end compiler for DCIM, AutoDCIM [2], has limitations
such as the privacy and the dependence on commercial EDA
tools. Therefore, this work proposes OpenC2 to provide an
open-source customizable compiler, and serve as a baseline for
developing DCIM macro compilers.

The main contributions of this work are as follows:

• OpenC2 is the first open-source end-to-end framework
that can generate the front-end netlist (in VERILOG and
SPICE format) and the back-end layout (in DEF and GDSII
format) of the DCIM macro from top-level specifications.
It provides reference circuits and physical implementations
in 45nm FreePDK and uses only open-source tools, which
can be ported to commercial PDKs or EDA tools.

• It offers a fine-grained floorplan template and hierarchical
implementation for the physical design of the DCIM macro,

Customized Stdcell LibCustomized Stdcell LibInput parameters

r: number of rows of macro
c: number of cols of macro
w: weight bit width
i: input bit width

Input parameters

r: number of rows of macro
c: number of cols of macro
w: weight bit width
i: input bit width

Netlist Generation Layout Generation

Templates

 bitcell array adder tree

drivers control

Technology

Template based
Generator

Macro.v

Macro.def

Macro.sp

YOSYS

ParamsParams Ctrl_rtl.vCtrl_rtl.v

Ctrl_gate.v

Converter
NTUPlace Qrouter

KLAYOUT
Template based

Placer

TempsStd.lefStd.libStd.lib Std.lef

Accum
Ctrl

Macro.def

Macro.gds

Std.gds
Std.sp ParamsParams TempsTemps Std.vStd.v

.v .sp .lef .gds.lib.v .sp .lef .gds.lib

Std.lef

Fig. 1 Overall Flow of OpenC2

balancing runtime and optimism, and providing optimiza-
tion opportunities for different modules.

• Experimental results show that OpenC2’s compact physical
design methodology on FreePDK45 can achieve a 30%
reduction in area and an improvement in area efficiency
of over 40% compared to AutoDCIM on TSMC40.

II. OPENC2 FRAMEWORK

A. Overview
Fig. 1 depicts an overview of the OpenC2 framework. The input
of the framework consists of user specifications, technology files,
and a standard cell library with customized cells (DCIM bitcell,
SRAM r/w circuit, and adder for sign extension [1]). It automat-
ically generates design files for front-end netlist (in VERILOG
and SPICE) and back-end layout (in DEF and GDSII).

Control
Block

W4r

X

W4r

X

W3r

X

W3r

X

W2r

X

W2r

X

W1r

X

W1r

X

W1r

X

W4n

X

W4n

X

W3n

X

W3n

X

W2n

X

W2n

X

W1n

X

W1n

X

W1n

X

W4r

X

W3r

X

W2r

X

W1r

X

W4n

X

W3n

X

W2n

X

W1n

X

W42

X

W42

X

W32

X

W32

X

W22

X

W22

X

W12

X

W12

X

W12

X

W41

X

W41

X

W31

X

W31

X

W21

X

W21

X

W11

X

W11

X

W11

X

W42

X

W32

X

W22

X

W12

X

W41

X

W31

X

W21

X

W11

X

Bitcell
Array

Adder
Tree

W4r

X

W4r

X

W3r

X

W3r

X

W2r

X

W2r

X

Wkr

X

Wkr

X

Wkr

X

W4n

X

W4n

X

W3n

X

W3n

X

W2n

X

W2n

X

Wkn

X

Wkn

X

Wkn

X

W4r

X

W3r

X

W2r

X

Wkr

X

W4n

X

W3n

X

W2n

X

Wkn

X

W42

X

W42

X

W32

X

W32

X

W22

X

W22

X

Wk2

X

Wk2

X

Wk2

X

W41

X

W41

X

W31

X

W31

X

W21

X

W21

X

Wk1

X

Wk1

X

Wk1

X

W42

X

W32

X

W22

X

Wk2

X

W41

X

W31

X

W21

X

Wk1

X

Bitcell
Array

Adder
Tree

Accumulator

A
d

d
e

rSign Processing

Shift DFF

D
e

co
d

e
r

&
 D

ri
ve

rs

WL[1]

IN[1]

WL[1]

IN[1]

WL[2]

IN[2]

WL[2]

IN[2]

WL[n]

IN[n]

WL[n]

IN[n]

WL[r]

IN[r]

WL[r]

IN[r]

Input
Driver

WL
Driver

DCIM Column

Accumulator

A
d

d
e

rSign Processing

Shift DFF

Accumulator

A
d

d
e

rSign Processing

Shift DFF

DCIM ColumnDCIM Column

Fig. 2 DCIM Floorplan of OpenC2

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:16:53 UTC from IEEE Xplore. Restrictions apply.

4 8 16 32 64 128 256

0

1

2

3

DCIM Array Size (kb)

A
re

a
(m

m
2
)

Area: AutoDCIM+TSMC40 Area: OpenC2+FreePDK45

4,000

5,000

6,000

7,000

A
re

a
E

ffi
ci

en
cy

(F
2
/b

)

Efficiency: AutoDCIM+TSMC40 Efficiency: OpenC2+FreePDK45

Fig. 3 Area Comparison with AutoDCIM

4 8 16 32 64 128 256

0

20

40

60

80

DCIM Array Size (kb)

Po
w

er
(m

W
)

Fig. 4 Power Analysis

4 8 16 32 64 128 256

30

40

50

60

70

TSMC22nm, 89TOPS/W @ 0.72V, 0.5GHz
Normalized to 43.51TOPS/W in 45nm

TSMC5nm, 254TOPS/W @ 0.5V, 0.36GHz
Normalized to 28.88TOPS/W in 45nm

TSMC3nm, 484TOPS/W @ 0.55V, 0.8GHz
Normalized to 32.27TOPS/W in 45nm

DCIM Array Size (kb)

E
ne

rg
y

E
ffi

ci
en

cy
(T

O
PS

/W
)

Fig. 5 Energy Efficiency Analysis

4 8 16 32 64 128 256

1

2

3

4 TSMC22nm, 16.3TOPS/mm2 @ 0.72V, 0.5GHz
Normalized to 3.89TOPS/mm2 in 45nm

TSMC5nm, 221TOPS/mm2 @ 0.9V, 1.44GHz
Normalized to 2.73TOPS/mm2 in 45nm

TSMC3nm, 495.3TOPS/mm2 @ 0.9V, 1.5GHz
Normalized to 2.20TOPS/mm2 in 45nm

DCIM Array Size (kb)

A
re

a
E

ffi
ci

en
cy

(T
O

PS
/m

m
2
)

Fig. 6 Area Efficiency Analysis

B. Netlist Generation
Under the guidance of a clear datapath, the structures of sub-
modules in DCIM macro are quite regular, except for the control
block. Therefore, The netlists in VERILOG and SPICE formats
of these modules could be efficiently generated with a template-
based flow. Due to the complex timing relationships inside the
control block, OpenC2 only provides an RTL template. The gate-
level netlist is then generated from logic synthesis, for which
OpenC2 embraces an open-source tool named YOSYS [3].

C. Hierarchical Physical Design
1) Floorplan
As illustrated in Fig. 2, OpenC2 employs a highly efficient

datapath-based floorplanning strategy.
2) Hierarchical Physical Design Approach
In the context of DCIM macro which features a distinct dat-

apath and numerous identical modules, the strategy of dividing
them into sub-modules for individual placement and routing,
followed by their reassembly, can significantly enhance the
efficiency of the physical design process.

For the initial phase of physical design, OpenC2 creates
the layout for the 7 sub-modules based on the standard cell
library. The accumulator and control block are placed using
the NTUPlace algorithm [4], whereas the placement of other
sub-modules is optimized based on the datapath. The routing of
these sub-modules is facilitated by the open-source tool Qrouter
[5]. During the physical design process, OpenC2 primarily
utilizes easily editable files in DEF and LEF format. With the
assistance of the open-source layout editing tool, KLAYOUT [6],
it becomes feasible to merge the GDSII files of standard cells to
produce files in GDSII format corresponding to the DEF files.

III. EVALUATION

A. Layout of DCIM Macro Generated by OpenC2

Fig. 7 illustrates the OpenC2-generated layout designs of DCIM
macro in 64x64 (4kb) for 4-bit by 4-bit computations.

Fig. 7 64x64 DCIM Marco Layout Generated by OpenC2

B. Area Analysis
We compare the area of OpenC2 on FreePDK45 with the best
result of the design using AutoDCIM on TSMC40. Furthermore,

we assess the area efficiency, defined by area/(technology feature
size)2/bits (the lower, the better), which can fairly measure the
area required to store each bit to be calculated at different tech
nodes. The experimental results are illustrated in Fig. 3.

Across all design sizes, OpenC2 delivered more than a 30%
reduction in area and an enhancement of over 40% in area
efficiency in comparison to AutoDCIM. It is worth noting that
AutoDCIM adopts a sharing mechanism for adder trees, which
comes at the expense of reduced computational parallelism.

C. Power and Efficiency Analysis
The other common evaluation metrics of DCIM Macro include
power, energy efficiency, and area efficiency. We also compare
these metrics of OpenC2-generated designs (@1V, 0.1GHz) with
some state-of-the-art (SOTA) DCIM macros published recently,
ensuring that the comparison is normalized to the same process
node and INT4, as illustrated in Fig. 4-6.

IV. CONCLUSION

In this paper, we propose OpenC2, the first open-source end-to-
end hardware compiler development framework for digital CIM.
The framework can generate a datapath-optimized, compact
DCIM macro layout tailored to user specifications, leveraging
a hierarchical physical design methodology. For public releases,
it provides reference circuits and physical implementations in
45nm FreePDK and uses only open-source tools during the flow.
It also facilitates adaptation to a diverse array of technologies,
sizes, and configurations. The generated design space will enable
architecture-level research and various applications of DCIM,
building a good ecosystem for DCIM-based design.

REFERENCES

[1] Y.-D. Chih, P.-H. Lee, H. Fujiwara, Y.-C. Shih, C.-F. Lee, R. Naous, Y.-
L. Chen, C.-P. Lo, C.-H. Lu, H. Mori et al., “16.4 an 89tops/w and 16.3
tops/mm 2 all-digital sram-based full-precision compute-in memory macro
in 22nm for machine-learning edge applications,” in 2021 IEEE ISSCC,
vol. 64, 2021.

[2] J. Chen, F. Tu, K. Shao, F. Tian, X. Huo, C.-Y. Tsui, and K.-T. Cheng,
“Autodcim: An automated digital cim compiler,” in 2023 60th ACM/IEEE
Design Automation Conference (DAC), 2023.

[3] C. Wolf, “Yosys-a free verilog synthesis suite,” 2013. [Online]. Available:
https://api.semanticscholar.org/CorpusID:202611483

[4] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang,
“Ntuplace3: An analytical placer for large-scale mixed-size designs with
preplaced blocks and density constraints,” IEEE TCAD, 2008.

[5] RTimothyEdwards, “Qrouter,” 2023. [Online]. Available: https://github.
com/RTimothyEdwards/qrouter

[6] klayoutmatthias, “Klayout,” 2024. [Online]. Available: https://github.com/
KLayout

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:16:53 UTC from IEEE Xplore. Restrictions apply.

