
2025 Design, Automation & Test in Europe Conference (DATE 2025)

 978-3-9826741-0-0/DATE25/© 2025 EDAA

 iRw: An Intelligent Rewriting

Haisheng Zheng1, Haoyuan Wu2, Zhuolun He2, Yuzhe Ma3, Bei Yu2
1Shanghai Artificial Intelligence Laboratory 2CUHK 3HKUST (GZ)

Abstract—This paper proposes a novel machine learning-driven
rewriting algorithm to optimize And-Inverter Graphs (AIGs)
for refining combinational logic prior to technology mapping.
The algorithm, called iRw, iteratively extracts subcircuits in
AIGs and replaces them with more streamlined implementations.
These subcircuits are identified using an original extraction algo-
rithm, while the compact implementations are produced through
rewriting techniques guided by a machine learning model. This
approach efficiently enables the generation of logically equivalent
subcircuits with minimal overhead. Experiments on benchmark
circuits indicate that the proposed methodology outperforms state-
of-the-art AIG rewriting techniques in both quality and runtime.

I. INTRODUCTION

Rewriting is a key technology-independent optimization in
logic synthesis. It involves extracting subcircuits, transforming
each into a functionally equivalent one, and replacing the
original with the transformed version if it offers a lower cost.
Rewriting typically targets single-output subcircuits, employing
various subcircuit extraction methods (e.g., cut enumeration [1],
maximum fanout-free cones [2]) tailored to the specific needs of
rewriting algorithms. To facilitate better circuit transformations,
algorithms such as pre-computed libraries [1], [3], heuristic
resynthesis [2], [4], and exact resynthesis [5], [6] have been pro-
posed. Additionally, rewriting with multi-output subcircuits [4],
[7] enables shared logic exploration across outputs, reducing re-
dundancy and improving performance. Furthermore, to enhance
the efficiency of logic optimization, several studies [8]–[10]
employ machine learning to guide the optimization process.

Recognizing that an effective logic optimization algorithm
relies on the subcircuit extraction method and optimization
strategies working in tandem, this paper presents several tech-
niques to enhance the rewriting process. The main contributions
of this work are summarized as follows:
• A novel subcircuit extraction algorithm specifically designed

to extract subcircuits with optimization potential.
• A method of machine learning-guided optimization process,

ensuring efficient optimization with minimal runtime.
• Extensive experiments demonstrating that iRw outperforms

state-of-the-art AIG rewriting in both quality and runtime.

II. ALGORITHMS

The overall flow of iRw is shown in Fig. 1. iRw iteratively
processes each node in the AIG, excluding primary inputs, as
the pivot node P through the following stages:
❶ Subcircuit Extraction. A subgraph extraction algorithm is
designed to extract subcircuits with optimization potential.
Extract Single-Output Subcircuits. Single-output subcircuits
rooted at the pivot node are extracted based on its transitive

This work is supported by Shanghai Artificial Intelligence Laboratory.

➊ Subcircuits Extraction

AND (A, NOT(B))AND (NOT(A), B)AND (A, B) AND (NOT(A), NOT(B))Primary Input Level 0 - 5

Original AIG (Partial)

^^ ^^^^

^^

^ ^

^

^

^^

^

^

^

Pivot Node

^

^

^

Extract Single-Output
Subcircuits

I5I3 I6I4I2I1

^^

^ ^

^

^

^^

^
^

Expand to Multi-Output
Subcircuits

I5I3 I6I4I2I1

^^

^ ^

^

^

^^
^

^

^

 Filter Subcircuits
by Reconvergence

11 Nodes

I5I3 I6I4I2I1

^^

^ ^

^

^

^^
^

^

^

➌ Subcircuits Replacement

^^ ^^^^

^

^

^

^

^

^

^

^

^

^

^

 ➋ Subcircuits Optimization

OptGuider

Encoding 8 Nodes

I5I4 I6I3I2I1

^

^

^

^

^

^

^

^

Futher Optimization

9 Nodes

I5I4 I6I3I2I1

^

^ ^

^

^

^

^

^^

Initial Optimization

F1

F2

F1 F1

F1 F1

F2 F2

F2 F2

F3 F3

F3 F3

Fig. 1 Overview of the iRw process flow.

fan-in, with a maximum input size constraint K. Multiple
subcircuits may be extracted for a given pivot node due to this
constraint. The breadth-first search algorithm is employed for
its layer-wise structure, ensuring the subcircuits cover a broad
range of relevant nodes associated with the pivot node.
Expand to Multi-Output Subcircuits. These single-output
subcircuits are then expanded into multi-output subcircuits by
exploring their transitive fan-out.
Filter Subcircuits by Reconvergence. Optimization opportu-
nities are assessed based on the presence of reconvergent paths
within multi-output subcircuits, which indicate potential for
observability-based optimizations [4] (e.g., resubstitution [2]).
Subcircuits with reconvergent paths are retained for further
optimization, while those without are discarded.
❷ Subcircuit Optimization. This stage involves an initial opti-
mization of the extracted subcircuits, followed by an assessment
using a lightweight graph neural network (GNN), OptGuider,
to determine whether the further optimization stage is needed.
Initial Optimization. Balance [1] is employed as the initial
optimization technique for the extracted subcircuits due to its
negligible runtime overhead and effectiveness in optimizing
subcircuits with simple topological structures containing re-
convergent paths. If reconvergent paths remain after balance,
heuristic resubstitution [4] is then applied, which efficiently
optimizes subcircuits with such paths.
Further Optimization. Despite applying heuristic resubstitu-
tion to the extracted subcircuits, several still retain reconvergent
paths, indicating potential for further optimization. In these
cases, rewrite is applied. Even if rewrite [1] does not directly
improve the circuit, it may generate a cost-equivalent one that

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:19:34 UTC from IEEE Xplore. Restrictions apply.

TABLE I Performance Comparison with SOTA Rewriting.

Benchmark
Window Rewriting [4] iRw

Until Convergence First Iteration Until Convergence
Name # Nodes # Nodes Time # Nodes Time # Nodes Time

adder 1,020 892 0.04 892 0.13 892 0.28
bar 3,336 2,952 3.76 2,952 0.62 2,952 1.17
hyp 214,335 204,926 20.28 204,926 19.90 204,926 40.38
i2c 1,342 1,291 0.10 1,289 0.14 1,273 0.58

int2float 260 239 0.02 232 0.09 226 0.36
log2 32,060 29,700 6.59 29,603 5.19 29,556 28.55

multiplier 27,062 24,566 3.89 24,426 3.93 24,426 8.80
sin 5,416 5,132 1.85 5,115 1.05 5,095 7.73
sqrt 24,618 18,325 2.95 18,279 2.42 18,236 16.17

square 18,484 16,606 2.72 16,386 2.04 16,316 6.47

Average - 9.79% - 10.32% - 10.78% -
Total - - 42.20 35.51 - 110.49

TABLE II Impact of Multi-Output Subcircuit Extraction.
Method # Initial Nodes # Optimized Nodes Average Improvement

b; rs -K 6; rw; rf;
327,933

314,793 4.01%
iRw 304,100 10.32%

TABLE III Impact of OptGuider.
Method # Nodes [1st Iter.] Time # Nodes [Util Conv.] Time

iRw w/o OptGuider 304,007 44.20 303,805 188.05
iRw with OptGuider 304,100 35.51 303,898 110.49

Improvement -0.03% 19.66% -0.03% 41.25%

simplifies reconvergent paths, thereby enhancing the effective-
ness of the subsequent strategy, refactor [1].
Optimization Guider. Our observations reveal that only a
few subcircuits benefit from the further optimization stage,
and reconvergent paths in optimized subcircuits are unreliable
indicators for further optimization. However, optimizing these
subcircuits reduces both node count in AIGs and optimization
iterations. To address this, we propose OptGuider, a lightweight
GNN-based algorithm that identifies subcircuits suitable for
further optimization, thereby reducing the runtime overhead
of iRw. This approach is inspired by several studies [11]–[13]
that demonstrate the effectiveness of GNNs in learning netlist
representations for downstream tasks.
Node Feature Encoding. As visualized in Fig. 1, instead
of marking NOT operations on edges, which increases GNN
overhead, edge information is incorporated into AND gate
representations. Node levels, representing the logical hierar-
chy of AIGs, are captured using positional encoding (PE),
improving the model’s understanding of circuit structure:
PE(v,2i) = sin

(
level(v)
100002i/d

)
, PE(v,2i+1) = cos

(
level(v)
100002i/d

)
,

where level(v) denotes the logical level of node v, and d
represents the feature dimension.
Lightweight GNN. GraphSAGE [14] is used as the GNN
model due to its computational efficiency.
Cost-Sensitive Learning. Misclassifying non-optimizable sub-
circuits increases computational overhead without enhancing
the optimization process, while overlooking optimizable sub-
circuits can impede it. Given this asymmetry, cost-sensitive
learning [15] using binary cross-entropy loss is employed in
the OptGuider training process to help the classifier prioritize
the identification of subcircuits that impact overall performance.
❸ Subcircuit Replacement. If the transformed subcircuit

shows improvement, it replaces the original one in the AIG.

III. EXPERIMENTS

iRw was implemented in C++ using mockturtle [16] and
LibTorch [17]. Extensive experiments evaluated its performance
on a 2.6 GHz AMD EPYC 7H12 CPU. To ensure fairness,
the input size for subcircuit extraction was set to K = 6
in all configurable algorithms. The circuits from the EPFL
benchmark [18], shown in TABLE I, were used for evaluation.
The correctness of the optimized AIGs was verified using the
combinational equivalence checker from ABC [19].
Comparison with SOTA Rewriting. Window Rewriting [4]
was used as the baseline. The results are detailed in TABLE I.
iRw achieved greater node reduction than the baseline in a
single iteration, reducing runtime by 15.83%. When iRw ran
to convergence, the quality improved by 0.99% on average.
Effectiveness of Multi-Output Extraction. To evaluate the
contribution of multi-output subcircuit extraction in iRw, iden-
tical optimization strategies were applied to benchmark circuits
with and without this extraction. The results in TABLE II
demonstrate the effectiveness of multi-output subcircuit extrac-
tion in enhancing node reduction in iRw.
Effectiveness of OptGuider. To evaluate the effect of Opt-
Guider on iRw, node reduction performance was compared with
and without its guidance. The results in TABLE III indicate that
iRw, when guided by OptGuider, achieves significant runtime
improvements with only a slight impact on node reduction.

REFERENCES

[1] A. Mishchenko, S. Chatterjee et al., “DAG-Aware AIG Rewriting: A
Fresh Look at Combinational Logic Synthesis,” in Proc. DAC, 2006.

[2] A. Mishchenko and R. Brayton, “Scalable Logic Synthesis using a Simple
Circuit Structure,” in Proc. IWLS, 2006.

[3] M. Soeken, L. G. Amarù et al., “Optimizing Majority-Inverter Graphs
With Functional Hashing,” in Proc. DATE, 2016.

[4] H. Riener et al., “Boolean Rewriting Strikes Back: Reconvergence-Driven
Windowing Meets Resynthesis,” in Proc. ASPDAC, 2022.

[5] H. Riener et al., “On-the-fly and DAG-aware: Rewriting Boolean Net-
works with Exact Synthesis,” in Proc. DATE, 2019.

[6] H. Riener et al., “Exact DAG-Aware Rewriting,” in Proc. DATE, 2020.
[7] X. Zhu et al., “A Database Dependent Framework for K-Input Maximum

Fanout-Free Window Rewriting,” in Proc. DAC, 2023.
[8] W. L. Neto, M. Austin et al., “LSOracle: A Logic Synthesis Framework

Driven by Artificial Intelligence,” in Proc. ICCAD, 2019.
[9] X. Li, L. Chen, J. Zhang, S. Wen et al., “EffiSyn: Efficient Logic

Synthesis with Dynamic Scoring and Pruning,” in Proc. ICCAD, 2023.
[10] A. B. Chowdhury, B. Tan, R. Carey et al., “Bulls-Eye: Active Few-Shot

Learning Guided Logic Synthesis,” IEEE TCAD, 2022.
[11] H. Zheng, Z. He, F. Liu, Z. Pei, and B. Yu, “LSTP: A Logic Synthesis

Timing Predictor,” in Proc. ASPDAC, 2024.
[12] Z. Shi, H. Pan, S. Khan, M. Li et al., “DeepGate2: Functionality-Aware

Circuit Representation Learning,” in Proc. ICCAD, 2023.
[13] Z. He, Z. Wang, C. Bai, H. Yang, and B. Yu, “Graph Learning-Based

Arithmetic Block Identification,” in Proc. ICCAD, 2021.
[14] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation Learn-

ing on Large Graphs,” in Proc. NIPS, 2017.
[15] C. Elkan, “The Foundations of Cost-Sensitive Learning,” in Proc. IJCAI,

2001.
[16] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli et al.,

“The EPFL Logic Synthesis Libraries,” in arXiv preprint, 2018.
[17] A. Paszke, S. Gross, F. Massa et al., “PyTorch: An Imperative Style,

High-Performance Deep Learning Library,” in Proc. NIPS, 2019.
[18] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL Combina-

tional Benchmark Suite,” in Proc. IWLS, 2015.
[19] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength

Verification Tool,” in Proc. CAV, 2010.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 25,2025 at 06:19:34 UTC from IEEE Xplore. Restrictions apply.

