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Abstract ] EDATools
Dynamic power consumption is a significant concern in modern Benchmarks
integrated circuits. This issue is primarily caused by signal toggling, (e.g. dhrystone) .
including unwanted toggles known as glitches. With the number | Ff;;‘gfvisrk
of operations increasing in circuits, glitches can lead to significant - - i
additional dynamic power. This paper presents SMART-GPO, a novel | S'mumo‘l Trace File | | Samplicyd%ﬁ
framework that efficiently and accurately estimates and reduces N cycles 1% * N cycles SMART-GPO

glitch power. Our approach samples cycles for accurate glitch estima-
tion, followed by gate-sizing and V;j, assignment to optimize glitch
power based on sensitivity measurements. We validated SMART-
GPO on the Berkeley Out-of-Order Machine (BOOM) and Rocket
SoCs with TSMC N28 technology. It achieves a mean absolute per-
centage error (MAPE) of 2% on glitch power estimation when running
power analysis on only 1% simulation cycles. The optimization re-
sults demonstrate that our framework reduces glitch power by more
than 9%, which outperforms previous approaches substantially.
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1 Introduction

The growing diversification of integrated circuit (IC) applications,
spanning from low-power mobile devices to high-end data centers,
has elevated power consumption as a key metric in evaluating elec-
tronic devices. In CMOS circuits, power consumption can be divided
into two categories: dynamic power and static power. Dynamic power
is related to signal toggles in circuits, which causes the capacitors
in circuits to be charged and discharged [1]. Glitch is a hazardous
behavior that incurs additional toggles and consumes power. Distinct
from functional toggles, glitch activity is collectively determined by
switching activity, gate delay, and the imbalance of arrival times
at gate input pins. It is reported that glitch power can represent
up to 40% of the total power [2]. Therefore, it is essential to elimi-
nate the glitches such that the total power consumption is reduced.
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Figure 1: The overview of our framework compared with tra-
ditional glitch power analysis and optimization frameworks.

Reducing glitch power in modern designs involves two major chal-
lenges, including accurate glitch analysis and effective low-power
optimization.

Glitch power analysis is commonly conducted using two cate-
gories of methods. The first category is probability-based, proposed
in the 1990s [3, 4, 5]. These methods typically propagate switching
activities from inputs to outputs in the netlist while incorporating
simple timing models to estimate the arrival time differences. Al-
though fast, these methods are less accurate due to neglecting signal
correlation and the over-simplified timing model. With the scaling of
circuit sizes, it is realized that glitches are difficult to model due to the
complex interactions between switching activities and arrival times.
Consequently, simulation-based methods that incorporate timing
information are favored. They run gate-level simulations and cycle-
accurate power analysis with detailed timing on simulation traces by
commercial tools [6] or customized glitch analysis algorithms [7, 8, 9].
Although these methods are accurate as they capture glitch activi-
ties in detail, they are time-consuming. For instance, conducting a
cycle-accurate glitch power analysis with dhrystone benchmark on
BOOM SoC [10] requires more than 40 hours. Similar runtime issues
have also been reported in [9]. Hence, these analysis methods may
not be feasible when a design is optimized in an iterative manner.

In addition to glitch power estimation, optimizing a design to re-
duce glitch power is another critical task. Glitch power optimization
is usually performed through Engineering Change Orders (ECOs),
which typically involve gate sizing and V;, (threshold voltage) assign-
ment on the logic gates. Previous studies on glitch power optimiza-
tion can be categorized into numerical optimization and metric-based
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methods. In [11], glitches are reduced by gate sizing, which is formu-
lated as a geometric programming (GP) problem [12]. However, solv-
ing the GP problem becomes computationally prohibitive for netlists
containing millions of gates in a modern design. Besides, in advanced
technology nodes, gate delay may not be accurately described by a
linear model required by GP [13]. For metric-based methods, they
devise intricate metrics to indicate the amount of glitch power a
gate consumes due to glitch generation and propagation [9, 14, 15].
Then, optimization techniques such as gate down-sizing and increas-
ing Vy, are performed on the gates based on the ranking of metrics.
Unfortunately, no matter how intricate the metrics are, they can
only guide glitch optimization locally as more timing imbalances
and glitches may be potentially incurred elsewhere in the design
after ECO. What’s worse, these two categories both suffer from the
escalating scale and complexity of netlists and hence, are only tested
on small combinational circuits [9, 14, 15].

In this paper, we introduce sensitivity measurement for glitch
power optimization equipped with fast yet accurate glitch power
estimation. As shown in Figure 1, for an efficient estimation, our
method samples a small number of cycles from the benchmark and
runs cycle-accurate power analysis to estimate glitch power at each
gate. This approach reduces the time required for full power analysis
and preserves detailed timing based on simulation traces to reflect
actual glitch activities, which can be both fast and accurate. Based
on the accurate estimation, we further propose a gate-level sensitiv-
ity measurement framework for glitch power reduction. Different
from the previous glitch power optimization approaches that are
purely based on intricate metrics for gate selection in ECO and lack
a guarantee on glitch power reduction [9, 14, 15], we are able to
correlate the action of optimizing a gate directly with the total glitch
power reduction by measuring the sensitivity of each gate, which
thus guarantees glitch power reduction after ECO. Our contributions
are summarized as follows:

e We propose a synergistic framework for accurate glitch power
estimation and effective optimization.

e A random sampling approach is proposed to estimate glitch
power accurately and efficiently, which facilitates further glitch
power optimization.

o Furthermore, we propose a gate-level sensitivity measurement
framework to analyze the sensitivity of each gate for glitch power
reduction, in which a Monte-Carlo sampling approach is applied.
The gates with high sensitivity are selected during the ECO step
to ensure total glitch power reduction.

e Experimental results on two large RISC-V designs show that the
proposed method can achieve high estimation accuracy for glitch
power, with the mean absolute percentage error of 2%. Moreover,
the glitch power on two designs can be reduced by 9% and 17%,
which outperforms baseline methods substantially.

2 Preliminary and Problem Formulation
2.1 Glitch Power

The dynamic power consumption of circuits is brought about by
signal toggles. In addition to the toggles that fulfill circuit function-
ality, there are extra toggles. These extra toggles are called glitches,
and they add to dynamic power without affecting the circuit func-
tionality.

Glitches are typically analyzed using the inertial delay model [16].
A gate will ignore an incoming signal if the following signals (arriving
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Figure 2: (a) glitch generation. (b) glitch propagation. (c) com-
ponents of dynamic power.

Table 1: Notations in this work

Notations Explanations
N The number of cycles in the benchmark.
cj,j € [1,N] | The jth cycle out of a total of N cycles in the benchmark.
7 The variable that defines if ¢; will be sampled, 7; € {0,1}.
gk- k € [1,K] | The kth gate out of a total of K gates in the design.
Pk The glitch power of the kth gate at the jth cycle.
Pk The average glitch power of gate k on all cycles.
Pr The average glitch power of gate k on sampled cycles.

at the same or a different input) arrive within the gate’s inertial delay.
According to the inertial delay model, there are two types of glitches
that consume power:

(1) Generated glitches (Figure 2a). A glitch can be generated when
the difference in arrival times of any pair of input pins is larger
than the gate’s inertial delay, and the signal patterns on pins
satisfy the condition for a glitch.

(2) Propagated glitches (Figure 2b). A glitch may propagate to tran-
sitive fan-out gates if the width of the glitch pulse exceeds their
inertial delay and the conditions allow for propagation, further
consuming power.

They can contribute to more than 35% dynamic power of combina-
tional gates on BOOM, as depicted in Figure 2c.

2.2 Problem Formulation

(1) Given a netlist with K gates and a benchmark with N cycles, the
first task is to estimate glitch power at the gate level accurately
and efficiently.

(2) With the glitch power estimation approach, the next task is to
reduce the total glitch power by optimizing the design.

3 Glitch Power Estimation

In this section, we will elaborate on our methodology for fast
and accurate glitch power estimation. Some notations are shown
in Table 1 for a clearer illustration. The overview of our estimation
workflow is shown in Figure 3, which is essentially based on a random
sampling approach.

Typically, the power consumption for circuits is evaluated by
simulating long-running benchmarks and running power analysis
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Figure 3: An illustration of sampling cycles for power analysis.

on the simulation traces. However, it is impractical to run power
analysis on the entire simulation trace due to the unacceptable run-
time, especially when cycle-accurate power with detailed timing is
needed for a glitch power analysis. Although some ML-based meth-
ods have been proposed for a fast power estimation at both design
level [17, 18, 19, 20, 21] and gate level [22, 23], they do not apply
to glitch power estimation as they ignore detailed timing at gate
level. Compared with them, sampling-based methods propose to es-
timate power consumption by sampling a small subset of simulation
traces and running power analysis on them with gate-level timing
information [24, 25, 26], thus can take glitch activities into account.

Our fast glitch power estimation also adopts this sampling idea. It
aims to estimate glitch power at the gate level when simulated by a
benchmark, as shown in Equation (1).

1 N
k=% ;Pk,j- (1)

Suppose we sample each cycle j with a sampling variable 7}, the
estimated average glitch power of gate k is as follows:

1 N
ﬁk=N—Z”ij,j- @)

=17 =
Here, each term py ; is masked by multiplying a binary sampling
variable 7j, which reflects our sampling strategy. This sampling
process can also be illustrated in Figure 3, where sampled cycles are

used for power analysis in EDA flow.

While there are many sampling strategies, the most statistically
robust strategy is random sampling without replacement [24]. Thus
7j should adhere to a binomial distribution, as shown in Equation (3).

i~ B(1,r). 3)

The sampling ratio r decides how many cycles to be sampled w.r.t
the size of the benchmark, which trades off between the speed and
accuracy of the estimation. Given the distribution of the sampling
variable as in Equation (3), we can write the expectation of estimated
glitch power as:

1 N 1 N 1 N
Blp] = 1= DL Bmprg) =+ 2Pk = 5 Do pes @)
Jj=1 Jj=1 j=1

The expectation of estimated glitch power, as shown in Equa-
tion (4), is equivalent to Equation (1), thus is unbiased. According to
the observation from [24, 25], with enough samples, the estimated
glitch power should be accurate.
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Figure 4: The definition of sensitivity of g;.

4 Glitch Power Optimization

On FPGA, glitches are reduced by inserting flip-flops [27] or bal-
ancing arrival times at the routing stage [28]. On ASICs, glitch power
can be optimized by ECO, which involves down-sizing gates (also
increasing V;,) to increase gate delay for filtering glitches. Previous
glitch power optimization approaches [9, 15] are based on an itera-
tive procedure. Firstly, a metric is defined to rank the significance of
the gates for glitch power consumption. In each iteration, one gate is
selected based on the ranking, which is then downsized to the small-
est size and assigned high V;, as long as there is no timing violation.
However, these metrics only reflect glitch activities and guide the
optimization locally, which fails to consider that new glitches can be
generated elsewhere in the design. Such complex glitch behaviors
make them uncertain of total glitch power reduction and thus may
not guarantee a positive result.

Motivated by this, we aim to correlate the gate optimization di-
rectly with the total glitch power reduction in the netlist, which
provides a more global view of design optimization and glitch power
reduction. Thus, we propose a gate-level sensitivity measurement
method to evaluate the potential glitch power reduction through
gate sizing. For brevity, we refer to optimizing a gate as sizing a
gate with the smallest size and assigning high V;j, in the remaining
context. It should be noted that we only use the smallest size and high
Vin as [9, 15] because calling incremental timing updates outside the
commercial EDA tool is not often efficient. However, it would be easier
for the tools to explore different sizes (or even buffering) for each gate
and incorporate ones without timing violations. This setting does not
affect the feasibility of the proposed framework.

4.1 Sensitivity Measurement

Given the netlist and the technology information, the target is
to optimize the netlist such that the glitch power P = Zﬁl pi is
minimized, in which the timing constraints should be satisfied.

Optimizing a gate may result in glitch power changes on various
other gates in the design, where the power change is possibly positive
or negative. We can represent the glitch power change on g; as Ap;
and denote the portion of this change attributable to optimizing g
as Apl(k). The relationship between glitch power changes and gate
optimizations can be represented as a matrix S:

)
AplY A A
T A )

8 ap® . pp®
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Here, we assume individual gate optimizations are independent w.r.t
the objective, which is referred to as a first-order greedy search for
an NP-hard problem [29].

To characterize the potential impact of optimizing a gate to the
glitch power change, we define the sensitivity of g as the total glitch
power change after gy, is optimized, i.e.,

K K K
k k
SR WAEWED WL
i=1 i=1 i=1

Thus, the per-gate sensitivity defined in Equation (6) is essentially
the sum of column k in S. This concept is exemplified in Figure 4.
The glitch power changes on gates can be obtained from our fast
estimation to calculate the sensitivity of g;.

In the context of glitch power optimization, the total glitch power
should be minimized. Gates with the most negative sensitivities
are referred to as the most sensitive and are prioritized as the final
optimization candidates. However, evaluating sensitivities requires
running glitch power analysis on K versions of the optimized netlist,
which is prohibitive for large designs. In the next section, we propose
an efficient computation for sensitivity.

4.2 Efficient Sensitivity Calculation

4.2.1 Sensitivity Estimation via Monte-Carlo. To find the most sen-
sitive gates efficiently, we estimate their sensitivity without ex-
haustively evaluating all possible netlists. Fortunately, Monte-Carlo
method [30] provides us an estimator to approximate the sensitivity
sg by drawing independent batches of gates By, By, . . ., By following
a distribution $ (g ), and then compute the average of the sensitivity
si evaluated at these batches [31]:

M
5= 10 0 f1(98). Y0r € By, B ~ Pgp), )
j=1
where fj(g) means the computed sensitivity of batch j based on
Equation (6). M’ is the number of times g is sampled among M
batches. Therefore, to estimate si, Vk, we can sample batches of
gates in the netlist for optimization and compute their sensitivity,
which is facilitated by our fast glitch power estimation and can be
launched in parallel as well.

4.2.2  Prior Distribution for Batch Sampling. Generally speaking,
when more batches are sampled, the sensitivity computation will
be more accurate [32], which incurs a trade-off between runtime
and accuracy. To achieve a higher efficiency of batch sampling-based
computation, we can leverage certain prior distributions for sampling
instead of just sampling uniformly. A straightforward way is that the
sampling probability can be correlated with the per-gate glitch power.
Apart from this per-gate glitch power, other metrics also signify the
glitch power a gate may cause, like glitch criticality metric [9] or
power metric [15]. Nonetheless, we can guide our sampling process
with these metrics. Suppose each gate g;. is associated with a metric
my. The probability of sampling a gate equals the normalized metric:

P(gp) = —k ®)

2£1 mi
4.2.3  Fine-grained Sensitivity Computation. After the ECO steps are
performed on the sampled gates, the proposed fast glitch power esti-
mation is launched to obtain the new glitch power. All the following
equations refer to the sensitivity computation in one batch Bj, so we
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Algorithm 1 Gate Sizing for Glitch Power Reduction

Require: Original netlist, where each gate gy is with metric my.

1: Initialize M batches independently and sample gate g with
my

probability <K

2: for each batc}ll_lB iln parallel do > Parallel processing of batches
3 Optimize gates in B to minimum size, assign high V.

4 Run fast glitch power estimation for optimized netlist for B.
5 Compute sensitivity by Equation (10) for all sampled gates.
6: end for

7. Average sensitivity by Equation (7) across batches.

8: Select the most sensitive gates for final sizing.

ignore the subscript j for brevity. For a batch of sampled gates, the
sensitivity defined in Equation (6) can be written as the total glitch
power change averaged on the optimized gates:

s
T Z Apiby ©)
i=1

where by, is a binary variable that is 1 if g; € B and 0 otherwise.

By sizing gates and calculating sensitivity in batches, the require-
ment for computation resources is eased. However, in Equation (9),
the sensitivities are the same for gates in a batch, which implies
that the optimized gates contribute equally to the total glitch power
reduction, which may not be true. In our approach, we will use a
more fine-grained computation for sensitivity to reflect the actual
glitch activities by modifying Equation (9) with a weight wy ;:

K
Sk = ) Wi,ibpiby. (10)
i=1

This calibration can be illustrated in Figure 5, where optimizing g
does not contribute to the glitch power reduction of g;. Accordingly,
when g; is not in the fanout of the concerned gate gy, wy; should
be set to 0. Further, the wy ; should be reduced as g; becomes more
distant from g as the glitch power reduction on g; may be attributed
to other optimized gates. For example, Ap3 should be attributed to
both the optimization of g1 and g3. This behavior can be represented
by an factor y that attenuates wy ; as g; becomes more distant from
Ji, L.e.,

Wk,i = Yl) (11)
where [ is the difference of logic level between g and g;.

Combining the above Monte-Carlo estimation with prior distribu-
tion on glitch power and calibration for computation, our optimiza-
tion framework is depicted by Algorithm 1. At first, we independently
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Table 2: Profiles of benchmarks and estimation results.

l Design l Benchmark l Tgs 2 (s) l # of cycles l TAb (h) l Ts € (h) l True Glitch Power (mW) l Estimated Glitch Power (mW) l MAPE l K-t

dhrystone 2916 502947 47 2.8 2.823 2.821 0.602% | 0.99

median 832 167573 12 0.9 1.864 1.830 0.397% | 0.96

BOOM mt-matmul 948 194153 16 1.1 1.915 1.910 0.627% | 0.97
mt-vvadd 2708 579325 50 3.2 1.716 1.718 0.233% | 0.98

multiply 1046 184757 17.5 1.0 2.636 2.640 0.645% | 0.97

qsort 4290 687071 70 3.8 3.528 3.537 0.062% | 0.99

dhrystone 602 529661 12 0.7 0.693 0.697 0.559% | 0.99

median 143 165077 3.5 0.2 0.240 0.238 0.835% | 0.99

Rocket mt-matmul 194 206643 4.5 0.3 0.317 0.319 0.576% | 0.98
mt-vvadd 518 610296 11 0.8 0.188 0.190 1.291% | 0.98

multiply 1046 184757 17.5 0.3 0.658 0.650 1.471% | 0.99

qsort 782 628464 37 0.9 1.010 1.012 0.347% | 0.99

3 The time for running gate-level simulation. ® The time for running power analysis on all cycles in the benchmark.

¢ The time for running power analysis on sampled cycles.

sample batches of gates. Then, we optimize gates for each batch and
run fast glitch power estimation on optimized netlists in parallel.
Finally, we compute sensitivities for sampled gates and average them
across batches to select the most sensitive ones as the final optimiza-
tion candidates. We also run a gate-by-gate ECO as in [9] to avoid
timing violations during the gates optimization.

5 Experimental Results

In this section, we first demonstrate the accuracy and efficiency of
our glitch estimation framework. We then provide glitch optimization
results with our sensitivity measurement based on these estimations.

5.1 Experimental Setup

To validate our framework in real-world scenarios, we apply it
to two RISC-V SoCs, BOOM and Rocket [10]. The designs are syn-
thesized by Synopsys Design Compiler with the TSMC N28 process.
Target frequencies are set to 500 MHz for both designs. There are in
total 288789 gates in BOOM and 114750 gates in Rocket. Simulations
are run by Synopsys VCS using six commonly used benchmarks, as
demonstrated in Table 2. The (sampled) simulation traces are sent to
PrimeTime PX for power analysis. PrimeTime PX also handles the
V;, assignment and gate sizing.

5.2 Glitch Power Estimation Results

Our framework efficiently estimates glitch power by analyzing
sampled cycles in benchmarks. Empirically, we sample 1% cycles for
power analyses, i.e., r = 0.01 in Equation (3). We will illustrate our
framework’s efficiency in glitch power estimation and its contribu-
tion to optimization.

In terms of glitch power estimation, we evaluate the error against
the ground truth using the Mean Absolute Percentage Error (MAPE),
as defined in Equation (12).

K ~
MAPE = ) Pk = picl

(12)
o Pk

Our method runs more than 10X faster than a complete power analy-
sis and achieves an MAPE of less than 2%, as shown in the sixth and
second last columns (Ts and MAPE) in Table 2, respectively. Ideally,
the speed-up of power analysis should be linearly proportional to
the number of cycles being analyzed, i.e., 100X. However, we ob-
serve that PrimeTime runs slower when it processes non-continuous
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Figure 6: Glitch power estimation Kendall’s 7 on BOOM.

time windows. We attribute the non-ideal speed-up to the internal
overhead of the analysis tools.

In addition to accurately estimating glitch power on gates, our
goal is to facilitate further optimizations. Since glitch power is often
optimized in a gate-by-gate fashion based on metrics related to per-
gate glitch power, the correlation between the estimated per-gate
glitch power ranking and the true per-gate glitch power ranking is
critical for effective netlist optimization. We use Kendall’s tau [33]
to quantify this correlation, with values close to one indicating high
agreement between the rankings. As shown in the last column (K-7)
of Table 2, all Kendall’s tau values exceed 0.96, demonstrating that
our estimated gate-level glitch power rankings closely match the true
rankings. To understand the impact of sample sizes and sampling
strategies on the estimation correlation, we further sample 0.1% and
0.01% of cycles and show the result on BOOM in Figure 6. Even
random sampling 0.1% can reach a Kendall’s 7 larger than 0.9. This
high correlation validates our method’s ability to guide the gate-by-
gate optimization process effectively. We attribute our framework’s
high accuracy and efficiency to the sampling strategy employed.
It aligns with the observation in previous works [24, 25] that run
power analysis on randomly sampled cycles is able to estimate power
accurately, with glitch power included.
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Table 3: Glitch power optimization results (Unit: mW).

Yikang Ouyang et al.

Design ‘ Benchmark ‘ Original ‘

PGM

|

PM[15] |

GCM [9]

|

Ours

2.794 (11.03%)
1.647 (|11.64%)
1.877 (11.98%)
1.713 (10.17%)
2.535 (13.83%)
3.368 (14.54%)

3.156 (111.79%)
2.025 (18.64%)
2.294 (119.79%)
2.116 (1 23.31%)
2.928 (111.08%)
3.618 (12.55%)

2.674 (15.28%)
1.548 (| 16.95%)
1.790 (16.53%)
1.611 (16.12%)
2.426 (| 8.0%)
3.130 (| 11.28%)

2.322 (13.81%)

2.690 (111.43%)

2.196 (] 9.01%)

0.601 (]13.37%)
0.206 (113.82%)
0.309 (12.65%)
0.181 (|3.72%)
0.479 (127.20%)
0.897 (111.02%)

0.630 (19.19%)
0.207 (113.65%)
0.315 (10.76%)
0.189 (10.80%)
0.505 (|23.30%)
0.974 (13.40%)

0.585 (|15.58%)
0.172 (|28.31%)
0.294 (17.13%)
0.174 (|7.45%)
0.467 (129.01%)
0.862 (|14.51%)

dhrystone 2.823 2.832 (10.32%)

median 1.864 | 1.755 (]5.85%)

mt-matmul 1.915 1.986 (13.71%)
mt-vvadd 1.716 1.835 (16.93%)

BOOM | multiply 2636 | 2.625(10.42%)
gsort 3.528 3.271 (]7.28%)

Average 2414 2.384 (11.24%)

dhrystone 0.693 0.618 (110.88%)

median 0240 | 0.212(]11.6%)

mt-matmul 0.317 0.291 (|8.23%)

Rocket mt-vvadd 0.188 0.174 (17.35%)
multiply 0.658 | 0.493 (|25.06%)

gsort 1.010 0.929 (]7.89%)

Average 0.517 0.453 (112.47%)

0.445 (113.90%)

0.470 (19.16%)

0.426 (]17.70%)

Table 4: Total power results. (Unit: mW)

Design | Original | PGM | PM[15] | GCM[9] | Ours
10.91 10.92 11.16 10.82

BOOM | 11231 1900y | (12.8%) | (10.6%) | (13.7%)
3.37 3.40 3.41 3.35

Rocket | 348 | 1550y | (1229 | (121%) | (13.8%)

5.3 Sensitivity-based Optimization Results

In this section, we present the optimization results obtained from
the sensitivity measurement method. For baseline metric-based meth-
ods that optimize glitch power purely based on metric rankings, we
choose per-gate glitch power (denoted as PGM), power metric [15]
(denoted as PM), and glitch criticality metric [9] (denoted as GCM).
For sensitivity measurement, we draw 15 independent batches, each
with 1000 gates. On BOOM, we sample gates based on PGM; on
Rocket, we sample with PM as they give the best optimization re-
sults. We empirically set the attenuation factor y in Equation (11) to
0.8.

Additionally, regarding the number of levels a glitch will propa-
gate, we found that typically a glitch can propagate no more than
five levels. The sensitivity computation yields 3590 gates and 1206
gates on BOOM and Rocket, respectively, with negative sensitivity
(that should result in net glitch power reduction), which are opti-
mized. For baseline methods, we optimize the top 4000 gates for
BOOM and 2000 for Rocket ranked by the corresponding metric as
these gates contribute to more than 80% of the sum of metrics in
the netlist. Optimization results are shown in Table 3, where PGM,
PM [15], and GCM [9] are baseline methods. For PGM and GCM
baselines on BOOM, we can see that the glitch power increases for
some benchmarks due to new glitches generated elsewhere in the
design, which validates that solely relying on local metrics does not
guarantee glitch power reduction. Our method can reduce glitch
power by more than 10% on gsort and median benchmarks on BOOM
and nearly 30% on median and multiply on Rocket. On average, our
method reaches a 9.01% and 17.70% glitch power reduction on BOOM
and Rocket, which are 5.2% and 3.8% higher than baseline methods. It
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Figure 7: Number of batches for sensitivity measurement vs.
Glitch power reduction.

can be seen that the sensitivity-based method provides a global view
to correlate optimization candidates to total glitch power reduction.

In addition to glitch power, we compare the total power reduction
for combinational gates in Table 4, as down-sizing and assigning
high V;j, also reduce dynamic and leakage power. The results are
averaged across six benchmarks. Our method achieves the highest
total power reduction compared with baseline methods (PGM, PM,
GCM). Since gates that cause high glitch power usually have high
switching activities, optimizing them also reduces total power. It is
worth noting that this reduction seems minimal since the experi-
ments are in TSMC N28, where leakage power dominates. However,
in the latest technology node like FInFET, the relative contribution of
dynamic power components has increased significantly due to better
leakage control. So the improvement in total power is expected to
be more in the latest technology nodes for this work.

The sensitivity we rely on for optimization is approximated by
Monte-Carlo estimation. To understand the impact of the number of
batches on sensitivity analysis and optimization results, we further
sample different numbers of batches, including 5, 10, and 15 batches.
The glitch power reductions are shown in Figure 7. Even only sample
5 batches, our method can reach larger glitch power reduction than
baseline methods. As the number of sampled batches increases, the
optimization leads to better power reductions. Therefore, it is advan-
tageous to sample more batches to measure the sensitivity on more
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Figure 8: Comparison of runtime on BOOM and Rocket.

diverse gates for a better result whenever computational resources
permit [32].

5.4 Overhead Analysis

Essentially, reducing glitch power by downsizing and increasing
V;p, inevitably incurs slack degradation. But both our work and previ-
ous works query the timing engine, and there is no timing violation
after ECO.

In terms of the runtime, the runtime of baseline methods [9, 15]
mainly involves an optimization process, in which the metrics are
computed directly. In contrast, the proposed sensitivity-based opti-
mization requires additional glitch power estimation steps, which
may incur a longer runtime compared with baseline methods. In sen-
sitivity measurement, optimizing sampled gates and running glitch
power estimations in batches can be run in parallel. We only run
power analysis with 0.1% cycles, which is accurate enough for sen-
sitivity computation. The total runtime is about 18 minutes and 30
minutes longer than the baseline methods on Rocket and BOOM,
respectively, as shown in Figure 8. In modern VLSI designs like
BOOM (288K gates) and Rocket (114K gates), optimizing power is an
increasingly challenging task, thus we believe this additional run-
time is worthwhile. In the future, advanced techniques such as deep
learning-based glitch power estimation can be utilized to eliminate
the runtime issue, and we leave it as future work.

6 Conclusion

This paper presents SMART-GPO, a novel framework that effi-
ciently and accurately estimates and optimizes glitch power at the
gate level. Our framework performs power analysis on sampled cy-
cles. It optimizes glitch power by measuring the sensitivity of gates
w.r.t glitch power and sizing the most promising ones. The results
show that our method can estimate glitch power more than 10 times
faster than traditional methods while keeping the MAPE below 2%
and Kendall’s 7 higher than 0.96 when we only use 1% cycles. Fur-
thermore, with accurate glitch power estimation, we measure the
sensitivity of gates and obtain better glitch power reductions, which
reaches 9% and 17% glitch power reduction on BOOM and Rocket,
respectively.
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