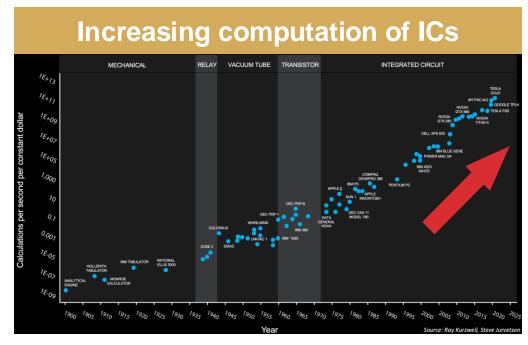
SMART-GPO: Gate-Level Sensitivity Measurement with Accurate Estimation for Glitch Power Optimization

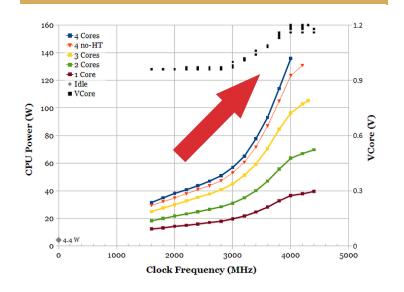
Yikang Ouyang¹, Yuchao Wu¹, Dongsheng Zuo¹, Subhendu Roy³, Tinghuan Chen⁴, Zhiyao Xie², Yuzhe Ma¹

Presenter: Yikang Ouyang

youyang929@connect.hkust-gz.edu.cn

Jan. 23, 2025


- 1 The Hong Kong University of Science and Technology (Guangzhou)
- 2 The Hong Kong University of Science and Technology
- 3 Cadence Design Systems
- 4 The Chinese University of Hong Kong, Shenzhen



Power Consumption Issue

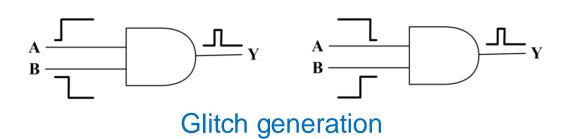
Source: Ray Kurzweil

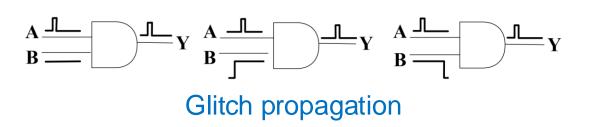
Power consumption

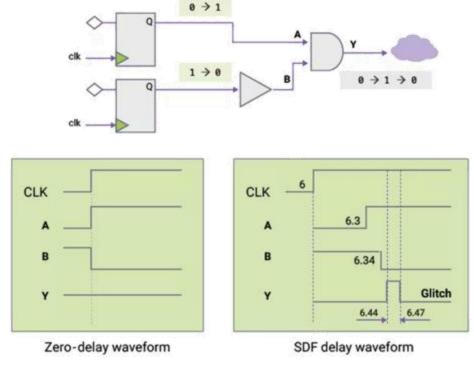
Implications

- Cooling
- Reliability
- Power delivery
- Battery life
- Carbon footprint

• ...

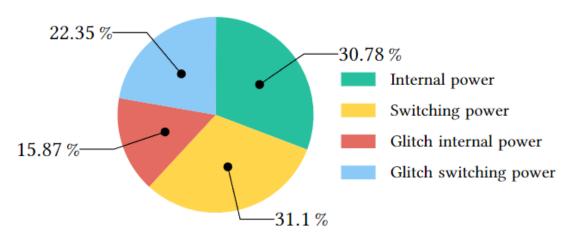

VLSI design is hitting "power wall"




Power becomes the key objective

Glitch

- Glitches are extra toggles due to the arrival time imbalances and signal toggling in the netlist.
- Extra dynamic power consumed

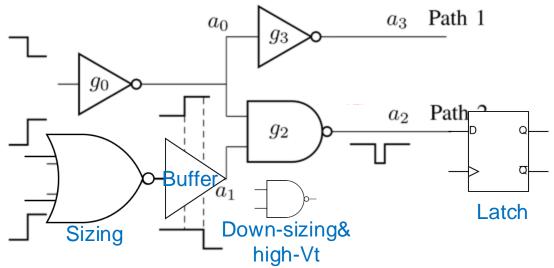

Source: Synopsys

https://www.synopsys.com/glossary/what-is-glitch-power.html#:~:text=Definition,of%20additional%20dynamic%20power%20consumption

Glitch Power Issues

- Cause up to <u>40%</u> of additional dynamic power consumption
- Proportional to the number of operations

Circuit	% Glitch
alu4	25.7
apex2	29.2
apex4	30.3
bigkey	29.6
clma	24.2
des	45.4
diffeq	5.8
dsip	29.9
elliptic	12.2
ex1010	35.0


Power profiling on a BOOM chip

Source: Synopsys

https://www.synopsys.com/glossary/what-is-glitch-power.htm\\\ ::text=Definition,of\%20additional\%20dynamic\%20power\%20consumption.

Glitch Power Optimization: ECO

- Filter a propagated glitch: latch insertion...
- Balance the input arrival time: sizing, buffering...
- Increase the inertial delay: down-sizing, use high-Vt cells...

Source: [Vithagan+, TCAD'23]

Overhead: area, power, timing, more glitch

Related Works

Geometric programming (Global)

$$\min \sum_{c \in C} \sum_{m \neq n} \left(\frac{a_n}{a_m}\right)^2$$
subject to $a_m \leq a_n$

$$a_l + g_i \left(\frac{\sum_{x_j \in O_i} g_j x_j}{g_i x_i}\right) + p_i \leq a_i$$

$$a_k \leq T_{\text{spec}}$$

$$\sum_{i \in G} x_i \leq k_2 \times A_0$$

$$x_i \leq x_{\text{max}}$$

$$x_i \geq 1$$

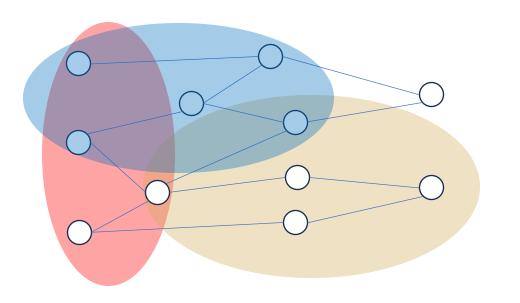
$$\forall a_l \in A_i \ \forall i \in G$$

$$\forall k \in P_O \ \forall a_m, a_n \in A_c$$

[Vithagan+, TCAD'23]

- Heuristic search (Local)
 - Glitch generation and propagation
 - Load capacitance
 - Rank gates for opt.
 - Glitch criticality [Bathla+, TVLSI'19]
 - Power metric [Wang+, SOCC'11]
 - No guarantee on result.
 - Any systematic framework?

Sensitivity Measurement


- Optimizing a gate may cause glitch power changes on other gates
 - Downsize and assign high-Vt
- Sensitivity matrix S for global analysis
 - $\Delta p_i^{(k)}$: glitch power change on gate *i* after optimizing gate *k*

Optimized
$$g_1$$
 g_3 ... g_2 g_4 g_4 ... g_2 g_4 g_4

• Per-gate sensitivity: $s_k = P^{(k)} - P = \sum_{i=1}^K p_i^{(k)} - \sum_{i=1}^K p_i = \sum_{i=1}^K \Delta p_i^{(k)}$

Sensitivity Measurement

- Option 1: exhaustively evaluate the impact of each gate
 - Not possible for large designs
- Option 2: sampling + statistical estimation
 - $x_i^{(b)} \in \{0, 1\}$, whether gate *i* is sampled in batch *b*
 - $\Delta P^{(b)}$: total glitch power change after optimizing the gates in batch b

Batch 1:
$$\left[x_1^{(1)}, x_2^{(1)}, ..., x_n^{(1)}\right] \to \Delta P^{(1)}$$

Batch 2:
$$\left[x_1^{(2)}, x_2^{(2)}, ..., x_n^{(2)}\right] \to \Delta P^{(2)}$$

Batch 3:
$$\left[x_1^{(3)}, x_2^{(3)}, ..., x_n^{(3)}\right] \to \Delta P^{(3)}$$

.

Batch
$$B: \left[x_1^{(B)}, x_2^{(B)}, \dots, x_n^{(B)}\right] \to \Delta P^{(B)}$$

$$s_{i} = \frac{\sum_{b=1}^{B} \Delta P^{(b)} x_{i}^{(b)}}{\sum_{b=1}^{B} x_{i}^{(b)} + \epsilon}$$

Fine-grained Sensitivity Computation

- Identify more fine-grained impact of each gate to differentiate gate sensitivity in a batch.
- Principle:
 - 1. Only count the power change in the fanout cone
 - 2. The longer the distance, the smaller the impact
 - Optimized Gates

$$s_{1} = \Delta p_{1} + \gamma(\Delta p_{2} + \Delta p_{3}) + \gamma^{2}(\Delta p_{5}) + \dots + \gamma^{L}(\Delta p_{y} + \Delta p_{z})$$
Level 0 | Level 1 | Level 2 | Level L |
$$g_{1} = \Delta p_{1} + \gamma(\Delta p_{2} + \Delta p_{3}) + \gamma^{2}(\Delta p_{5}) + \dots + \gamma^{L}(\Delta p_{y} + \Delta p_{z})$$

$$g_{2} = \Delta p_{2} + \Delta p_{3} + \Delta p_{5} + \Delta p_{5}$$

$$s_{i} = \frac{\sum_{b=1}^{B} \Delta P^{(b)} x_{i}^{(b)}}{\sum_{b=1}^{B} x_{i}^{(b)} + \epsilon}$$

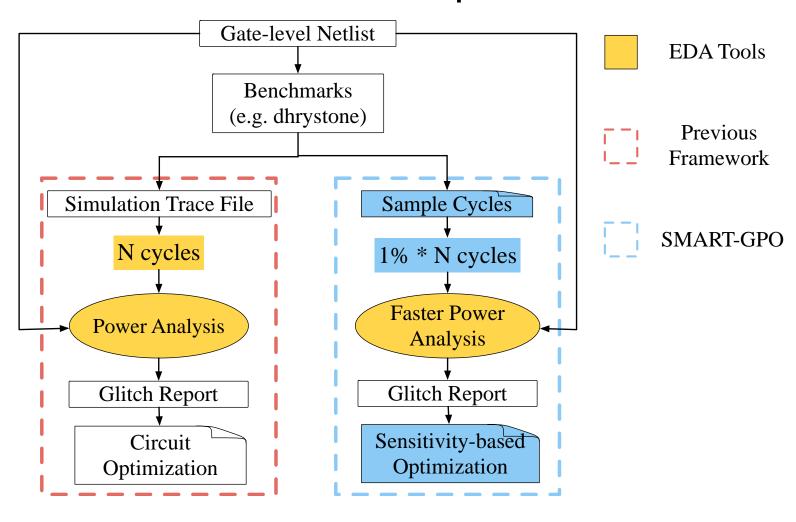
$$s_{i} = \frac{\sum_{b=1}^{B} \sum_{k=1}^{n} w_{i,k} \Delta p_{k}^{(b)} x_{i}^{(b)}}{\sum_{b=1}^{B} x_{i}^{(b)} + \epsilon}$$

How to Sample?

- Effective? Need more samples
- Efficient? Select "useful" samples
- Guidance for sampling?

$$\mathcal{P}(g_k) = \frac{m_k}{\sum_{i=1}^K m_i}$$

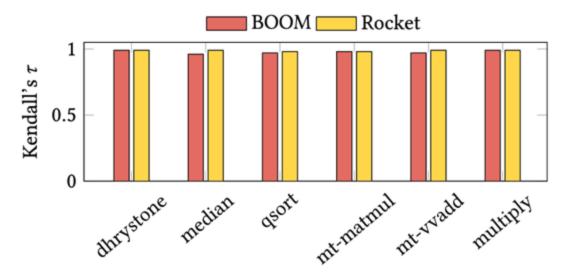
- Any user-defined metrics can apply, e.g.,
 - per-gate glitch power
 - power metric [Wang+, SOCC'11]
 - glitch criticality metric [Bathla+, TVLSI'19] ...
- A systematic framework to analyze and optimize glitch power.

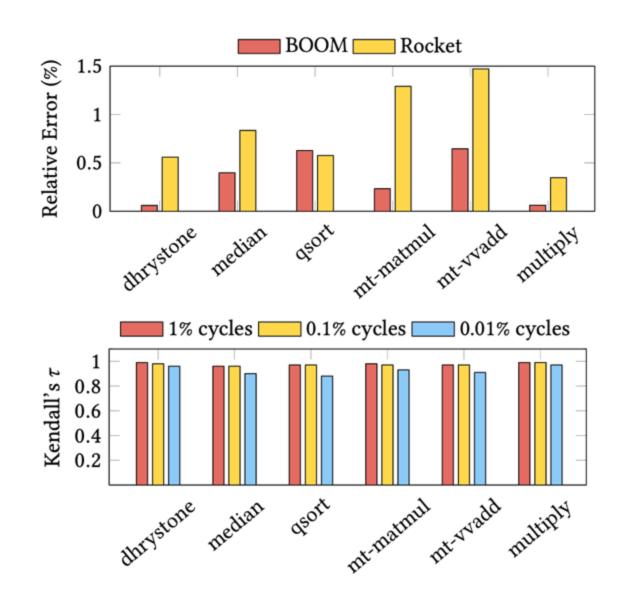

Fast Glitch Power Analysis

- Previous works (inaccurate) :
 - glitch propagation + simple timing model [Najm, TCAD'93] [Wang+, ICCAD'11]
- Golden result (slow):
 - gate-level simulation to dump traces
 - power analysis based on simulation traces → >10 hours on RISC-V BOOM
- Fast analysis: based on sampled cycles instead of full cycles → >10X faster

Framework

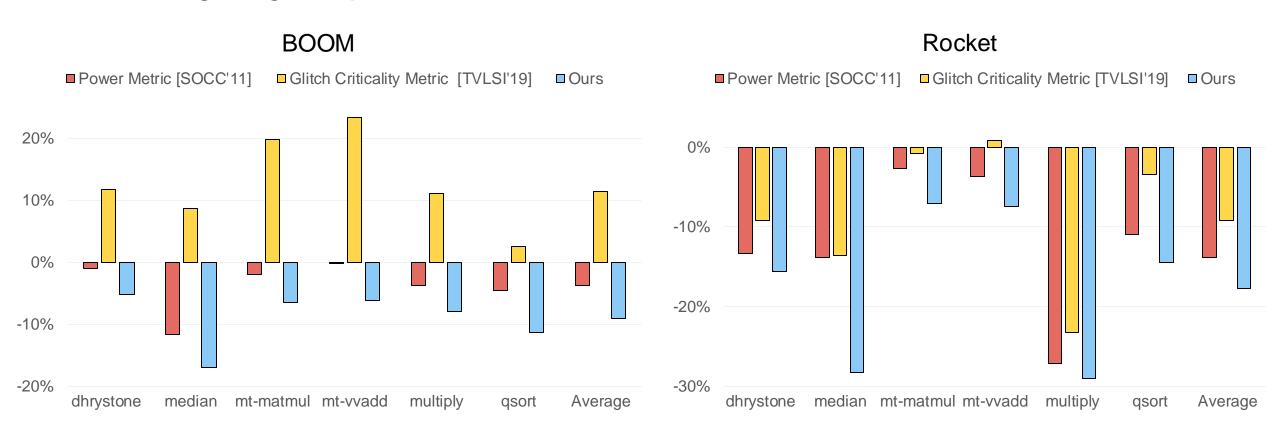
Fast Estimation + Efficient Optimization




Experimental Setups

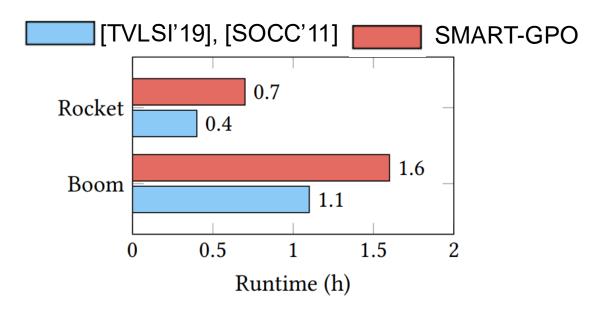
- Circuit: RISC-V designs, BOOM and Rocket
- Process: TSMC N28
- Design flow:
 - logic synthesis + gate-level simulation + time-based power analysis
- Workloads: 6 benchmarks from RISC-V benchmarks
- 288,789 gates in BOOM
- 114,750 gates in Rocket

Fast Power Analysis Results


- Error on power values:
 - Relative error < 1.5%
- Relative ranking on gates:
 - Kendall's $\tau > 0.97$
 - > 0.9 with only 0.01% cycles

Glitch Power Optimization Results

- SMART-GPO
 - Always reduce glitch power
 - Largest glitch power reduction



Timing & Area

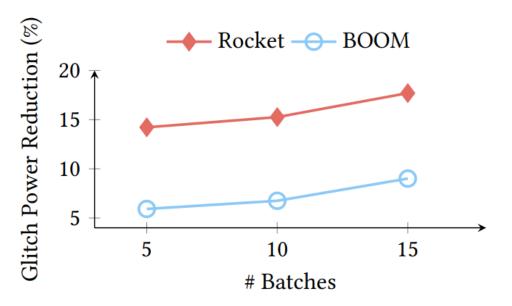
- Timing:
 - Set frequency at 500MHz
 - No timing violation
- Area:
 - BOOM: 3590 gates optimized (↓1.2%)
 - Rocket: 1206 gates optimized (↓1.1%)
 - Marginal improvement
- Total power reduction:
 - 3% ~ 4%

Runtime

- Previous methods ([TVLSI'19], [SOCC'11])
 - Size gates one-by-one to avoid timing violation
- SMART-GPO
 - Additional sensitivity measurement step with fast estimation
 - Slightly slower

Remarks

- ✓A unified framework to analyze and optimize the glitch power based on sensitivity measurement.
- √ Fast power analysis based on a small portion of sampled cycles.
- ✓ Compute sensitivity based on sampling and statistical estimation.
- ✓ A general methodology that can seamlessly accommodate all previous hand-crafted heuristics.


Thanks & Questions?

Backup: Sizing Details

- For baseline methods ([TVLSI'19], [SOCC'11])
 - Size 4000 gates on BOOM and 2000 on Rocket
 - These gates covers more than 80% total metric (glitch criticality metric, power metric, resp.) on BOOM and Rocket.
- SMART-GPO:
 - Size 3590 gates on BOOM and 1206 on Rocket.
 - Size less gates but reach higher glitch power reduction.
- Timing:
 - Similar to baselines, we query timing engine after sizing each gate to avoid timing violation.

Backup: Sensitivity Measurement

- SMART-GPO relies on sampling to measure sensitivity.
- More sampled batches → better optimization result.
 - In our experiment, we sampled 15 batches.
 - Even sampling 5 batches can surpass baselines.

