A Holistic FPGA Architecture Exploration Framework for Deep Learning Acceleration

Jiadong Zhu, Dongsheng Zuo, Yuzhe Ma January 23, 2025

The Hong Kong University of Science and Technology (Guangzhou)

FPGA Architecture Through A DL Lens

Previous Work on Improving FPGA Architectures

FPGA Architecture Exploration Framework Overview

Multi-objective FPGA Architecture Search

Experiments

FPGA Architecture Through A DL Lens

Accelerator Market Trends

Data Center Accelerator Market

The FPGA accelerators are expected to grow steadily over the forecast period.1

¹Grand View Research, Data center accelerator market size, share & trends analysis report by processor (cpu, gpu, fpga, asic), 2024.

[Online]. Available: https://www.grandviewresearch.com/industry-gnalysis/data-center-accelerator-market-report.

	GPUs	ASICs	FPGAs
Generality	Turing-complete	Specific domain	Any custom HW
Architecture	Many cores / threads	Suits target domain	Spatial
HW Specialization	Fixed datapath & memory subsystem	Full flexibility	Reconfigurable
Power Consumption	High power	Most efficient	Moderate
NRE Cost	NRE Cost Off-the-shelf		Off-the-shelf

 FPGAs occupy an intermediate position on the spectrum of efficiency versus programmability, striking a unique balance in DL acceleration

FPGA Architecture Overview

Blocks and their strength for DL

Strength: Flexible Precision & Efficient Computing Implementation

CLB

- Most numerous
- Can program to realize hardware of any bit width
 - \longrightarrow Use lowest precision that meets accuracy for each network / layer
- Programmable routing: directly wire data from one unit to another
- Programmable logic: perform only necessary operation

Strength: Hard Blocks & Low Latency Memory

Source: Vaughn Betz's slides of the tutorial on Deep Learning-Optimized FPGA Architectures at MICRO 2022

- Hard block
 - DSP: designed to speed up multiply-accumulate (MAC) operations
- Massive bandwidth BRAM
 - \sim Pb/s of on-chip bandwidth (in a large chip) \longrightarrow little or no batching
 - GPUs batch inputs to amortize weight re-loading \longrightarrow latency increase

How to Make FPGA Architecture More Suitable for DL Acceleration?

 Existing FPGA architectures are not designed specifically for DL workloads

Previous Work on Improving FPGA Architectures

Manually Improving Existing Blocks

- CLB \rightarrow adding adders and shadow multipliers².
- ▶ DSP \rightarrow optimizing for low-precision multiplications³.
- ▶ BRAM \rightarrow integrating in-memory compute capabilities⁴.

²A. Boutros et al., "Math doesn't have to be hard: Logic block architectures to enhance low-precision multiply-accumulate on fpgas," in *Proc. FPGA*, 2019, pp. 94–103.

³A. Boutros et al., "Embracing diversity: Enhanced dsp blocks for low-precision deep learning on fpgas," in *Proc. FPL*, 2018, pp. 35–357. ⁴A. Arora et al., "Comefa: Deploying compute-in-memory on fpgas for deep learning acceleration," *ACM TRETS*, vol. 16, no. 3, pp. 1–34, 2023.

Mannually Adding New Blocks

The Xilinx Versal architecture⁵ and Intel Stratix 10 NX FPGA⁶

Tensor Slices⁷

⁵ B. Gaide *et al.*, "Xilinx adaptive compute acceleration platform: Versaltm architecture," in *Proc. FPGA*, 2019, pp. 84–93.
 ⁶ M. Langhammer *et al.*, "Stratix 10 nx architecture and applications," in *Proc. FPGA*, 2021, pp. 57–67.

⁷A. Arora et al., "Tensor slices: Fpga building blocks for the deep learning era," ACM TRETS, vol. 15, no. 4, pp. 1–34, 2022.

Mannually Optimizing FPGA Global Architecture? Too Vast Design Space!

Туре	Parameter	Description	
Logic Block	N	number of BLEs per CLB	
	K	number of LUT inputs	
	Ι	number of CLB inputs	
	F _{clocal}	clocal sparse crossbar flexibility	
PE array	S _{array} size of the PE array		
RAM	S _{RAM}	size of the BRAM	
Routing	R _I	L16 routing wire segment ratio	
	Layout	layout strategy	
Layout	Fill	whether fill empty grids with CLB	
	Asp	aspect ratio of the layout	

Mannually Optimizing FPGA Global Architecture? Too Vast Design Space!

Designing a competitive FPGA architecture is challenging

Require navigating a vast design space to achieve an optimal balance between metrics

Manual design is inefficient for exploring large design spaces

 A suitable automatic framework with design space exploration (DSE) algorithm is essential FPGA Architecture Exploration Framework Overview

Proposed Exploration Framework

- Integrated flow: COFFE & VTR generate architecture description files and output the metrics
- The hypervolume-aware TPE method iterates the flow

Proposed Exploration Framework——COFFE Part

- COFFE^a models heterogeneous
 FPGA architectures
- Each architecture design is abstracted into two inputs:
 - hard block design parameters
 - soft architectural parameters

^aS. Yazdanshenas and V. Betz, "Coffe 2: Automatic modelling and optimization of complex and heterogeneous fpga architectures," *ACM TRETS*, vol. 12, no. 1, pp. 1–27, 2019.

Proposed Exploration Framework——VTR Part

- VTR^a: a suite of CAD tools for FPGA architecture
- Koios^b: a suite of DL acceleration benchmark circuits for FPGA architecture

^aK. E. Murray et al., "Vtr 8: High-performance cad and customizable fpga architecture modelling," *ACM TRETS*, vol. 13, no. 2, pp. 1–55, 2020.

^bA. Arora *et al.*, "Koios 2.0: Open-source deep learning benchmarks for fpga architecture and cad research," *IEEE TCAD*, 2023.

Proposed Exploration Framework——Algorithm Part

- The DSE algorithm iterates the flow
 - Take metrics as the inputs
 - Select the next sampling point (a set of parameters)

Architecture Template

The template includes columns of CLBs, DSPs, BRAMs, and PE arrays, with I/Os positioned along the FPGA perimeter.

The complex DSP⁸ supports fixed-point and floating-point precisions

- The PE array⁹ supports int8 and int16 precisions, as well as matrix-matrix and matrix-vector multiplication.
 - Employ Schoolbook method¹⁰ to split 16-bit mult \rightarrow 4 fewer 8-bit adders

⁸Intel, "Intel agilex fpgas and socs," (2019), [Online]. Available:

https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html.

⁹A. Arora *et al.*, "Tensor slices: Fpga building blocks for the deep learning era," *ACM TRETS*, vol. 15, no. 4, pp. 1–34, 2022.

¹⁰E. Ustun *et al.*, "Impress: Large integer multiplication expression rewriting for fpga hls," in *Proc. FCCM*, 2022, pp. 1–10.

Multi-objective FPGA Architecture Search

Туре	Parameter	Description	Range of values
Logic Block	N	number of BLEs per CLB	6, 8, 10, 12
	K	number of LUT inputs	5, 6
	I	number of CLB inputs	32: 68: 4
	F _{clocal}	sparse crossbar flexibility	0.25, 0.5
PE array	Sarray	size of the PE array	4×4, 8×8
RAM	S _{RAM}	size of the BRAM	16Kb, 20Kb, 32Kb, 40Kb
Routing	RI	L16 routing wire segment ratio	0.1, 0.15, 0.2
	Layout	layout strategy	spatial, clustered
Layout	Fill	whether fill empty grids with CLB	0, 1
	Asp	aspect ratio of the layout	0.5, 1, 2

* The values are either listed individually or start : end : stride.

Most of them are restricted to the most common options

▶ Gaussian Process (GP) models p(y | x) directly by assuming a multivariate normal distribution over the search space
 → struggles with discrete or categorical variables due to its smoothness assumption.

Tree-Structured Parzen Estimator (TPE)

- TPE splits observations
 - Good observation: D_l
 - Bad observation: D_g

- Estimate two density functions
 - good density I(x)
 - bad density g(x)

y: objective values in observations, y*: value to split observations

$$p(x | y) = \begin{cases} l(x) & \text{if } y < y^* \\ g(x) & \text{if } y \ge y^* \end{cases} \quad p(y < y^*) = \gamma$$
(1)

S. Watanabe, "Tree-structured parzen estimator: Understanding its algorithm components and their roles for better empirical performance," *arXiv preprint*, 2023,

Multi-objective Optimization —— Domination & Hypervolume-aware

- y: objective values in observations
 - Y^{*}: points to split observations

$$p(x \mid y) = \begin{cases} l(x) & \text{if } (y \succ Y^*) \cup (y \parallel Y^*) \\ g(x) & \text{if } Y^* \succeq y \end{cases} \quad p(y \succ Y^* \cup y \parallel Y^*) = \gamma \quad (2)$$

 Split mainly by nondomination rank (take a certain rank points as Y*)

Acquisition function: Expected Hypervolume Improvement (EHVI)

Experiments

Selected from the Koios benchmark suite¹¹

Various applications, precisions, and operation modes for PE arrays

Benchmark	Precision	Array Mode	Description
attention_layer	int16	mat-vec	Self-attention layer
conv_layer	int16	mat-mat	Convolution layer
lstm	int16	mat-vec	LSTM layer
tpu	int8	mat-mat	Google's TPU v1 like
fcl	int8	mat-mat	Fully connected layer

¹¹A. Arora *et al.*, "Koios 2.0: Open-source deep learning benchmarks for fpga architecture and cad research," *IEEE TCAD*, 2023.

Hypervolume & Average Distance to Reference Set (ADRS)

▶ handle a variety of DL workloads → geometric mean

 29.4% and 89.5% better than the second-best in hypervolume and ADRS

Pareto Frontiers (Geometric Mean)

- Reduce delay by 12.8% and area-delay product (ADP) by 21.4% compared to the manual design with adjusted block ratio
- Outperform all algorithm baselines in both delay and ADP.

Respective Results

- Achieve the best results in 7 out of 10 cases
- Weight of each benchmark's PPA values in the mean calculation can be adjusted

Thank You!