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FPGA Architecture Through A DL Lens



Accelerator Market Trends

▶ The FPGA accelerators are expected to grow steadily over the forecast
period.1

1Grand View Research, Data center accelerator market size, share & trends analysis report by processor (cpu, gpu, fpga, asic), 2024.

[Online]. Available: https://www.grandviewresearch.com/industry-analysis/data-center-accelerator-market-report.
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Comparison between FPGA and Other Platforms

▶ FPGAs occupy an intermediate position on the spectrum of efficiency
versus programmability, striking a unique balance in DL acceleration
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FPGA Architecture Overview
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▶ Blocks and their strength for DL 4



Strength: Flexible Precision & Efficient Computing Implementation

▶ CLB
• Most numerous
• Can program to realize hardware of any bit width

−→ Use lowest precision that meets accuracy for each network / layer
• Programmable routing: directly wire data from one unit to another
• Programmable logic: perform only necessary operation
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Strength: Hard Blocks & Low Latency Memory

Source: Vaughn Betz’s slides of the tutorial on Deep Learning-Optimized FPGA Architectures

at MICRO 2022

▶ Hard block
• DSP: designed to speed up multiply–accumulate (MAC) operations

▶ Massive bandwidth BRAM
• ∼Pb/s of on-chip bandwidth (in a large chip) −→ little or no batching
• GPUs batch inputs to amortize weight re-loading −→ latency increase 6



How to Make FPGA Architecture More Suitable for DL Acceleration?

▶ Existing FPGA architectures are not designed specifically for DL
workloads
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Early
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?
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Previous Work on Improving FPGA
Architectures



Manually Improving Existing Blocks

▶ CLB −→ adding adders and shadow multipliers2.
▶ DSP −→ optimizing for low-precision multiplications3.
▶ BRAM −→ integrating in-memory compute capabilities4.

2A. Boutros et al., “Math doesn’t have to be hard: Logic block architectures to enhance low-precision multiply-accumulate on fpgas,” in

Proc. FPGA, 2019, pp. 94–103.
3A. Boutros et al., “Embracing diversity: Enhanced dsp blocks for low-precision deep learning on fpgas,” in Proc. FPL, 2018, pp. 35–357.
4A. Arora et al., “Comefa: Deploying compute-in-memory on fpgas for deep learning acceleration,” ACM TRETS, vol. 16, no. 3, pp. 1–34,

2023.
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Mannually Adding New Blocks

▶ The Xilinx Versal architecture5 and Intel Stratix 10 NX FPGA6

▶ Tensor Slices7

5B. Gaide et al., “Xilinx adaptive compute acceleration platform: Versaltm architecture,” in Proc. FPGA, 2019, pp. 84–93.
6M. Langhammer et al., “Stratix 10 nx architecture and applications,” in Proc. FPGA, 2021, pp. 57–67.
7A. Arora et al., “Tensor slices: Fpga building blocks for the deep learning era,” ACM TRETS, vol. 15, no. 4, pp. 1–34, 2022.
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Mannually Optimizing FPGA Global Architecture? Too Vast Design Space!

Type Parameter Description
N number of BLEs per CLB
K number of LUT inputs
I number of CLB inputs

Logic Block

Fclocal sparse crossbar flexibility
PE array Sarray size of the PE array
RAM SRAM size of the BRAM
Routing Rl L16 routing wire segment ratio

Layout layout strategy
Fill whether fill empty grids with CLBLayout
Asp aspect ratio of the layout
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Mannually Optimizing FPGA Global Architecture? Too Vast Design Space!
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Challenges

Designing a competitive FPGA architecture is challenging

▶ Require navigating a vast design space to achieve an optimal balance
between metrics

Manual design is inefficient for exploring large design spaces

▶ A suitable automatic framework with design space exploration (DSE)
algorithm is essential
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FPGA Architecture Exploration
Framework Overview



FPGA Architecture Evaluation and Exploration
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Proposed Exploration Framework
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▶ Integrated flow: COFFE & VTR
generate architecture description
files and output the metrics

▶ The hypervolume-aware TPE
method iterates the flow
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Proposed Exploration Framework——COFFE Part
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▶ COFFEa models heterogeneous
FPGA architectures

▶ Each architecture design is
abstracted into two inputs:

• hard block design parameters
• soft architectural parameters

aS. Yazdanshenas and V. Betz, “Coffe 2: Automatic modelling and

optimization of complex and heterogeneous fpga architectures,” ACM

TRETS, vol. 12, no. 1, pp. 1–27, 2019.
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Proposed Exploration Framework——VTR Part
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▶ VTRa: a suite of CAD tools for
FPGA architecture

▶ Koiosb: a suite of DL acceleration
benchmark circuits for FPGA
architecture

aK. E. Murray et al., “Vtr 8: High-performance cad and customizable

fpga architecture modelling,” ACM TRETS, vol. 13, no. 2, pp. 1–55,

2020.
bA. Arora et al., “Koios 2.0: Open-source deep learning benchmarks

for fpga architecture and cad research,” IEEE TCAD, 2023.
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Proposed Exploration Framework——Algorithm Part
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▶ The DSE algorithm iterates the
flow

• Take metrics as the inputs
• Select the next sampling point
(a set of parameters)
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Architecture Template

I / O

BRAM

CLB

DSP

Custom Blocks

Interconnects

.

▶ The template includes columns of
CLBs, DSPs, BRAMs, and PE arrays,
with I/Os positioned along the FPGA
perimeter.

▶ The complex DSP8 supports fixed-point and floating-point precisions
▶ The PE array9 supports int8 and int16 precisions, as well as
matrix-matrix and matrix-vector multiplication.

• Employ Schoolbook method10 to split 16-bit mult −→ 4 fewer 8-bit adders

8Intel, “Intel agilex fpgas and socs,” (2019), [Online]. Available:

https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html.
9A. Arora et al., “Tensor slices: Fpga building blocks for the deep learning era,” ACM TRETS, vol. 15, no. 4, pp. 1–34, 2022.
10E. Ustun et al., “Impress: Large integer multiplication expression rewriting for fpga hls,” in Proc. FCCM, 2022, pp. 1–10.
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Multi-objective FPGA Architecture Search



Design Space Definition

Type Parameter Description Range of values
N number of BLEs per CLB 6, 8, 10, 12
K number of LUT inputs 5, 6
I number of CLB inputs 32: 68: 4

Logic Block

Fclocal sparse crossbar flexibility 0.25, 0.5
PE array Sarray size of the PE array 4×4, 8×8
RAM SRAM size of the BRAM 16Kb, 20Kb, 32Kb, 40Kb
Routing Rl L16 routing wire segment ratio 0.1, 0.15, 0.2

Layout layout strategy spatial, clustered
Fill whether fill empty grids with CLB 0, 1Layout
Asp aspect ratio of the layout 0.5, 1, 2

* The values are either listed individually or start : end : stride.

▶ Most of them are restricted to the most common options
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Bayesian Optimization (BO)

Sample Parameters Evaluate Objectives Update Models

Acquisition Function

EI or EHVI …

Integrated tools

COFFE, VTR

Surrogate Model

GP or TPE

Parameters PPA

Updated Surrogate model

▶ Gaussian Process (GP) models p(y | x) directly by assuming a
multivariate normal distribution over the search space
−→ struggles with discrete or categorical variables due to its
smoothness assumption.
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Tree-Structured Parzen Estimator (TPE)

▶ TPE splits observations
• Good observation: Dl
• Bad observation: Dg

▶ Estimate two density functions
• good density l(x)
• bad density g(x)

𝐷𝑔

𝐷𝑙

g(𝑥)
l(𝑥)

Step①: Split Step②: Estimate density

Step③: Max acquisition function

𝑓2(𝑥)

𝑓1(𝑥)

𝑓2(𝑥)

𝑓1(𝑥)

Rank(1)

Rank(2)

Rank(3)

point

▶ y: objective values in observations, y∗: value to split observations

p(x | y) =

{
l(x) if y < y∗

g(x) if y ≥ y∗
p(y < y∗) = γ (1)

S. Watanabe, “Tree-structured parzen estimator: Understanding its algorithm components and their roles for better empirical

performance,” arXiv preprint, 2023.
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Multi-objective Optimization —— Domination & Hypervolume-aware

▶ y: objective values in observations
▶ Y∗: points to split observations

p(x | y) =

{
l(x) if (y ≻ Y∗) ∪ (y ∥ Y∗)
g(x) if Y∗ ⪰ y

p(y ≻ Y∗ ∪ y ∥ Y∗) = γ (2)

𝐷𝑙

𝐷𝑔

𝑙(𝑥)
g(𝑥)

Step①: Split Step②: Estimate density

Step③: Max acquisition function

Reference point

point

Dominated    point

𝑓2(𝑥)

𝑓1(𝑥)

𝑓2(𝑥)

𝑓1(𝑥)

Rank(1)

Rank(2)

Rank(3)

▶ Split mainly by nondomination rank
(take a certain rank points as Y∗)

▶ Acquisition function: Expected Hypervolume Improvement (EHVI) 22



Experiments



DL Acceleration Benchmark

▶ Selected from the Koios benchmark suite11

▶ Various applications, precisions, and operation modes for PE arrays

Benchmark Precision Array Mode Description
attention_layer int16 mat-vec Self-attention layer
conv_layer int16 mat-mat Convolution layer

lstm int16 mat-vec LSTM layer
tpu int8 mat-mat Google’s TPU v1 like
fcl int8 mat-mat Fully connected layer

11A. Arora et al., “Koios 2.0: Open-source deep learning benchmarks for fpga architecture and cad research,” IEEE TCAD, 2023.
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Hypervolume & Average Distance to Reference Set (ADRS)

▶ handle a variety of DL workloads −→ geometric mean
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▶ 29.4% and 89.5% better than the second-best in hypervolume and
ADRS 24



Pareto Frontiers (Geometric Mean)
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▶ Reduce delay by 12.8% and area-delay product (ADP) by 21.4%
compared to the manual design with adjusted block ratio

▶ Outperform all algorithm baselines in both delay and ADP.
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Respective Results

▶ Achieve the best results in 7 out of 10 cases
▶ Weight of each benchmark’s PPA values in the mean calculation can be
adjusted 26



Thank You!
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