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Abstract
FPGAs have become a promising solution for accelerating deep

learning (DL) workloads because of their inherent reconfigurability
and heterogeneous architecture, which effectively handles specific
computing tasks. Previous works have proposed various modifi-
cations to FPGA architectures for DL acceleration. However, they
mainly focus on manual architecture designs, making it difficult to
handle multiple scenarios and potentially limiting exploration of
the search space. We propose a holistic automatic framework to
explore FPGA architectures tailored for DL acceleration. By modify-
ing and integrating CAD tools, we enable automated architecture
generation and evaluation. This is combined with a multi-objective
Tree-structured Parzen Estimator (TPE) algorithm to iterate the ex-
ploration process for finding optimal solutions. Experimental results
show that the optimized architectures outperform all the baseline
architectures in both delay and the area-delay product (ADP). Fur-
thermore, our results achieve a 29.4% increase in hypervolume and
an 89.5% reduction in average distance to reference set (ADRS).
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1 Introduction
Deep learning (DL) has significantly boosted many applications,

such as computer vision and natural language processing. To effi-
ciently accelerate these complex algorithms, FPGAs have become
popular computing platforms. The soft logic architecture in FPGA
offers flexibility in functionality and precision to adapt to rapidly
changing DL algorithms. FPGA’s heterogeneous hard block archi-
tecture provides large-scale parallelism and acceleration for some
specific high-density computing. Consequently, these architectural
features allow FPGAs to achieve a unique balance between efficiency
and programmability among various computing platforms. To max-
imize the potential of FPGAs in DL acceleration, it is essential to
explore the FPGA architecture, which should meet the diverse de-
mands of DL tasks, reduce delay, and minimize area.
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There has been some work paving the way for FPGA architecture
exploration. COFFE 2 [1] is designed to model increasingly com-
plex and heterogeneous FPGA architectures accurately. Verilog-To-
Routing (VTR) project [2] is recognized as the leading open-source
suite of CAD tools for FPGA architecture. Based on these tools,
many previous works have focused on manually improving existing
blocks or adding new ones. The Xilinx Versal [3] and Intel Stratix 10
NX [4, 5] are pioneering designs optimized for AI workloads by inte-
grating hard blocks to enhance efficiency in high-density tensor and
matrix operations. Arithmetic units are integrated into configurable
logic blocks (CLBs) to enhance the efficiency of multiply-accumulate
(MAC) operations [6, 7]. Zgheib et al. [8] re-evaluates the impact of
various cluster parameters on FPGA performance. Enhancements in
digital signal processors (DSP) blocks for DLworkloads primarily aim
to improve the performance of low-precision multiplications [9, 10].
Integrating in-memory compute capabilities into FPGA block RAMs
(BRAMs) is explored through Compute-Capable Block RAMs [11]
and CoMeFa [12]. Tensor Slice [13] incorporates processing elements
(PEs) designed to support multiple tensor operations and precisions.
It achieves a 1.63× increase in frequency and a 55% decrease in both
area and routing wirelength on average when compared to the base-
line. These advancements in previous works allow FPGAs to deliver
significantly improved performance in DL tasks.

However, designing architectures manually makes it difficult to
meet the requirements of different scenarios. For example, modify-
ing a design to prioritize area, delay, or an optimal balance of both
can be tedious and time-consuming. Moreover, the manual designs
mentioned above mainly focus on specific parts of the FPGA architec-
ture. Exploring the entire FPGA architecture involves a much larger
design space, which makes manual design inefficient, especially
when aiming to achieve solutions oriented toward various metrics in
multi-objective optimization. When focusing on local architectures,
those works’ global architectures are often overlooked and designed
based on experience. Therefore, algorithm-based automation is cru-
cial for the exploration. Some works have employed algorithms for
the design space exploration (DSE) of local FPGA architectures. In
General Routing Block (GRB) [14], the simulated annealing (SA)
algorithm is applied to explore the design space of FPGA routing
architectures. GRAEBO [15] presents an approach for exploring gen-
eral routing architecture in FPGAs using the Tree-Structured Parzen
Estimator (TPE) method [16], outperforming existing architectures
and those explored via SA. However, these implementations focus
only on exploring the FPGA routing architecture and do not specifi-
cally optimize for DL workloads. They convert the multi-objective
optimization problem into a single-objective one through simple
weighted multiplication, which potentially leads to inferior results.

We propose a holistic exploration framework to efficiently explore
the vast search space for global FPGA architecture designs targeting
DL acceleration. Compared to designing architectures manually, our
framework provides an automated process to efficiently generate a
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set of complete FPGA architectures suitable for scenarios oriented
toward variousmetrics. This framework implements a DSE algorithm
based on Bayesian optimization (BO), suitable for optimizing high-
cost problems such as the time-consuming exploration of FPGA
architecture. The algorithm efficiently explores the discrete space
of architecture parameters and utilizes hypervolume as the primary
guide for the BO to explore and trade off the area and delay. In
addition, constructing an FPGA architecture can be challenging for
non-specialized researchers, so an automatic process that generates
and evaluates the architecture would be ideal. By creating an FPGA
architecture template that supports PE arrays for matrix operations
and seamlessly integrating CAD tools into the automatic framework,
we provide a workflow from parameterized FPGA architecture inputs
to complete architecture generation and metric evaluation. Paired
with the Koios benchmark suite [17] for DL workloads, it offers an
efficient platform for DL-optimized FPGA architecture exploration.

In summary, the contributions are as follows:
• We propose the first holistic automatic FPGA architecture opti-
mization framework specifically designed for DL acceleration.
• We build an FPGA architecture template suitable for DL work-
loads and seamlessly integrate COFFE and VTR into the explo-
ration framework.
• We implement a hypervolume-aware Bayesian optimization al-
gorithm with a surrogate model and acquisition function tailored
for multi-objective FPGA architecture exploration.
• Experimental results demonstrate the effectiveness of our frame-
work on various DL benchmarks, outperforming all baseline
architectures and optimization algorithms and obtaining near
Pareto-optimal parameter combinations.

2 Preliminaries
2.1 FPGA Architecture

Modern FPGAs typically consist of I/Os, CLBs, DSPs, BRAMs, and
other custom hard blocks like PE arrays, all connected via config-
urable interconnects. A CLB with 𝐼 inputs comprises 𝑁 basic logic
elements (BLEs) along with local interconnect. Each BLE can imple-
ment a 𝐾-input logical function using a 𝐾-input lookup table (LUT),
which can be divided into two LUTs with one less input each. A
sparse crossbar with 𝐹𝑐𝑙𝑜𝑐𝑎𝑙 population density is commonly used
in the internal connections of each CLB. DSPs typically comprise
multipliers and adders to execute MAC operations. BRAMs of a size
𝑆𝑅𝐴𝑀 offer configurable width and depth. Routing channels have the
same width, and the wire segments within them can vary in length.

2.2 Pareto Optimality
Definition 1 (Dominance) When smaller values are better, an ob-
jective vector 𝑓 (𝑥) dominates 𝑓 (𝑥 ′) (denoted as 𝑓 (𝑥) ⪰ 𝑓 (𝑥 ′)) if:

∀𝑖 ∈ [1, 𝑛], 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑥 ′)
and ∃ 𝑗 ∈ [1, 𝑛], 𝑓𝑗 (𝑥) < 𝑓𝑗 (𝑥 ′) .

(1)

𝑓 (𝑥) strictly dominates 𝑓 (𝑥 ′) (denoted as 𝑓 (𝑥) ≻ 𝑓 (𝑥 ′)) if:

∀𝑖 ∈ [1, 𝑛], 𝑓𝑖 (𝑥) < 𝑓𝑖 (𝑥 ′). (2)

𝑓 (𝑥) is incomparable with 𝑓 (𝑥 ′) (denoted as 𝑓 (𝑥) ∥ 𝑓 (𝑥 ′)) if nei-
ther 𝑓 (𝑥) ⪰ 𝑓 (𝑥 ′) nor 𝑓 (𝑥 ′) ⪰ 𝑓 (𝑥).
Definition 2 (Pareto Optimality) A point 𝑥 is Pareto-optimal if no
other point 𝑥 ′ exists such that 𝑓 (𝑥 ′) dominates 𝑓 (𝑥).
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Figure 1: Overview of the proposed integrated FPGA architec-
ture exploration framework.

Definition 3 (Non-domination Rank [18]) The first front 𝐹1
(Pareto front) with rank(1) contains solutions that are not dominated
by any other one. The second front 𝐹2 with rank(2) contains solutions
that are only dominated by those in 𝐹1. This process continues until all
solutions are sorted into fronts with different non-domination ranks.

3 Exploration Framework Overview
3.1 Proposed Exploration Flow

Our proposed framework is illustrated in Figure 1. Each archi-
tecture design is abstracted into two inputs: hard block design pa-
rameters and other soft architectural parameters not related to the
heterogeneous part. These inputs are processed in an integrated
CAD flow comprising COFFE 2 [1] and VTR 8 [2]. The COFFE part
of the integrated flow generates a resulting architecture description
file based on parameter inputs and an architecture template. This
description file is then utilized by the VTR part along with a set of
Verilog HDL benchmarks to evaluate the corresponding area and
delay values. The hypervolume-aware TPE method models these
designs based on their metrics and maximizes the acquisition func-
tion to determine the architecture designs for sampling. This process
iterates until the desired optimized architecture is achieved.

3.2 Architecture Template
As the basis of our architecture generation and exploration, an

architecture template is established first. The template includes
columns of CLBs, DSPs, PE arrays, and BRAMs, with I/Os positioned
along the FPGA perimeter. Each CLB comprises several BLEs, each
containing a fracturable LUT and two flip-flops. The complex DSP
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blocks employed are Intel Agilex-like [19, 20], supporting fixed-point
and floating-point precisions. BRAM blocks have registered inputs
and outputs and support both true and simple dual-port modes.
The PE arrays, equipped as additional hard blocks in the template,
are similar to the tensor slice [13]. We reproduce the tensor slice’s
support for int8 and int16 precisions, as well as for matrix-matrix
and matrix-vector multiplication in tensor mode, which are com-
mon precisions and computations in similar PE arrays. The primary
difference between the implementation of this array and the origi-
nal tensor slice lies in the PE’s MAC portion. Our implementation
employs the Schoolbook decomposition method [21] to split 16-bit
multiplication, which requires four fewer 8-bit adders than the ten-
sor slice for 16-bit multiplication. After implementing the new PEs,
they are verified for functional correctness.

Additionally, the template employs unidirectional routing, uti-
lizing wire segments of lengths 4 and 16, denoted as 𝐿4 and 𝐿16.
SBs utilize a custom switching pattern identical to the architecture
used to evaluate the tensor slice [13]. CBs’ input flexibility 𝐹𝑐𝑖𝑛 and
output flexibility 𝐹𝑐𝑜𝑢𝑡 are set to 0.15 and 0.1, as COFFE’s defaults.

3.3 CAD Flow Integration
3.3.1 COFFE Flow for Characterization.COFFE supports a heteroge-
neous flow, incorporating both a hard block flow for characterizing
hard blocks and a full custom flow for characterizing the remain-
ing FPGA architecture, including CLBs and interconnects. Thus,
architecture parameters are categorized into two parts accordingly.

Specifically, in the hard block flow for generating hard block
power, performance, and area (PPA), RTL synthesis is conducted
through the Design Compiler [22], followed by placement and rout-
ing (P&R) with Innovus [23] and static timing analysis (STA) using
PrimeTime [24]. As detailed in Figure 2, some hard blocks support
multiple modes with different delays. For example, suppose a hard
block supports both int and float precision modes. In that case, we
measure the respective maximum delay for each mode in HDL and
record these values in the corresponding sections of the architecture
template file. Since VTR requires the minimum-width transistor area
(MWTA) for subsequent processing, the Innovus results need to be
converted accordingly.

In the full custom flow, HSPICE [25] simulates CLBs and inter-
connects. When describing CLBs, internal interconnects must be
considered in addition to area and delay, which is unnecessary for
hard blocks as they are treated as black boxes. The flow also de-
scribes the routing wires, switch blocks (SBs), and connection blocks
(CBs) that connect various blocks. Then, the generated hard block
PPA, soft architectural information, and the layout parameters are
input into the architecture template. This forms a resulting FPGA
architecture description file for each iteration, specifying the block
types and quantities, interconnects, and layout.

3.3.2 VTR Flow for Evaluation. In the VTR flow, the architecture
description file and Verilog HDL benchmarks are used as the input.
The benchmarks used are chosen from Koios benchmark suite [17],
which is designed explicitly for DL and ideal for exploring FPGA
architectures tailored to DL workloads. As listed in Table 1, they
cover int8 and int16 precisions and include dense operations like
matrix-matrix and matrix-vector multiplication. ODIN II synthesizes
the Verilog HDL benchmark into a netlist, ABC performs technology-
independent logic optimization andmaps the circuit into LUTs. Then,
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Figure 2: Detailed architecture file generation flow.

Table 1: DL benchmarks used for architecture evaluation

Benchmark Precision Array Mode Description
attention_layer int16 mat-vec Self-attention layer
conv_layer int16 mat-mat Convolution layer

lstm int16 mat-vec LSTM layer
tpu int8 mat-mat Google’s TPU v1 like
fcl int8 mat-mat Fully connected layer

VPR packs the netlist intomore coarse-grained logic blocks, performs
P&R, and generates evaluation reports with metrics.

It is worth noting that VTR flow automatically maps combina-
tional arithmetic operators such as multiplication and addition but
does not support the automatic mapping of custom hard blocks.
It requires the manual instantiation of hard blocks in benchmark
designs [26]. Consequently, a pre-built library of hard block HDL
descriptions and a corresponding benchmark library that instanti-
ates those hard blocks are created. Each benchmark in the library
contains two versions that instantiate PE arrays of sizes 4×4 and
8×8. These libraries ensure the integration of custom hard blocks
into the flow and enable the automation of the exploration process.

4 Multi-objective FPGA Architecture Search
4.1 Design Space Definition

An FPGA architecture design space is constructed and shown
in Table 2. Parameters are categorized into CLB, PE array, BRAM,
routing, and layout. The first three categories are more front-end
oriented, focusing on FPGA component design and functionality.
The latter two categories are related to back-end processing, which
deals with physical implementation and interconnects.

The parameters 𝑁 , 𝐾 , 𝐼 , 𝐹𝑐𝑙𝑜𝑐𝑎𝑙 , 𝑆𝑅𝐴𝑀 , and the FPGA aspect ratio
𝐴𝑠𝑝 are restricted to the most common options used in previous
architectures [8, 13, 17, 27–29], as these ranges have been proven
to perform well. The delay and area of the 20Kb and 40Kb BRAM
blocks are derived by interpolating between the values obtained
from running COFFE on 16 Kb, 32 Kb, and 64 Kb BRAMs. The PE
array has two size configurations 𝑆𝑎𝑟𝑟𝑎𝑦 : 4×4 and 8×8. The parame-
ter 𝑅𝑙 represents the proportion of the wire segments that are 𝐿16.
There are two layout strategies explored in this framework: spatial
and clustered, as shown in Figure 3. In the spatial layout, different
types of blocks are dispersed across the FPGA, whereas in the clus-
tered layout, blocks of the same type are grouped within a defined
region. Additionally, a linear scaling method is employed to adjust
the block ratio in layout to optimize FPGA block utilization for given
benchmarks. This ensures high utilization to make the FPGA more
compact, thereby reducing the delay and area. Specifically, it starts
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Spatial Clustered
CLB
DSP
BRAM

PE array

Figure 3: Layout strategies to be explored. Blocks extend verti-
cally in columns and repeat horizontally based on the strategy.

with a manual design from a previous work [13]:

𝐷𝑒𝑠𝑡𝑖 = 𝐶𝑜𝑔𝑖 ×𝑈𝑖 , (3)

where𝐷𝑒𝑠𝑡𝑖 is each block type’s estimated demanded column number,
𝐶𝑜𝑔𝑖 is each block type’s original column number, and 𝑈𝑖 denotes
their measured original utilization. The estimates are then adjusted
to ensure the sum of the new column numbers is close to the original:

𝐶𝑛𝑒𝑤𝑖
=

∑
𝐶𝑜𝑔∑
𝐷𝑒𝑠𝑡

× 𝐷𝑒𝑠𝑡𝑖 , (4)

where 𝐶𝑛𝑒𝑤𝑖
is each block type’s new column number. In this case,

the original column numbers of CLB, DSP, and PE array are 11, 4,
3, and 1, respectively. Their measured average utilizations in the
selected benchmarks are 0.16, 0.007, 0.32, and 0.97. By using Equa-
tion (3) and Equation (4), the new column numbers are 9, 1, 5, and 5,
respectively. The effectiveness of this optimization will be verified
in Section 5.2. In addition, since the height of each block varies while
the overall architecture design remains rectangular, extending verti-
cally in VTR’s auto-layout mode may cause misalignment, resulting
in gaps between columns of blocks and the top of the design. The
parameter 𝐹𝑖𝑙𝑙 determines whether these gaps should be filled with
CLBs.

Table 2: Selected FPGA architecture parameters

Type Parameter Description Range of values
𝑁 BLEs per CLB 6, 8, 10, 12
𝐾 LUT inputs 5, 6
𝐼 CLB inputs 32: 68: 4CLB

𝐹𝑐𝑙𝑜𝑐𝑎𝑙 crossbar density 0.25, 0.5
PE array 𝑆𝑎𝑟𝑟𝑎𝑦 size of PE arrays 4×4, 8×8
BRAM 𝑆𝑅𝐴𝑀 size of BRAMs 16Kb, 20Kb, 32Kb, 40Kb
Routing 𝑅𝑙 wire segment ratio 0.1, 0.15, 0.2

𝐿𝑎𝑦𝑜𝑢𝑡 layout strategy spatial, clustered
𝐹𝑖𝑙𝑙 whether fill gaps 0, 1Layout
𝐴𝑠𝑝 aspect ratio 0.5, 1, 2

* The values are either listed individually or start : end : stride.

4.2 Search Space Reduction
The size of the search space greatly affects exploration efficiency.

Besides constraining the parameter selection range, utilizing domain
knowledge to prune the search space is crucial. If domain knowledge
suggests a likely optimal parameter value, further exploration can
be avoided, thus reducing the exploration space and speeding up
the process. A summarizing formula 𝐼 = 𝐾

2 × (𝑁 + 1) is proposed by
Ahmed et al. [30] to infer 𝐼 through 𝑁 and 𝐾 . For fractured LUTs,
the parameters become 𝐾 ′ = 𝐾 − 1 and 𝑁 ′ = 𝑁 × 2. Consequently,
the formula transforms into 𝐼 = 𝐾 ′

2 × (𝑁
′ + 1) = 𝐾−1

2 × (𝑁 × 2 + 1).
Subsequent research finds that adding approximately 5 to the

calculated 𝐼 value typically yields better results [8]. From an area-
routability perspective, since depopulated crossbars are used, it is

best to avoid using all the inputs, as full usage can result in routing
difficulties. Hence, adding a few inputs is generally a better solution.
To better match the parameter selection of 𝐹𝑐𝑙𝑜𝑐𝑎𝑙 , each CLB’s inputs
are divided into four groups, so 𝐼 should be approximated to the
nearest multiple of 4. As a result, in this framework,

𝐼 = 4

⌊ [
𝐾−1
2 × (2𝑁 + 1) + 5

]
+ 2

4

⌋
. (5)

By avoiding independent exploration of 𝐼 , the search space in
Table 2 is reduced from 46080 architecture designs to 4608 ones.

4.3 Pareto-front Search
Our algorithm is based on Bayesian optimization, which uses a

surrogate model to simulate the objective function and an acqui-
sition function to select sampling points. Common BO methods
include those based on Gaussian Process (GP) regression [31] and
TPE [16, 32]. GP models the function 𝑝 (𝑦 |𝑥) by assuming a multi-
variate normal distribution over the search space. While effective
for continuous variables, it may struggle with discrete ones due to
its smoothness assumption.

In contrast, TPE transforms the modeling of 𝑝 (𝑦 | 𝑥) into model-
ing 𝑝 (𝑥 | 𝑦) using Bayes’ Theorem. It partitions observations into a
good set 𝐷𝑙 and a bad set 𝐷𝑔 with a quantile ratio 𝛾 . Then, it uses the
Parzen window to estimate 𝑝 (𝑥 | 𝑦) with a good density function
𝑙 (𝑥) and a bad density function 𝑔(𝑥). It is a non-parametric method
that does not make assumptions about the global data distribution,
which allows it to handle both continuous and discrete search spaces
effectively. Since the FPGA architecture parameters to be optimized
here are all discrete, TPE is an appropriate choice.

However, in this multi-objective optimization problem involv-
ing both the area and delay metrics, BO methods using acquisition
functions like expected improvement (EI) typically transform amulti-
objective problem into a single-objective one through weighted ad-
dition or a product. This hinders effective exploration and trade-offs
among objectives, leading to poor performance in the hypervol-
ume [33] and the average distance to reference set (ADRS) [34]. The
hypervolume measures the volume between a Pareto frontier and
a reference point in the objective space. For example, in Figure 4,
assuming 𝑌 ∗ is the Pareto frontier and the upper right corner of
the rectangle is the reference point, the upper right shaded area
represents the hypervolume. ADRS measures the proximity of an
approximated Pareto-optimal set to the reference Pareto-optimal
set. Given a reference Pareto-optimal set R and an approximated
Pareto-optimal set P , ADRS can be calculated as follows:

ADRS(R,P) = 1
|P |

∑︁
p∈P

min
r∈R

𝑑 (r, p), (6)

where 𝑑 is the Euclidean distance function.
To improve efficiency, we introduce hypervolume awareness [35,

36] and dominance to this framework and demonstrate its effective-
ness in exploring the area-timing space of various FPGA architecture
designs. Consequently, density functions are formed as follows:

𝑝 (𝑥 | 𝑦) =
{
𝑙 (𝑥) if (𝑦 ≻ 𝑌 ∗) ∪ (𝑦 ∥ 𝑌 ∗)
𝑔(𝑥) if 𝑌 ∗ ⪰ 𝑦

𝑝 (𝑦 ≻ 𝑌 ∗ ∪ 𝑦 ∥ 𝑌 ∗) = 𝛾

(7)
where 𝑌 ∗ is a set of points to split the observed architecture de-

sign set 𝐷 according to 𝛾 . The dominance relationship between the
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Figure 4: In a dual-objective case, colors are different according
to the dominance relationship between 𝑦 and 𝑌 ∗

Algorithm 1 Design Set Split

Require: 𝐷 = {(𝑥 (1) , 𝑦 (1) ), . . . , (𝑥 (𝑛𝑡 ) , 𝑦 (𝑛𝑡 ) )}: observed FPGA ar-
chitecture designs, 𝑛𝑡 ∈ N: number of iterations; 𝛾 ∈ (0, 1):
quantile ratio

Ensure: 𝐷𝑙 : good observed designs; 𝐷𝑔 : bad observed designs
1: 𝐷𝑙 ← {}
2: Sort the observed designs based on their non-domination rank
3: for 𝑖 ← 1 to |𝐷 | do
4: if |𝐷𝑙 | +

��𝐷rank(𝑖 )
�� > ⌊𝛾 |𝐷 |⌋ then

5: break
6: end if
7: 𝐷𝑙 ← 𝐷𝑙 ∪ 𝐷rank(𝑖 )
8: end for
9: if |𝐷𝑙 | < ⌊𝛾 |𝐷 |⌋ then
10: for 𝑗 ← 1 to (⌊𝛾 |𝐷 |⌋ − |𝐷𝑙 |) do
11: 𝑥∗ ← argmax𝑥∈𝐷\𝐷𝑙

[HV(𝐷𝑙 ∪ {𝑥, 𝑓 (𝑥)}) − HV(𝐷𝑙 )]
12: 𝐷𝑙 ← 𝐷𝑙 ∪ {𝑥∗, 𝑓 (𝑥∗)}
13: end for
14: end if
15: 𝐷𝑔 ← 𝐷 \ 𝐷𝑙

two-dimensional 𝑦 and 𝑌 ∗ is shown in Figure 4, where 𝑓1 (𝑥) repre-
sents area and 𝑓2 (𝑥) represents delay. The observed design set split
is detailed in Algorithm 1, where 𝑦 in 𝐷 are the area and delay cor-
responding to 𝑥 , and HV means the calculated hypervolume. After
sorting, designs are added to 𝐷𝑙 rank by rank until the number of de-
signs in 𝐷𝑙 plus those at the next rank exceeds the threshold (Line 7).
Then, if 𝐷𝑙 is insufficient, the algorithm ensures the target design
number by greedily selecting architecture designs that maximize the
hypervolume from the next rank’s observation (Line 11).

In terms of the acquisition function, the expected hypervolume
improvement (EHVI) [35–37] is introduced to maximize the hyper-
volume of the approximated Pareto front. It calculates the expected
increase in hypervolume after adding a new 𝑦 to the current 𝑌 ∗:

EHVI𝑌 ∗ (𝑥) =
∫
𝐿

(
HV

(
𝑌 ∗ ∪ {𝑦}

)
− HV

(
𝑌 ∗

) )
𝑝 (𝑦 | 𝑥)𝑑𝑦

=

∫
𝐿

(
HV

(
𝑌 ∗ ∪ {𝑦}

)
− HV

(
𝑌 ∗

) ) 𝑝 (𝑥 | 𝑦)𝑝 (𝑦)
𝑝 (𝑥) 𝑑𝑦,

(8)

where 𝐿 = {𝑦 | 𝑦 ≻ 𝑌 ∗ ∪ 𝑦 ∥ 𝑌 ∗}, which corresponds to the green
and cyan areas in Figure 4 in a dual-objective problem, and the latter
equation is obtained by Bayes’ Theorem. Thus, 𝛾 = 𝑝 (𝑦 ∈ 𝐿), and the
denominator of Equation (8) is derived as: 𝑝 (𝑥) = 𝛾𝑙 (𝑥) + (1−𝛾)𝑔(𝑥),
and the numerator is: 𝑙 (𝑥)

∫
𝐿
(HV (𝑌 ∗ ∪ {𝑦}) − HV (𝑌 ∗)) 𝑝 (𝑦)𝑑𝑦.

Combining the numerator and denominator:

Algorithm 2Hypervolume-aware Tree-structured Parzen Estimator

Require: 𝐷 = {(𝑥 (1) , 𝑦 (1) ), . . . , (𝑥 (𝑛𝑡 ) , 𝑦 (𝑛𝑡 ) )}: observed FPGA ar-
chitecture designs;𝑛𝑡 ∈ N: number of iterations;𝑛𝑐 ∈ N: number
of candidate designs per iteration; 𝛾 ∈ (0, 1): quantile ratio

Ensure: Pareto optimal architecture designs in 𝐷
1: for 𝑖 ← 1 to 𝑛𝑡 do
2: 𝐷𝑙 , 𝐷𝑔 ← DSS(𝐷,𝛾) ⊲ Algorithm 1
3: Construct 𝑙 (𝑥) and 𝑔(𝑥) ⊲ Equation (7)
4: 𝐶 ←

{
𝑥 (𝑖, 𝑗 ) ∼ 𝑙 (𝑥) | 𝑗 = 1, . . . , 𝑛𝑐

}
5: 𝑥∗ ← argmax𝑥∈𝐶EHVI𝑌 ∗ (𝑥) ⊲ Equation (9)
6: 𝐷 ← 𝐷 ∪ {(𝑥∗, 𝑓 (𝑥∗))} ⊲ 𝑓 (𝑥∗) is from the CAD flow
7: end for

EHVI𝑌 ∗ (𝑥) =
∫
𝐿
(HV (𝑌 ∗ ∪ {𝑦}) − HV (𝑌 ∗)) 𝑝 (𝑦)𝑑𝑦

𝛾 + (1 − 𝛾) 𝑔 (𝑥 )
𝑙 (𝑥 )

∝
(
𝛾 + (1 − 𝛾)𝑔(𝑥)

𝑙 (𝑥)

)−1
.

(9)

As shown in Equation (9), the algorithm samples the architecture
design 𝑥∗ by maximizing 𝑙 (𝑥 )

𝑔 (𝑥 ) . Then, we derive Algorithm 2. In each
iteration, the observed FPGA architecture designs are split (Line 2).
And two density functions are constructed for good and bad designs,
respectively (Line 3). Subsequently, several candidate designs are
sampled from 𝑙 (𝑥) (Line 4), and the estimated optimal design 𝑥∗ is
selected from candidates by maximizing the EHVI value (Line 5). At
the end of each iteration, the sampled design is evaluated through
the integrated CAD flow, and the observation is updated accordingly
(Line 6).

5 Experimental Results
5.1 Setup

The proposed framework is implemented on a Linux platform
with a 2.0GHz Intel Xeon Gold 6338 CPU with 1024GB of memory
and an NVIDIA RTX 4090 GPU. COFFE 2 [1] and VTR 8.1 [2] are used
in the integrated CAD flow. SPICE simulations in COFFE use 22nm
libraries from the Predictive Technology Model [38]. The standard
cell library used by the Design Compiler in COFFE is the NanGate
45nm Open Cell Library [39]. Scaling factors are applied to scale
down the PPA values of hard blocks from 45 nm to 22 nm [40]. The
exponents of delay and area in the cost function of COFFE are set to
2 and 1, respectively, to emphasize performance more. The channel
width is fixed at 300.

A dataset comprising 4608 architecture designs is collected as de-
scribed in Section 4. The proposed method is compared against man-
ual designs and other DSE algorithms, including SA, GP-based BO,
and TPE-based BO. Each algorithm runs for 50 iterations, where GP-
based BO, TPE-based BO, and our framework perform five uniform
random initializations followed by 45 formal optimization iterations.

5.2 Performance Comparison
Considering that a DL-specific FPGA architecture should be opti-

mized to handle a variety of DL workloads, this case study employs
the geometric mean of the area and critical path delay values ob-
tained from the benchmarks in Table 1. This approach fairly captures
the PPA improvements and declines across each benchmark.
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Figure 5: Comparing delay and area of FPGA architecture
designs with different blocks and block ratios.
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Figure 6: Optimization trajectories for different methods il-
lustrate the mean hypervolume ± standard deviation.

First, we compare the geometric mean metrics of FPGA archi-
tecture designs with different blocks and block ratios to verify the
necessity of adding PE arrays and optimizing block ratios. In Figure 5,
"vanilla" refers to the architecture without PE arrays, "manual" de-
notes the architecture coming from the previous work [13] equipped
with PE arrays, and "manual*" represents the "manual" design using
the block ratio calculated in Section 4.1. It shows that PE arrays sig-
nificantly reduce area and critical path delay. Additionally, adjusting
the block ratio further decreases the area and delay. The area reduc-
tion resulting from adjusting the block ratio is primarily due to a
2.8× reduction in routing area, making the FPGA more compact and
routing easier. Since "manual*" performs best in both area and delay,
we mainly use it as the manually designed baseline for comparison
in subsequent experiments.

Algorithm experiments are conducted three times on SA, GP-
base BO, TPE-based BO, and our proposed framework. The mean
hypervolume trajectories are represented by a solid line, with the
standard deviation shown as the surrounding shadow in Figure 6. As
iterations increase, our hypervolume value steadily grows more than
those of other algorithms. The hypervolume and ADRS result com-
parisons for FPGA manual architecture designs and those generated
by algorithms are presented in Figure 7, where the hypervolume and
ADRS of the algorithms are derived from the Pareto frontiers fused
from three experiments. Our framework consistently shows superior
performance, achieving 29.4% higher hypervolume and 89.5% lower
ADRS than the second-best results. These results demonstrate that
our algorithm efficiently explores the discrete multi-objective search
space by avoiding the smoothness assumption and incorporating
multi-objective concepts into the optimization process.

Manual architecture designs and the Pareto frontiers of different
algorithms are illustrated in Figure 8, with area and delay values pre-
sented after applying the geometric mean. The true Pareto frontier is
obtained from the dataset designs. This figure intuitively highlights
the limitations of manual designs in addressing multiple objectives,
as each corresponds to only one area-delay point. In contrast, our
framework can generate a set of architecture designs that are closest
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Figure 7: Comparison of different methods based on normal-
ized hypervolume and ADRS.
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Figure 8: Manual architecture designs and Pareto frontiers of
different algorithms.
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Figure 9: Comparison of different methods across various
benchmarks based on delay and ADP.

to the true Pareto frontier for multiple scenarios compared to all the
manual and algorithmic baselines.

Considering two typical scenarios, minimizing delay and area-
delay product (ADP), the bar graphs for these geometric mean values
are displayed on the far right of the two subgraphs in Figure 9. Our
method consistently delivers the best results, whether aiming for
minimum delay or ADP. It reduces delay by 12.8% and ADP by 21.4%
compared to the manual design with adjusted block ratio, and it
outperforms all algorithm baselines in both delay and ADP.

When substituting these manual designs and Pareto frontiers esti-
mated by algorithms back into each benchmark for further analysis,
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as illustrated in the rest of Figure 9, our framework’s performance
remains competitive across different benchmarks, achieving the best
results in 7 out of 10 cases. If the performance needs to be biased
toward certain benchmarks, the weight of each benchmark’s PPA
values in the mean calculation can be adjusted accordingly.

6 Conclusion
This work introduces an innovative framework for exploring

FPGA architectures to accelerate DL workloads. By combining the
hypervolume-aware TPE method with the integrated COFFE and
VTR toolsets, the framework efficiently explores the FPGA archi-
tecture design space, automatically generating outstanding designs
applicable to multiple scenarios in the design space. This enhances
design efficiency and yields significant performance gains. Experi-
mental validation across various DL benchmarks demonstrates no-
table improvements in both area and delay metrics, outperforming
baseline manual designs and optimization algorithms. Future re-
search will focus on expanding the framework application scenarios
to include exploring multi-die FPGAs and co-designing network
architecture and FPGA architecture.
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