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Abstract
Multipliers and multiply-accumulators (MACs) are critical arith-

metic circuit components in themodern era. As essential components

of AI accelerators, they significantly influence the area and perfor-

mance of compute-intensive circuits. This paper presents UFO-MAC,

a unified framework for the optimization of multipliers and MACs.

Specifically, UFO-MAC employs an optimal compressor tree struc-

ture and utilizes integer linear programming (ILP) to refine the stage

assignment and interconnection of the compressors. Additionally, it

explicitly exploits the non-uniform arrival time profile of the carry

propagate adder (CPA) within multipliers to achieve targeted opti-

mization. Moreover, the framework also supports the optimization of

fusedMAC architectures. Experimental results demonstrate that mul-

tipliers and MACs optimized by UFO-MAC Pareto-dominate state-

of-the-art baselines and commercial IP libraries. The performance

gain of UFO-MAC is further validated through the implementation

of multipliers and MACs within functional modules, underlining its

efficacy in real scenarios.
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1 Introduction

In digital circuit design, multipliers andmultiply-accumulators are

fundamental arithmetic components, which are particularly critical

for computation-intensive applications. Consequently, the optimiza-

tion of high-performance multipliers and MACs becomes imperative,

as their optimization significantly influences overall performance,

energy efficiency, and area footprint.

The fundamental architecture of a multiplier typically includes

three key components: a partial product generator (PPG), a compres-

sor tree (CT), and a carry propagate adder (CPA). The CT efficiently

compresses the partial products generated by the PPG into two rows,

which are then summed by the CPA to produce the final product.

The CT is crucial for efficiently performing the addition of partial
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CT critical path:  1.30 𝑛𝑠

CPA critical path : 1.81 𝑛𝑠

Global critical path:  2.37 𝑛𝑠
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Figure 1: Motivating example: The optimization of the CT and
the CPA are not decoupled; CPA exhibits a non-uniform ar-
rival time profile, requiring optimization strategies different
from those of traditional adders methodology

products generated by the PPG in parallel [1, 2]. Moreover, there

have been numerous customized designs specifically optimized for

specific technology nodes and applications [3, 4, 5, 6]. While cus-

tomized designs of multipliers offer precise control, they often lack

the flexibility to quickly adapt to new technology nodes and ap-

plications. To address this, algorithmic methods have emerged as

more flexible solutions that leverage advances in algorithmic strate-

gies, mathematical programming, and heuristic search techniques.

The three-dimensional method (TDM) has been introduced for the

design of compressor trees[7, 8, 9]. In FPGA design, integer linear

programming (ILP) has been applied effectively to compressor tree

optimization, utilizing specialized counter resources to efficiently bal-

ance area and delay [10]. Subsequent enhancements have included

sophisticated modeling techniques [11, 12], heuristics to refine the

solution space [13], and the comprehensive global optimization of

PPG and CPA [?]. The ILP for ASIC multiplier optimization was

proposed in GOMIL [14], where the ILP was used to minimize the

area of the compressor tree, and linear programming was utilized

for the optimization of the CPA.

Regarding CPA design, prefix adders are adopted for more effi-

cient addition. Prefix adders incorporate regular structures that are

optimized regarding logic level, fan-out, and wire tracks, as seen

in Sklansky tree [15], Kogge-Stone tree [16], and Brent-Kung tree

[17]. Automated synthesis approaches have introduced greater flex-

ibility. Modify-based methods modify regular structures through

equivalent transformations to meet design constraints [18, 19, 20].

In addition, ILP has been utilized to systematically explore and opti-

mize adder trees, employing analytical models that account for area,

power, and timing [21]. Furthermore, Roy et al. have advanced this

field by proposing an exhaustive search approach that incorporates

pruning strategies, which effectively streamline the design process

by focusing only on the most promising configurations [22, 23, 24].
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Recently, machine learning methodologies have emerged, which

employ surrogate evaluators to assess design variants during op-

timization [25, 26] or train an agent to directly optimize a design

[27, 28]. Notably, reinforcement learning has been applied to refine

traditional datapath architectures, such as in PrefixRL [27], where

it optimizes prefix adders by modifying classical adder structures.

Similarly, RL-MUL [28] represents compressor trees as tensors and

employs a reinforcement learning agent to optimize multiplier de-

sign. In addition, the interconnect order within the CT may also

impact the delay of CT, while RL-MUL only considered searching

for the total compressor number in each column of CT.

Despite that each component has been extensively explored in

previous studies, obtaining a high-performance multiplier and MAC

is still non-trivial today. On the one hand, the design space of CT

in multipliers has not been well explored in prior research. The

methods for compressor assignment and the interconnection orders

between compressors significantly influence CT performance. These

aspects are often overlooked in existing works [14, 28]. On the other

hand, the three components of multipliers and MACs - PPG, CT,

and CPA - are not decoupled. As illustrated in Figure 1, the global

critical path of a multiplier does not simply accumulate the critical

paths of CT and CPA. On the right side of Figure 1, we can see

that the CT output profile exhibits a “trapezoidal” shape, where

the data at the least significant bit (LSB) and most significant bit

(MSB) arrive first, and the data for the middle bits arrive last. This

can be segmented into three regions, and the observation provides

us with two insights: First, in region 2, where the CT data arrive

last, there is a necessity to employ high-speed prefix structures

to accommodate the critical path delay. Conversely, in regions 1

and 3, where the data arrive earlier, there is no need for fast prefix

structures. By leveraging the non-uniform arrival profile of regions

1 and 3, we can effectively optimize the area without compromising

the performance of the overall design. Previous work GOMIL [14]

has focused only on minimizing the area of the compressor tree and

the depth of the Carry Propagation Adder (CPA), while not exploiting

the non-uniform arrival profile. Other studies such as RL-MUL [28]

concentrated solely on the compressor tree while overlooking the

significant impact that CPA optimizations can have on the overall

performance of multipliers.

In contrast, a more effective strategy involves targeted optimiza-

tions of the CPA based on the CT output profile. While there are

existing works on non-uniform arrival adders, such as the hybrid

adder using a carry skip adder [29, 30, 31], and approaches that

transform non-uniform arrival times into logic depth constraints

for prefix graphs [19, 32]. However, logic depth provides a low fi-

delity of path delay, and node fanout can significantly impact path

delay[23], which is not considered in these approaches. To address

these limitations, we propose UFO-MAC, a unified framework for

the optimization of high-performance multipliers and MACs. UFO-

MAC not only adopts area-optimal CTs but also expands the design

space to utilize ILP to optimize compressor assignment and intercon-

nection orders, which ensures effective area and delay optimization.

For CPA design, UFO-MAC explicitly leverages the non-uniform

input arrival profile, adopting a linear timing model that accounts

for both fanout and logic depth. This model provides a higher fidelity

that guides the CPA optimization more effectively. Starting from an

area-efficient initial CPA structure, the framework applies depth and

fanout optimization to meet timing constraints, thereby enhancing

the overall performance of the adder.
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Figure 2: Multiplier Architecture

In summary, the contributions of UFO-MAC are as follows:

• We propose UFO-MAC, a unified framework for the optimization

of multipliers and MACs, enhancing both area and delay metrics.

• We introduce area-optimal CT structures and extend the design

space to optimize the interconnect order of the compressor trees.

• We explicitly explore the non-uniform arrival profile for targeted

optimization of CPAs based on our max-path fanout timingmodel.

• Experimental results confirm that UFO-MAC optimized multipli-

ers and MACs exceed all baseline designs. The effectiveness of

these optimized designs has been further validated in practical

applications, including signal processing and AI acceleration.

2 Preliminaries
2.1 Multiplier Architecture

The multiplier architecture integrates three fundamental compo-

nents: a partial product generator (PPG), a compressor tree (CT) and

a carry propagate adder (CPA), as illustrated in Figure 2.

Partial Product Generator (PPG): The PPG generates partial

products (PPs) from multiplicand and multiplier. For an 𝑁 -bit multi-

plier, an AND gate-based PPG employs 𝑁 2 AND gates. These gates

produce PPs, which are shifted according to their bit positions to

facilitate subsequent addition.

Compressor Tree (CT): The primary role of the CT involves

compressing the shifted partial products into two parallel rows for

parallel reduction. It incorporates multiple compression stages, pre-

dominantly utilizing 3:2 and 2:2 compressors, which are effectively

full adders and half adders, respectively. A 3:2 compressor at stage

𝑖 , column 𝑗 takes three inputs and outputs a sum to column 𝑗 and

a carry-out to column 𝑗 + 1 in the next stage 𝑖 + 1. Similarly, a 2:2

compressor at the same stage and column processes two inputs,

delivering a sum and a carry-out to the subsequent column and

stage.

Carry Propagate Adder (CPA): The CPA aggregates the two

rows of compressed PPs from the CT to produce the final product. It

generally employs a prefix adder for fast computation.
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2.2 Prefix Structure-based CPA
The generate function (𝑔𝑖 ) and propagate (𝑝𝑖 ) functions are used

in the prefix adders. The generate function is the AND operation,

and the propagate function is the XOR operation of the input bits,

defined as:

𝑔𝑖 = 𝑎𝑖 · 𝑏𝑖 , 𝑝𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 . (1)

The 𝑝𝑔 functions can be extended to multiple bits and 𝑃[𝑖:𝑗 ] ,𝐺 [𝑖:𝑗 ]
(𝑖 ≥ 𝑗) are defined as:

𝑃[𝑖:𝑗 ] =

{
𝑝𝑖 if 𝑖 = 𝑗,

𝑃[𝑖:𝑘 ] · 𝑃[𝑘−1:𝑗 ] otherwise,
(2)

𝐺 [𝑖:𝑗 ] =

{
𝑔𝑖 if 𝑖 = 𝑗,

𝐺 [𝑖:𝑘 ] + 𝑃[𝑖:𝑘 ] ·𝐺 [𝑘−1:𝑗 ] otherwise,
(3)

The associative operation for the group generate and propagate

(𝐺, 𝑃 ) is defined using the operator ◦:
(𝐺, 𝑃)[𝑖:𝑗 ] = (𝐺, 𝑃)[𝑖:𝑘 ] ◦ (𝐺, 𝑃)[𝑘−1:𝑗 ] . (4)

The computation of the sum and carry signals is given by:

𝑠𝑖 = 𝑝𝑖 ⊕ 𝑐𝑖−1, 𝑐𝑖 = 𝐺 [𝑖:0] + 𝑃[𝑖:0] · 𝑐𝑖𝑛 . (5)

2.3 Fused MAC Architecture
As illustrated in Figure 3, the fused multiply-accumulator (fused

MAC) architecture integrates the accumulation directly into the com-

pressor tree, eliminating the separate adder stage typically found in

conventional MAC units. The fusion of the accumulator significantly

enhances both area efficiency and delay. In this work, we employ the

fused MAC architecture to demonstrate its advantages in reducing

critical path delay and area, which improves overall efficiency.

3 Optimization of Compressor Tree
3.1 Two Compression Problems

The CT outputs two rows of compressed partial products, which

are fed into CPA to calculate final product results. So each bit column

should output 1 or 2 PPs after compression. In column 𝑗 , the total

number needed to compress is the initial PPs and the carries from

column 𝑗 − 1 and then compress them to 1 or 2 PPs to produce the

final 2 rows of PPs. This requirement frames our objective in CT

optimization: to add the PPs into two rows with minimal cost, a

challenge formally described as the Two Compression Problems.

Problem:Given an array of initial partial product counts in 2𝑁 −1
columns, denote the number of partial products in column 𝑗 as 𝑃𝑃 𝑗 .

The task is to compress 𝑃𝑃 𝑗 +𝐶 𝑗−1 (where𝐶 𝑗−1 represents the carries
from column 𝑗 − 1) into a maximum of two outputs per column with

minimum total cost.

In the UFO-MAC framework, we initially determine the optimal

counts of the 3:2 and 2:2 compressors for each column. We then

Algorithm 1 Compressor Tree (CT) Generation

1: Input: 𝑃𝑃 𝑗 for each column 𝑗 , where 𝑗 = 0 to 2𝑁 − 1
2: Output: 𝐹 𝑗 and 𝐻 𝑗 , the counts of 3:2 and 2:2 comps per column

3: Initialize 𝐹 𝑗 = 0 and 𝐻 𝑗 = 0 for all 𝑗

4: for 𝑗 = 0 to 2𝑁 − 1 do
5: if 𝑗 = 0 then
6: Adjust 𝐶−1 = 0 ⊲ Initial carry for the first column

7: end if
8: if (𝑃𝑃 𝑗 +𝐶 𝑗−1) is even then
9: 𝐹 𝑗 ← (𝑃𝑃 𝑗 +𝐶 𝑗−1 − 2)/2
10: else ⊲ Odd number of PPs

11: 𝐻 𝑗 ← 1 ⊲ Adjust for parity

12: 𝐹 𝑗 ← (𝑃𝑃 𝑗 +𝐶 𝑗−1 − 3)/2
13: end if
14: end for

assign these compressors to stages using ILP, and optimize the in-

terconnection orders between compressors to improve critical path

delay. These steps are detailed in Section 3.2, Section 3.3, and Sec-

tion 3.5.

3.2 CT Structure Generation
As described in Section 2.1, a 3:2 compressor generates one sum

in the current column and passes 1 PP (carry) to the next, which

reduces the total number of PPs. While a 2:2 compressor is not as

efficient as a 3:2 compressor in terms of reducing the total number

of PPs. For instance, in column 𝑗 , to complete the compression of

one PP only by 2:2 compressors, we need to pass it to column 2𝑁

and require 2𝑁 − 𝑗 2:2 compressors. Therefore, we use as few 2:2

compressors as possible for more efficient compression. It is evident

that compressing PPs to a single bit incurs higher costs compared

to two bits, as more compression requires additional compressors.

It is ideal to use only 3:2 compressors in columns with even PP

numbers (𝑃𝑃 𝑗 +𝐶 𝑗−1 is even), since each 3: 2 compressor reduces

2 PPs in the current column. However, in columns with odd values

𝑃𝑃 𝑗 +𝐶 𝑗−1, it is not feasible to achieve a final count of two using only
3:2 compressors due to parity constraints. To adjust parity, we use

2:2 compressors in columns with odd PP numbers [7]. We summarize

our CT generation process for each column 𝑗 in Algorithm 1.

The gate-level structures of the 3:2 and 2:2 compressors are illus-

trated in Figure 2. In CMOS technology, the AND and OR logic is

typically implemented with NAND and OAI gates. Thus, the area of
a 3:2 compressor is typically 1.5 times that of a 2:2 compressor. For a

column with𝑀 bit total PPs, the minimum number of compression

stages required is given by

⌈
log 3

2

(
𝑀
2

)⌉
[1]. As described above, we

only allow for no more than one 2:2 compressor in each column.

Considering both area and stage requirements and the 2:2 compres-

sor number constraints, we next demonstrate that our CT design is

optimal, minimizing both the area and the number of stages. First,

we prove that our approach has a minimum CT area.

Proof. Let 𝐹 and 𝐻 be the numbers of 3:2 and 2:2 compressors,

respectively, in our supposed optimal design with an area of 3𝐹 + 2𝐻 .

Assume that there exists a compressor tree that uses fewer 3:2 or 2:2

compressors and still meets the two-output maximum per column.

Removing𝑚 3:2 compressors would result in 2 + 2𝑚 outputs in the

affected columns, exceeding the limit of two outputs per column and

thus violating the constraints of the problem. Similarly, removing a

single 2:2 compressor from the columns where exactly one is used

3



would leave 3 outputs (2 + 1), again violating the constraints of the

problem. Substituting one 2:2 compressor with one 3:2 compressor

would result in an area of 3𝐹 + 2𝐻 + 1, thereby increasing the total

area. Replacing 𝑥 3:2 compressors with 𝑦 2:2 compressors, where

2𝑥 ≤ 𝑦, results in an area change of 3𝐹 + 2𝐻 − 3𝑥 + 2𝑦. This increases
the area since 3𝐹 + 2𝐻 − 3𝑥 + 2𝑦 ≥ 3𝐹 + 2𝐻 + 𝑥 , thus proving by

contradiction that our original design is optimal by minimizing the

compressor area without violating any design constraints. □

Next, we prove that our approach has a minimum stage number:

Proof of Minimum Compressors per Column. For any given

column 𝑗 in a compressor tree, let 𝑝𝑝 𝑗 + 𝐶 𝑗−1 be the total num-

ber of partial products and carries to be compressed. Assume our

solution, which uses 𝐹 𝑗 3:2 compressors and 𝐻 𝑗 2:2 compressors,

and suppose that there is a feasible solution with fewer compressors.

Reducing any 3:2 compressor by𝑚 would result in excess outputs

(more than two). Similarly, reducing a 2:2 comp, since ℎ 𝑗 ≤ 1, would

result in more than two outputs for that column, violating the two

output constraint. Adjusting the compressor configuration by re-

placing𝑚 3:2 comps with 𝑛 2:2 compressors to maintain constraints

would require 𝑛 = 2𝑚. This replacement results in a compressor

count of 𝑓𝑗 +ℎ 𝑗 +𝑚, which is greater than the original count, proving

by contradiction that our compressor allocation for each column is

minimal. □

Proof of Minimum Stages in the Compressor Tree. Having es-

tablished that each column is compressed using the minimum num-

ber of compressors, it follows that the carry propagated to the next

column is also minimized. Each additional compressor could po-

tentially introduce an additional stage of the next column due to

propagation of its carry. Since our arrangement of compressors is

minimal for each column, and no unnecessary carries are generated,

the entire tree achieves a minimal stage count. The number of stages

required can be calculated using the formula

⌈
log 3

2

(
𝑁
2

)⌉
, where 𝑁

combines 𝑝𝑝 𝑗 and 𝐶 𝑗−1. □

Previous work such as GOMIL [14] utilizes the one- or two-bit

output from the CT to reduce the need for 𝑝𝑔 generation logic in the

CPA. However, the reduction in 𝑝𝑔 logic leads to an additional 3:2

compressor in the CT, which does not result in overall area savings.

This is because the 𝑝𝑔 generation logic is typically implemented

using one NOR and two NAND gates and occupies less area than a

3:2 compressor.

3.3 Compressor Assignment
Building on the optimal counts of the 3:2 and 2:2 compressors

for each column by Algorithm 1, we introduce a method to assign

these compressors to specific stages, thus achieving a compressor

tree structure with a minimized stage count. Previous efforts such as

GOMIL [14] do not account for the number of stages, and heuristic

assignments in RL-MUL [28] potentially result in suboptimal stage

utilization. In contrast, our approach employs an ILP model to deter-

mine the stage assignments that minimize the total number of CT

stages.

We define 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 as the set of compressors located at stage 𝑖 and

column 𝑗 in the compressor tree. And we set a stage limit, 𝑠𝑡𝑎𝑔𝑒𝑚𝑎𝑥 .

For each 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 , the assigned numbers of 3:2 and 2:2 compressors

are represented by 𝑓𝑖, 𝑗 and ℎ𝑖, 𝑗 , respectively. We ensure that the

total compressors across all stages match the given counts from
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Figure 4: Critical path delay distribution of 10000 random
interconnect order with one same CT stage structure.

Algorithm 1 with the following constraints:

stage_max∑︁
𝑖=0

𝑓𝑖, 𝑗 = 𝐹 𝑗 ∀𝑗 (6)

stage_max∑︁
𝑖=0

ℎ𝑖, 𝑗 = 𝐻 𝑗 ∀𝑗 (7)

We define 𝑝𝑝𝑖, 𝑗 as the number of PPs at 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 . The PPs within each

slice are influenced by the outputs from the previous stage and the

carries from the preceding column, leading to the constraint:

𝑝𝑝𝑖, 𝑗 = 𝑝𝑝𝑖−1, 𝑗−2𝑓𝑖, 𝑗−ℎ𝑖, 𝑗 +𝑓𝑖−1, 𝑗−1+ℎ𝑖−1, 𝑗−1, ∀𝑖 > 0,∀𝑗 > 0 (8)

Furthermore, the number of PPs must be sufficient to accommodate

the compressors within a slice:

3𝑓𝑖, 𝑗 + 2ℎ𝑖, 𝑗 ≤ 𝑝𝑝𝑖, 𝑗 , ∀𝑖, 𝑗 (9)

To minimize the total number of stages, 𝑆 , we use a sufficiently large

constant𝑀 and binary auxiliary variables 𝑦𝑖, 𝑗 to indicate whether

any compressor is placed at 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 :

𝑆 ≥ 𝑖 · 𝑦𝑖, 𝑗 , ∀𝑖, 𝑗 (10)

𝑀 · 𝑦𝑖, 𝑗 ≥ 𝑓𝑖, 𝑗 + ℎ𝑖, 𝑗 , ∀𝑖, 𝑗 (11)

Our primary objective is to reduce the number of stages in the

compressor tree:

min 𝑆 (12)

By incorporating boundary conditions, this formulation allows for

deriving the CT structure with the minimum number of stages.

3.4 Impact of Interconnection Order
The interconnection order between compressors can affect the

critical path delay of the CT, which represents a design space that

previous works have often overlooked. As illustrated in Figure 2, for a

3:2 compressor, the path from ports𝐴 and 𝐵 to port 𝑆𝑢𝑚 involves two

XOR gates, whereas the path from 𝐶𝑖𝑛 to 𝐶𝑜𝑢𝑡 passes through AND
and OR logic, implemented by NAND and OAI gates. In particular,

the delay through two XOR gates is approximately 1.5 times that

of the NAND and OAI combination. Furthermore, the delay of 2:2

compressors is less than that of 3:2 compressors since they only

pass through one XOR or one AND gate. To demonstrate the impact

of interconnection order, we assign 10,000 random interconnection

orders to the same CT structure and then synthesize the 10,000 CTs

with the same constraints. As shown in Figure 4, the synthesized

results indicated that the delay of the CT varied by over 10%.
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3.5 Interconnection Order Optimization
We propose an ILP-based approach to optimize the interconnec-

tion orders of compressors within the compressor tree. Considering a

3:2 compressor, we assume that the arrival times of the input at ports

𝐴, 𝐵, and 𝐶𝑖𝑛 are 𝑎, 𝑏, and 𝑑 respectively. The output timing for the

sum and carry can then be determined by the following equations:

𝑠 = max(𝑎 +𝑇𝑎𝑠 , 𝑏 +𝑇𝑏𝑠 , 𝑑 +𝑇𝑐𝑠 ) (13)

𝑐 = max(𝑎 +𝑇𝑎𝑐 , 𝑏 +𝑇𝑏𝑐 , 𝑑 +𝑇𝑐𝑐 ) (14)

Here,𝑇𝑥𝑦 represents the delay from input𝑥 to output𝑦.We transform

the maximum operations into linear constraints:

𝑠 ≥ 𝑎 +𝑇𝑎𝑠 , 𝑠 ≥ 𝑏 +𝑇𝑏𝑠 , 𝑠 ≥ 𝑑 +𝑇𝑐𝑠 (15)

𝑐 ≥ 𝑎 +𝑇𝑎𝑐 , 𝑐 ≥ 𝑏 +𝑇𝑏𝑐 , 𝑐 ≥ 𝑑 +𝑇𝑐𝑐 (16)

Similarly, these constraints are applicable to 2:2 compressors, with

corresponding adjustments for their specific input and output timing

characteristics.

As illustrated in Figure 6, the PPs in 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 originate from two

sources: the sums and unused PPs from 𝑆𝑙𝑖𝑐𝑒𝑖−1, 𝑗 , and the carries

from 𝑆𝑙𝑖𝑐𝑒𝑖−1, 𝑗−1. For 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 , which receives 𝑚 PPs in total, we

denote the PPs of 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 as a source vector 𝑢𝑖, 𝑗 , representing the

data arrival times:

[𝑝𝑝𝑖, 𝑗,0, 𝑝𝑝𝑖, 𝑗,1, . . . , 𝑝𝑝𝑖, 𝑗,𝑚−1] (17)

Consequently, PPs can connect to compressor ports or directly pass

to 𝑆𝑙𝑖𝑐𝑒𝑖+1, 𝑗 . We assign dummy ports for these PPs, which are not

used and left to 𝑆𝑙𝑖𝑐𝑒𝑖+1, 𝑗 . The arrival times of these connections are

denoted in the sink vector 𝑣𝑖, 𝑗 :

[𝑝𝑜𝑟𝑡𝑖, 𝑗,0, 𝑝𝑜𝑟𝑡𝑖, 𝑗,1, . . . , 𝑝𝑜𝑟𝑡𝑖, 𝑗,𝑚−1] (18)

The task is to optimize the bijective mapping between the source

vector 𝑢𝑖, 𝑗 and the sink vector 𝑣𝑖, 𝑗 for each 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 . To model the

bijection between the source and sink vectors in each slice, we in-

troduce a𝑚 ×𝑚 binary matrix 𝑧𝑖, 𝑗 . Each entry 𝑧𝑖, 𝑗,𝑢,𝑣 = 1 indicates

that the source 𝑢 is connected to the sink 𝑣 . The formulation of this

relationship is given by:

𝑣 = 𝑢 if and only if 𝑧𝑖, 𝑗,𝑢,𝑣 = 1 (19)

To transform the constraints in Equation (19) linearly, we employ a

sufficiently large constant 𝑍 , and linear constraints are as follows:

𝑣 − 𝑢 ≤ 𝑍 · (1 − 𝑧𝑖, 𝑗,𝑢,𝑣); 𝑢 − 𝑣 ≤ 𝑍 · (1 − 𝑧𝑖, 𝑗,𝑢,𝑣) (20)

The following constraints ensure that each input is connected to

exactly one output and vice versa:

𝑚−1∑︁
𝑣=0

𝑧𝑖, 𝑗,𝑢,𝑣 = 1, ∀𝑢;
𝑚−1∑︁
𝑢=0

𝑧𝑖, 𝑗,𝑢,𝑣 = 1, ∀𝑣 (21)

Then combined with Equations (15) and (16), we can get the data

arrival time of every partial product and every compressor port. To

minimize the critical path in the compressor tree for multipliers of

𝑁 bits, the objective is to reduce the longest delay among the final

outputs. We define𝑀 as the maximum delay in any of the columns

from 0 to 2𝑁 −1. The goal is formulated as minimizing this maximum

delay, represented mathematically by:

𝑀 ≥ 𝑡 𝑗,0, 𝑀 ≥ 𝑡 𝑗,1 for all 𝑗 ∈ {0, 2𝑁 − 1} (22)

min 𝑀 (23)

The ILP formulation can handle all initial partial product shapes,

and we can easily extend to optimization of CT of fused MAC.

4 Optimization of CPA
Building upon the optimized compressor tree structures, we have

developed a refined approach for CPA design. This method effec-

tively utilizes the non-uniform arrival profile of the CPA to achieve

area-delay efficiency. Our comprehensive framework, as shown in

Figure 5, integrates these optimizations into the design process. This

section will detail our methods for CPA optimization.
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Figure 7: Sub-prefix trees.
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Figure 8: Timing Model.

4.1 Non Uniform Arrival Profile of CPA
As illustrated in Figure 1, the carry propagation adder presents a

non-uniform arrival profile, presenting unique challenges in design

and optimization compared to CPAs with uniform profiles. Leverag-

ing the variance in data arrival times, we aim to create area-delay

efficient adders that conform to timing constraints. Our refined opti-

mization framework explicitly exploits non-uniform arrival times.

Initially, area-efficient adder structures are selected, followed by

timing-driven transformations to meet the constraints.

The CPA’s arrival profile is segmented into three regions as shown

in Figure 1:

Region 1:With a “positive slope”, where faster adders are unnec-

essary, we employ a Ripple Carry Adder (RCA) suitable for gradual

arrival times.

Region 2: Known as the flat region with the latest data arrivals,

necessitating fast adder structures like the Sklansky structure [15].

Region 3: Characterized by a “negative slope” in which data at

the MSB end arriving first. To align with this “negative slope”, we

use a Carry Increment Adder [19] as the initial structure.

The initial structure effectively utilizes the non-uniform profile

to optimize both area and delay across different regions of the CPA.

4.2 Timing Modeling for Prefix Adders
Following the selection of initial area-efficient structures, we re-

fine them based on timing constraints. To ensure that each bit’s

critical path in the CPA meets timing constraints, we extract a sub-

prefix tree from a specific bit position to estimate and optimize the

critical path delay for that bit. Figure 7 shows trees extracted from

bit positions 1 and 3 of the CPA in Figure 2. Once the prefix tree

is extracted, we can estimate the delay for further optimizations.

High-fidelity timing modeling is crucial to achieving accurate delay

estimations. Many previous works have used logic depth as a tim-

ing model [19, 32, 14]. The max-path-fanout (mpfo) was introduced

in [26], which accumulates the fanout count of each node along a

path, and does not take into account the logic depth. Recognizing

that path delay is influenced by both logic depth and fanout, and

that existing models overlook the distinct node types shown in Fig-

ure 2, we introduce the fanout depth combination (FDC). This
refined model integrates path depth, fanout, and node types to offer

a more accurate and comprehensive timing prediction, addressing

the limitations of previous models.

We apply the simplified logic effort method[33] for timing esti-

mation as follows:

𝑑 = 𝑔 × 𝑓 + 𝑝 (24)

where 𝑔 is the logic effort, 𝑓 the fanout, and 𝑝 the intrinsic delay

of the gate. This model is adapted for different types of nodes, we

denote 𝑔𝑏𝑙𝑎𝑐𝑘 , 𝑝𝑏𝑙𝑎𝑐𝑘 and 𝑔𝑏𝑙𝑢𝑒 , 𝑝𝑏𝑙𝑢𝑒 as the logic effort and intrinsic

delay of black and blue nodes, respectively. Black nodes encompass

AND-OR logic and AND logic, implemented through interleaving

AOI+NAND and OAI+NOR. In contrast, blue nodes are implemented
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Figure 9: Example of two optimization transformations.

using only AOI or OAI cells. For black nodes, the delay is:

𝑑𝑏𝑙𝑎𝑐𝑘 = 𝑔𝑏𝑙𝑎𝑐𝑘 × (𝑓𝑏𝑙𝑎𝑐𝑘 + 𝑓𝑏𝑙𝑢𝑒 ) + 𝑝𝑏𝑙𝑎𝑐𝑘 (25)

where 𝑓𝑏𝑙𝑎𝑐𝑘 and 𝑓𝑏𝑙𝑢𝑒 are the fanouts to black and blue nodes, re-

spectively. Blue nodes, typically final level nodes only driving a

single sum logic, making their delay a constant:

𝑑𝑏𝑙𝑢𝑒 = 𝑔𝑏𝑙𝑢𝑒 × 𝑓𝑠𝑢𝑚 + 𝑝𝑏𝑙𝑢𝑒 (26)

where 𝑓𝑠𝑢𝑚 is the fanout to sum logic and is set to one. By integrating

these with Equations (25) and (26), the critical path delay for a tree

starting from bit 𝑖 can be represented as:

𝑑𝑖 = 𝑘0 × 𝐹𝑏𝑙𝑎𝑐𝑘 + 𝑘1 × 𝐹𝑏𝑙𝑢𝑒 + 𝑘2 × 𝑁𝑏𝑙𝑎𝑐𝑘 + 𝑘3 × 𝑁𝑏𝑙𝑢𝑒 + 𝑏 (27)

Here, 𝑘0, 𝑘1, 𝑘2, 𝑘3, and 𝑏 are coefficients that can be determined to

fit the model. Examples of FDC features are shown in highlighted

paths in Figure 7.

To determine the maximum depth, mpfo, and FDC in a tree con-

sisting of 𝑛 nodes, the computational complexity for each method is

𝑂 (𝑛). To validate the fidelity of FDC, we conducted linear regression
analyses for the depthmodel, mpfo, and FDC, comparing the𝑅2 Score

and Mean Absolute Percentage Error (MAPE). These analyzes are

based on 10,000 paths extracted from the open-source adder dataset

comprising 1100 adders from [26]. The results, presented in Figure 8,

show that by incorporating fanout and node types, FDC significantly

improves fidelity within the same computational complexity.

4.3 Final Adder Optimization
Based on the optimized CT structure, the non-uniform arrival time

of the CPA is normalized to the FDCmodel scale, and maximum FDC

constraints are set for each input bit based on timing requirements

(Section 4.2). Then iterative timing-driven optimization is applied

to meet these constraints, employing the depth-opt and fanout-opt

transformations illustrated in Figure 9.

Each prefix node 𝑝 has two fan-ins: the trivial fan-in (𝑡 𝑓 ), which

is vertically aligned and shares the same MSB, and the non-trivial

fan-in (𝑛𝑡 𝑓 ). We denote 𝑡 𝑓 (𝑦) and 𝑛𝑡 𝑓 (𝑦) as trivial and non-trivial

fan-ins of 𝑦. For example, in the prefix graph on the left side of

Figure 9, 𝑡 𝑓 (𝑦) and 𝑛𝑡 𝑓 (𝑦) refer to 𝑖2 and 𝑥 , respectively.
Recognizing the influence of logic depth and fanout on path de-

lay, we propose two optimization strategies: depth optimization
(depth-opt) and fanout optimization (fanout-opt). While prior

refine-based works [18, 19] primarily focused on depth, the signifi-

cance of fanout optimization has often been neglected. Our approach

addresses this oversight by balancing both aspects, effectively man-

aging the trade-offs between logic depth, node count, and fanout

for improved timing and area efficiency [33]. The specific rules for

implementing these transformations are detailed in Lines 19 to 23,

with the same principles applying to both depth-opt and fanout-opt.

The key distinction lies in the nodes targeted for optimization.

Our timing-driven prefix graph optimization strategy is described

in Algorithm 2. The algorithm adjusts the prefix graph from the MSB

to the LSB to resolve timing violations(Line 4). The algorithm checks

each bit for timing constraints, and bits with timing violations, it

6



Algorithm 2 Timing-driven Prefix Graph Optimization

1: Input: Input arrival times 𝐴 𝑗 for each bit 𝑗 , timing constraints

𝐶 , initial prefix graph 𝐺 , FDC timing model

2: Output: Optimized prefix graph 𝐺 ′

3: Assign bit-wise FDC constraints 𝑐 𝑗 for each bit 𝑗

4: while all 𝑐 𝑗 are met and exist possible optimization do
5: for 𝑗 = 𝑀𝑆𝐵 to 𝐿𝑆𝐵 do ⊲ Iterate from MSB to LSB

6: if 𝑐 𝑗 are violated then
7: Extract sub-prefix tree 𝑇𝑗 starting from bit 𝑗

8: if Depth of 𝑇𝑗 > log
2
(𝑁 ) then ⊲ check min depth

9: 𝑝 ← node with maximum depth in 𝑇𝑗
10: GraphOpt(𝑝) ⊲ depth-opt

11: else
12: 𝑝 ← node with maximum siblings in 𝑇𝑗
13: GraphOpt(𝑝) ⊲ fanout-opt

14: end if
15: end if
16: end for
17: end while
18: return 𝐺 ′ ⊲ Return the optimized graph

19: procedure GraphOpt(𝑝)
20: Create a new node 𝑠

21: 𝑛𝑡 𝑓 (𝑠) ← 𝑡 𝑓 (𝑛𝑡 𝑓 (𝑝)), 𝑛𝑡 𝑓 (𝑠) ← 𝑡 𝑓 (𝑛𝑡 𝑓 (𝑝))
22: 𝑡 𝑓 (𝑝) ← 𝑠 , 𝑛𝑡 𝑓 (𝑝) ← 𝑛𝑡 𝑓 (𝑛𝑡 𝑓 (𝑝))
23: end procedure

extracts the sub-prefix tree from the bit (Lines 6 and 7). For a prefix

tree that spans 𝑁 bits, the minimal depth is given by log
2
(𝑁 ) [34].

Depending on the depth of the tree, the optimization method is

chosen: If the tree depth exceeds log
2
(𝑁 ) + 1 (plus 1 for nodes to

group 𝑃𝐺 from the LSB side), indicating depth inefficiency, depth

optimization is applied to reduce depth. Otherwise, if the depth is

already optimal or minimal, fanout optimization is performed to

balance high fanout nodes in the tree (Lines 11 to 13). This process

continues iteratively until all bits meet the timing constraints or no

further optimizations are possible, ensuring that the prefix graph is

optimized for both area and delay.

5 Experimental Results
5.1 Setup

The proposed framework is implemented on a Linux platform

with a 2.0GHz Intel Xeon Gold 6338 CPU with 1024GB of memory

and an NVIDIA RTX 4090 GPU. The obtained designs are function-

ally correct which is verified by equivalence checking in Berkerly

ABC [35]. For ILP solvers, we use the Gurobi Optimizer (version 11.0)

[36] and set the ILP runtime limit to 3,600 seconds with 128 threads

for compressor assignment and interconnect order optimizations,

and the detailed runtime is shown in Figure 13. For each bitwidth

configuration of multipliers and MACs, we use timing-driven, area-

driven, and trade-off strategies for CPA optimization in Algorithm 2.

Comparisons are drawn between compressor trees, multipliers, and

MACs generated by UFO-MAC and baseline approaches. Our base-

lines include:

GOMIL[14]: An ILP-based global optimization method. Given

GOMIL’s special prefix node implementation, we execute ILP and

generate RTL code using the provided open-source C++ code and

set the ILP runtime to 10,000 seconds with 128 threads.

RL-MUL[28]: A state-of-the-art RL-based approach. We repro-

duce the RL framework, running it for 3,000 steps as specified in
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Figure 10: Pareto-frontiers of the synthesized results on com-
pressor trees. From left to right: 8-bit; 16-bit; 32-bit.
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Figure 12: Pareto-frontiers of the synthesized results onMACs.
From left to right: 8-bit; 16-bit; 32-bit.

RL-MUL. Given its focus solely on CT optimization, we follow the

original setting to use default adders from synthesis tools.

Commercial IP: We utilize 𝑦 = 𝑎 ∗ 𝑏 and 𝑦 = 𝑎 ∗ 𝑏 + 𝑐 style

RTL and commercial tools/IPs for synthesis. For compressor tree

comparisons, we instantiated commercial compressor tree IP in the

RTL.

All designs are synthesized by Synopsys Design Compiler (version

T-2022.03-SP1)[37] with the NanGate 45nm Open Cell Library[38]

and the compile_ultra command. To illustrate the trade-off among

the delay, power, and area in various scenarios, we sweep the tar-

get delay constraints from 0𝑛𝑠 to 2𝑛𝑠 to generate different netlists

covering different preferences.

5.2 Multiplier and MAC Comparison
Comparisons of compressor trees in Figure 10 include only RL-

MUL and commercial IP, as GOMIL’s compressor tree is merged into

its RTL and cannot be exactly decoupled. The results demonstrate

that UFO-MAC outperforms all baselines. Multiplier results in Fig-

ure 11 reveal that UFO-MAC provides Pareto-optimal performance,

with improvements up to 14.9% in area and 11.3% in delay com-

pared to commercial multipliers. The comprehensive design space

exploration including compressor assignment, interconnection order

and non-uniform CPA optimization contribute significantly to these

improvements over GOMIL and RL-MUL. While GOMIL focuses

only on optimizing the area of the compressor tree, resulting in

sub-optimal delays due to neglect of stage and interconnect consid-

erations, it also lacks area efficiency due to its CPA optimization

objectives centered solely on the logic level. RL-MUL may suffer
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Table 1: FIR filter comparison.

Constraint Method

8-bit 16-bit 32-bit

Freq (Hz) WNS (ns) Area (μm2
) Power (mW) Freq (Hz) WNS (ns) Area (μm2

) Power (mW) Freq (Hz) WNS (ns) Area (μm2
) Power (mW)

Area-driven

GOMIL[14]

660M

-0.4968 2354 1.5663

500M

-0.4990 9405 8.7474

400M

-0.4993 33804 36.584

RL-MUL[28] -0.3525 2318 1.4298 -0.4989 8752 8.7020 -0.5008 38022 44.264

Commercial IP -0.1805 2358 1.3137 -0.4989 8397 6.9946 -0.6533 31900 35.302

UFO-MAC -0.1188 1915 1.0934 -0.5707 6429 5.8867 -0.5486 29820 32.836

Timing-driven

GOMIL[14]

2G

-0.6287 3284 2.5342

1G

-0.6303 11112 12.004

660M

-0.5085 38167 46.405

RL-MUL[28] -0.5115 3067 2.3223 -0.4992 10572 10.872 -0.4999 38898 45.361

Commercial IP -0.5205 2919 2.0671 -0.4477 8518 7.3785 -0.4994 32183 35.715
UFO-MAC -0.4893 2733 1.7796 -0.4277 8394 7.4621 -0.4808 32127 35.980

Trade-off

GOMIL[14]

1G

-0.5468 2757 1.8771

660M

-0.4662 10373 10.615

500M

-0.4266 35372 40.126

RL-MUL[28] -0.2998 2718 1.9156 -0.3976 10215 10.315 -0.5039 38245 44.211

Commercial IP -0.3486 2495 1.4829 -0.3493 8418 7.0109 -0.4360 31510 34.551

UFO-MAC -0.2623 2349 1.5419 -0.3137 7658 6.4801 -0.3883 31366 34.217

Table 2: Systolic array comparison.

Constraint Method

8-bit 16-bit

Freq (Hz) WNS (ns) Area (μm2
) Power (mW) Freq (Hz) WNS (ns) Area (μm2

) Power (mW)

Area-driven

GOMIL[14]

660M

-0.5102 168370 11.572

400M

-0.4976 559985 35.918

RL-MUL[28] -0.4239 135659 10.207 -0.5102 436095 41.480

Commercial IP -0.4684 136529 10.393 -0.4828 438526 40.506

UFO-MAC -0.4974 125334 9.2475 -0.4697 401782 35.762

Timing-driven

GOMIL[14]

2G

-0.9827 190381 12.193

1G

-0.9854 662801 44.912

RL-MUL[28] -0.7077 172810 11.873 -0.5856 609563 44.275

Commercial IP -0.6053 144137 11.357 -0.3375 467621 45.221

UFO-MAC -0.5946 138316 10.787 -0.1994 533072 40.164

Trade-off

GOMIL[14]

1G

-0.6842 178874 11.175

660M

-0.6611 611143 41.651

RL-MUL[28] -0.6955 141754 10.892 -0.0981 564192 43.515

Commercial IP -0.6941 141905 10.831 -0.0999 458647 45.077

UFO-MAC -0.6785 131083 9.5777 -0.0182 449184 36.205

from scalability issues, especially in larger bit-width scenarios. MAC

results in Figure 12 confirm that UFO-MAC achieves up to 18.1%

reduction in area and 13.9% in delay compared to commercial MACs.

The fused MAC architecture, which merges the accumulator into the

partial product generation, offers substantial area and delay savings

by eliminating an extra adder stage.

5.3 Implementation in Functional Modules
To further validate the performance advantages of our framework

in larger-scale designs, we integrated the multipliers and MACs from

all approaches into more complex functional modules. Specifically,

multipliers are incorporated into 5-stage finite impulse response (FIR)

filters, commonly utilized in signal processing applications. MACs

are applied to the implementation of two systolic array designs that

are commonly used in AI chips. Both designs have 16×16 processing
elements and the bit width is 8-bit and 16-bit, respectively

1
. These

designs are synthesized under various clock frequency constraints to

assess area, timing, and trade-off scenarios. Results for the FIR filters

are detailed in Table 1, and those for systolic arrays in Table 2. It

can be seen that when applying the obtained multipliers and MACs

to larger functional modules implementation, the improvement on

delay, power, and area still persists.

6 Conclusion
This work has introduced UFO-MAC, a unified framework aimed

at enhancing the optimization of high-performance multipliers and

multiply-accumulators. Through the implementation of an optimal

compressor tree and then the refinement of stage assignment along

with interconnection orders using ILP, coupled with the strategic

1
An optimized 32-bit systolic array implementation is not available. Hence no experi-

ments were conducted on it.

8bit 16bit 32bit
Bit width

100

102

Ti
m

e 
(s

)
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MUL Interconnect
MAC Assignment
MAC Interconnect

Figure 13: ILP runtime.

utilization of the non-uniform arrival profile of carry propagation

adders (CPA), UFO-MAC demonstrably surpasses both contemporary

benchmarks and commercial tools in performance. Experimental

validation within FIR filter and systolic array configurations under-

scores the framework’s capability to significantly reduce area and

delay, thereby achieving substantial performance improvements. Fu-

ture efforts may explore extending UFO-MAC’s methodologies to

floating-point multipliers and broader applications, such as datapath

designs within Processing Element (PE) arrays, enhancing its utility

in increasingly complex computing environments.
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