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ABSTRACT
Logic synthesis plays a crucial role in the digital design flow. It has a
decisive influence on the final Quality of Results (QoR) of the circuit
implementations. However, existing multi-level logic optimization
algorithms often employ greedy approaches with a series of local
optimization steps. Each step breaks the circuit into small pieces
(e.g.,k-feasible cuts) and applies incremental changes to individual
pieces separately. These local optimization steps could limit the ex-
ploration space and may miss opportunities for significant improve-
ments. To address the limitation, this paper proposes using e-graph
in logic synthesis. The new workflow, named E-Syn , makes use of
the well-established e-graph infrastructure to efficiently perform
logic rewriting. It explores a diverse set of equivalent Boolean repre-
sentations while allowing technology-aware cost functions to better
support delay-oriented and area-oriented logic synthesis. Experi-
ments over a wide range of benchmark designs show our proposed
logic optimization approach reaches a wider design space compared
to the commonly used AIG-based logic synthesis flow. It achieves on
average 15.29% delay saving in delay-oriented synthesis and 6.42%
area saving for area-oriented synthesis.
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1 INTRODUCTION
Logic synthesis is a common starting point of the digital design au-
tomation flow and significantly affects the Quality of Results (QoR)
such as area, timing, and power consumption. The modern logic syn-
thesis flow typically contains a technology-independent optimization
phase followed by technology mapping.

Technology-independent optimization applies various transforma-
tions tominimize design costs represented by technology-independent
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metrics such as graph node count and logic level. This step focuses
on optimizing the logic structure of the circuit without considering
specific gate-level implementations.

One of the commonly used modern logic synthesis frameworks is
ABC [3], which is based on the And-Inverter Graph (AIG) representa-
tion of logic circuits. ABC is equipped with various algorithms (for
example, rewrite, refactor, and resubstitute [13, 15, 16]) to re-
duce the node count or logic level in an AIG. These algorithms follow
a common design concept: they attempt incremental changes to a
fraction of the graph (e.g., a k-feasible cut) and each chooses the logic
form with the most cost saving. This idea has achieved great success
in multi-level logic synthesis. However, there are two major chal-
lenges that limit the optimality of the synthesized circuit. First, the
local decisions of logic rewriting are greedy in nature as they do not
account for the influence of other optimization steps. Consequently,
a sequence of local optimizations may lead to a local minima and
result in a tremendous loss of optimization opportunities. Second,
the technology-independent cost metrics, such as AIG node count,
may not always reflect post-mapping QoR. Figure 1 gives such an
example. It compares the gate-level netlists after applying different
optimizations. The original logic form contains 20 AIG nodes. While
rewrite reduces the node count to 17, the area after technology
mapping actually goes up.

Motivated by the limitations of existing works, we introduce
E-Syn, a novel logic optimization method that utilizes equivalence
graphs (e-graphs) in Boolean logic rewriting. E-graph is a data struc-
ture that preserves equivalence during rewriting-based optimizations.
Thanks to the efficient and concise representation, it is possible to
keep a large set of equivalent forms of the same logic. We can defer
candidate selection until the completion of rewriting and therefore,
can take a more global view when choosing from equivalent candi-
dates. This unique feature of e-graph makes it easier to explore more
logic forms in the search for an optimal gate-level implementation.
Meanwhile, E-Syn allows the use of customizable cost functions
such as a machine learning model that directs optimization towards
a specific technology-dependent target. The last two netlists in Fig-
ure 1 show the results of delay-oriented and area-oriented E-Syn
optimizations. In this example, E-Syn does not blindly reduce the
corresponding AIG nodes which may not always lead to actual area
saving. Instead, it targets post-mapping QoR and obtains logic forms
with a much lower delay and a comparable area consumption.

Specifically, this paper makes the following contributions:

• It presents a novel logic optimization framework E-Syn that
leverages e-graph for combinational logic rewriting. E-Syn
maintains equivalent classes of the logic specification and can
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Original: #and = 20                   #level = 5
area = 22.39 μm2           delay = 30.78 ps

rw: #and = 17                   #level = 5
area = 23.79 μm2           delay = 29.76 ps

rs: #and = 18                   #level = 5
area = 18.90 μm2           delay = 35.16 ps

rf: #and = 20                   #level = 5
area = 22.39 μm2           delay = 30.78 ps

E-Syn (delay): #and = 20                   #level = 4
area = 27.06 μm2           delay = 21.91 ps

E-Syn (area): #and = 20                   #level = 4
area = 22.39 μm2           delay = 22.14 ps

Figure 1: Netlists after technology mapping and gate sizing, using the original logic form (original) or after applying one of
AIG rewriting (rw), resubstitution (rs), refactoring (rf), delay-oriented e-graph rewriting, or area-oriented e-graph rewriting.

explore a wider range of equivalent logic forms to search for
an optimal design.

• This is the first work that extends the application of e-graph
to Boolean logic optimization at the gate level, while previous
studies concentrated on applying e-graph optimizations at
higher levels (such as RTL or high-level synthesis).

• We propose a technology-aware logic optimization method
using cost models obtained from XGBoost regression. The
integration of the machine learning bridges the gap between
technology-independent logic cost and post-mapping QoR.

• For e-graph processing, we bring up a pool extraction method
to accommodate customizable cost functions in e-graph ex-
traction, which scales better than the time-consuming integer
linear programming method in the prior work and lifts the
linear and monotone restrictions on the cost function. It also
outperforms the default extraction heuristics by 21% and 10%
in delay and area, respectively.

• We conduct a comprehensive evaluation based on post-mapping
QoR on benchmark circuits from EPFL [1], LGSynth [22, 23],
ITC [6], ISCAS [4] etc. Experiments show E-Syn improves
15.29% in delay for delay-oriented optimization compared to
the state-of-the-art AIG-based logic optimizations in ABC, and
achieves 6.42% area saving in area-oriented synthesis.

The rest of the paper is structured as follows: in the next section,
we discuss the related work of logic synthesis and the applications of
e-graph in optimization. Section 3 presents the workflow of E-Syn,
followed by experiment results in Section 4. Finally, the paper con-
cludes with Section 5.

2 RELATEDWORK
2.1 Multi-level logic synthesis
Modern multi-level logic optimization techniques work on common
technology-independent logic representations, such as And-Inverter-
Graphs (AIGs) [15], Majority-Inverter-Graphs (MIGs) [2], and XOR-
based representations [10, 11]. Optimizations are centered around

reducing certain metrics defined upon these representations, such
as the graph node count or the longest path. For example, in the
commonly-used logic synthesis tool ABC [3], the rewrite opera-
tion traverses the graph to find opportunities to replace a k-feasible
cut with a logic-equivalent form given that the replacement brings
about the most node count decrease [15]. Other AIG rewriting tech-
niques [13–15], such as resubstitute, refactor and balance, fol-
low a similar fashion that they work on the subgraphs and apply
local changes each time. However, it is generally a hard question
of how to precisely evaluate the different choices of local rewriting
at each step. E-graph-based optimization in E-Syn differs from the
prior works as it keeps the equivalent classes in the graph. There is
a separate extraction step after rewriting to pick the best logic form
for the whole graph. At this step, the selection decision may refer to
a more general cost model that predicts the actual delay or area cost
with features from the whole graph.

2.2 Optimization using e-graphs
An e-graph, or equivalence graph, is a data structure that compactly
represents a large number of equivalence relations. It has been used
inside automated theorem provers, for example, Z3 [9]. Recent works
have demonstrated the power of e-graph in rewriting-driven opti-
mizations. Coward et al. proposed a datapath optimization approach
that represents designs as data-flow graphs and leverages e-graphs
and equality saturation techniques for efficient design space explo-
ration at the register-transfer-level [7]. The IMpress framework [19]
employed e-graphs to tackle the implementation problem of large
integer multiplication in high-level synthesis (HLS), where e-graph
helps to explore the possible ways to to decompose multipliers cor-
responding to different hardware implementations [20]. Applying
e-graph in optimization solves the phase ordering problem as the
ordering of transformations in e-graph is less of a concern. Besides
optimization, in the work [8], the authors proposed an equivalence
checking method that utilizes the e-graph to rewrite RTL for complex
datapaths. E-graph in verification transcends the traditional bit-level
logic reasoning and helps to prove equivalence at a higher level.
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Table 1: Rewriting Rules in E-Syn

Class Boolean Rewriting Rules

𝑎 ∗ 1 ⇒ 𝑎

Complements
𝑎 ∗ 0 ⇒ 0
𝑎 + 1 ⇒ 1
(¬𝑎) ∗ 𝑎 ⇒ 0
(¬𝑎) + 𝑎 ⇒ 1

Covering 𝑎 ∗ (𝑎 + 𝑏) ⇒ 𝑎

𝑎 + (𝑎 ∗ 𝑏) ⇒ 𝑎

Combining ((𝑎 ∗ 𝑏) + (𝑎 ∗ ¬𝑏)) ⇒ 𝑎

((𝑎 + 𝑏) ∗ (𝑎 + ¬𝑏)) ⇒ 𝑎

Idempotency 𝑎 ∗ 𝑎 ⇒ 𝑎

𝑎 + 𝑎 ⇒ 𝑎

Commutativity 𝑎 ∗ 𝑏 ⇔ 𝑏 ∗ 𝑎
𝑎 + 𝑏 ⇔ 𝑏 + 𝑎

Associativity (𝑎 ∗ 𝑏) ∗ 𝑐 ⇔ 𝑎 ∗ (𝑏 ∗ 𝑐)
(𝑎 + 𝑏) + 𝑐 ⇔ 𝑎 + (𝑏 + 𝑐)

Distributivity
𝑎 ∗ (𝑏 + 𝑐) ⇒ 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐
(𝑎 + 𝑏) ∗ (𝑎 + 𝑐) ⇒ 𝑎 + (𝑏 ∗ 𝑐)
(𝑎 ∗ 𝑏) + (𝑎 ∗ 𝑐) ⇒ 𝑎 ∗ (𝑏 + 𝑐)

Consensus (𝑎 ∗ 𝑏) + ((¬𝑎) ∗ 𝑐) + 𝑏 ∗ 𝑐 ⇒ (𝑎 ∗ 𝑏) + (¬𝑎) ∗ 𝑐
((𝑎+𝑏)∗((¬𝑎)+𝑐))∗(𝑏+𝑐) ⇒ (𝑎+𝑏)∗((¬𝑎)+𝑐)

De-Morgan ¬(𝑎 ∗ 𝑏) ⇒ ¬𝑎 + ¬𝑏
¬(𝑎 + 𝑏) ⇒ (¬𝑎) ∗ (¬𝑏)

These aforementioned prior works were based by egg [21], a fast and
flexible open-source library, which provides built-in functionality
for efficient e-graph manipulation and an extendable interface to
incorporate domain-specific rewriting rules.

Compared to the prior works, this paper extends e-graph to bit-
level optimization with Boolean algebra rules for rewriting. To ef-
fectively process the large-scale logic formulas in digital circuits, we
devise efficient format converters to integrate the egg library into the
logic synthesis flow and put forward a fast and objective-aware pool
extraction method to accommodate nonlinear technology-aware cost
models in logic optimization.

3 E-GRAPH REWRITING FOR LOGIC
SYNTHESIS

In this section, we introduce how e-graph rewriting is used to op-
timize Boolean logic. Figure 2 shows the overall workflow of our
proposed method. E-Syn is built upon the classic Yosys/ABC logic
synthesis flow with additional e-graph optimization steps to allow a
wider exploration for optimal design forms.

3.1 Rewriting using E-graph
In E-Syn, we take advantage of e-graph to efficiently represent the
Boolean logic formulas that are equivalent to the given function spec-
ification. In an e-graph, equivalent Boolean functions are clustered
into equivalent classes (e-classes). For example, Figure 3 demon-
strates an e-graph for the logic function 𝑥𝑦 + 𝑥𝑧, where each dotted
box is an e-class. Nodes are maximally reused in the parent functions
to avoid the repetition of equivalent nodes. Thanks to the compact
representation of nested e-classes, a number of e-graph nodes can
potentially represent exponentially many equivalent forms. E-graph
does not restrict the set of operators to use. Though it is possible
to use only AND-gates and inverters to mimic AIG rewriting, we

decide to loosen the requirement on the operators and allow free use
of AND, OR and NOT to match the input logic function specification.

The construction of an e-graph utilizes the equality saturation
technique [18], which has been well-established in the formal meth-
ods and compiler research communities. Equality saturation applies
a series of rule-based transformations to generate equivalent rep-
resentations of the given function. In E-Syn, we use the laws of
Boolean algebra shown in Table 1 as the rewriting rules. “⇔” in the
table means the rewriting rule is applied in both directions, while
for a few rules that serve as purely a simplification, we only apply it
from left to right, as indicated by “⇒”. Unlike typical logic rewriting
techniques (e.g., DAG-aware AIG rewriting) that heuristically select
among equivalent representations locally at the rewriting step, E-Syn
keeps those equivalent representations in the graph and takes a sep-
arate extraction step to select the best candidate after the completion
of rewriting.

3.2 Extraction
The extraction step traverses the e-graph to select an optimal logic
form for each node. For each e-class with more than one element, it
needs to choose based on a certain cost model. The selection finally
returns an abstract syntax tree (AST) from the graph. Prior works
have used the depth or size of the AST as the cost function. However,
these cost functions may not well reflect the actual area or delay cost
of the circuit netlist after technology mapping. Therefore, to better
account for the actual QoR in the extraction step, we make use of
regression to obtain a more technology-aware cost model.

3.2.1 Regression. Inspired by the regression model used in RTL-
stage QoR prediction [17], we can employ an XGBoost model to fit
the area and delay cost from the AST of a Boolean expression. The
features used in the regression are listed as follows:

• Boolean operator count. For each type of Boolean operator,
we count their occurrence in the AST.

• AST node count. The number of nodes in an AST could
reflect the overall scale of the logic circuit and therefore could
be one feature in the regression.

• AST depth. AST depth serves a similar purpose as the logic
level in logic synthesis, which could correlate with the length
of paths and therefore, the delay of the circuit.

• Graph density and edge sum. AST can also be regarded as
a graph and we utilize the commonly-used graph features. In
our regression model, we consider the graph density and edge
sum as two features. Roughly speaking, these two features
indicate the abundance of edges in a graph.

To generate the training data for regression, we use aigfuzz in the
AIG library (https://github.com/arminbiere/aiger) to create a dataset
of 50000 random-sized combinational logic circuits with an average
logic level of 234 and an average size of 6305AIG nodes. These circuits
are then converted into the equation format and transformed into
e-graphs for feature extraction. We further run technology mapping
and technology-dependent optimization on these circuits using ABC.
The reported delay and area at this step are used as the training
labels. We use two separate XGBoost regression models to predict
area and delay, respectively. Each contains 200 estimators and has
a maximum depth of 5. The delay prediction achieves an R-value
of 0.78, and the R-value of area prediction is 0.76. and an MAE of
19.6𝑝𝑠 .
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module A (
      input wire a,
      input wire b,
     output wire f
);
  wire Ax;    
  wire Bx;
  assign Ax = a & b;
  …

Equation 

Format

Yosys / ABC

Input GraphRewriting Rules

Covering

𝑎 ⋅ 𝑎 + 𝑏 → 𝑎

𝑎 + 𝑎 ⋅ 𝑏 → 𝑎

De-Morgan

…

Output Graph

E-Graph

Equation 

Format

Synthesis & 
Techmap

QoR Reports:

Delay, Area

Verilog

XGBoost 

Regression

Cost =

   𝑓( features )

Regression for Cost Model

AIG Fuzzing

egg rewriter

Netlist

Yosys / ABC

Equality 
Saturation

Pool 
Extraction

Figure 2: The framework of E-Syn

x

*

+

+

* *

y z

Figure 3: An example of e-graph for logic function 𝑥𝑦 + 𝑥𝑧

where we use “∗” for AND and “+” for OR.

To integrate the XGBoost model with egg library for e-graph
extraction, we use the Rust binding of the XGBoost library.

3.2.2 Extraction with Technology-Aware Cost. The existing extrac-
tion methods in the prior works either (1) depend on local heuristic
decisions per e-node or (2) require solving an integer linear program-
ming (ILP) problem. For extractor (1), the local heuristics primarily
rely on local cost functions such as the size or depth of a graph, which
may significantly diverge from the actual cost. While for existing
extractor (2), though it is global as it formulates extraction into an
ILP problem to solve, it limits the form of the cost function to be
linear and monotonically increasing from leaf nodes to parent nodes.
In order to best fit the technology-dependent cost, the cost model
might not be linear and monotone. Besides, it is generally hard to
scale ILP up for large-scale Boolean logic functions in practical digital
circuits. Therefore, in this application of e-graph, we are looking for
a fast and flexible extraction method.

With the consideration of the pros and cons of the two existing
methods, we bring up the novel pool extraction method in E-Syn to
achieve efficient logic function extraction using technology-aware
cost models. As its name suggests, pool extraction first collects a
pool of candidates from an e-graph using a combination of heuristics,
and then it evaluates each candidate using the given cost model to
pick the best one in the pool. Pool extraction combines the above
two existing extraction methods and serves as a trade-off between
efficiency and performance. It also removes the limitations on the
cost functions.

Specifically, the candidate pool consists of one ASTwith the fewest
number of nodes, one with the least tree depth, and candidates from
sampling in the e-graph. The sampling process traverses the e-classes
in the e-graph with two strategies: (a) randomly select an e-node
only from those with the same least local cost, or (b) select an e-
node that has a sub-optimal local cost with a probability. The first
strategy is different from the default extractor (1) as we introduce
randomness, whereas the default extractor will always choose the
first candidate among those with the same least cost. The second
strategy occasionally explores a choice with sub-optimal local cost
and therefore, can potentially find a form with better global cost.
Here, the local cost is one of the AST depth, AST size, or the weighted
sum of operators (we assign a lower weight to NOT than AND, OR). We
empirically set the probability of sub-optimal exploration to 0.2 and
the ratio of candidates sampled from these two strategies as 1:3.

After we obtain a pool of ASTs following the above strategies,
we will evaluate each candidate using the technology-aware cost
model obtained in Section 3.2.1. The one with the lowest cost will be
selected as the optimal logic form for the given function specification.

3.3 Integration with the Existing Synthesis Flow
E-graph rewriting is not exclusive to the existing logic synthesis
flow. Instead, it is designed as an enhancement to be inserted at the
beginning of a logic optimization flow to improve the final QoR.With
the command write_eqn from ABC, a combinational logic circuit
in the AIG synthesis flow can be written into the equation format,
which contains Boolean AND, OR, NOT operators, intermediate vari-
ables and nested parentheses. The equation format specification is
then transformed into nested S-expressions in Common Lisp, which
is the input format for egg, the library for e-graph rewriting and
equality saturation. The output AST from egg is then converted back
to the equation format and can be later processed by the traditional
logic optimization flow. We also check the result using combina-
tional equivalence checking to ensure correct implementation of
logic rewriting in e-graph. As for the implementation, we design
high-performance parsers in Rust for the above format conversion,
which supports parallel execution to minimize the influence on the
synthesis time.
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Figure 4: Sampling size vs. minimum delay and area

4 EXPERIMENT RESULT AND DISCUSSION
4.1 Experiment Setup
E-graph rewriting and extraction are implemented in Rust to inter-
face with the egg library. All experiments are performed on a Ubuntu
20.04.4 LTS server equipped with Intel Xeon Platinum 8375C proces-
sors, an NVIDIA 3090 GPU, and 128GB memory. The test circuits are
primarily arithmetic blocks, including those from LGSynth [22, 23],
ITC [6], EPFL [1] and ISCAS85 [4] benchmark suites. We also use
genmul [12] to generate two multipliers (3x3 and 5x5). Additionally,
we take an open-source divider from OpenCores 1. The arithmetic
circuits cover a wide range of complexity levels, ranging from simple
adders to complex multipliers, and therefore, provide a diverse set of
benchmarks that can test different aspects of the logic optimization
algorithm. The setup for equality saturation runtime limit is 300
seconds and the e-node limit is 2500000 nodes. Throughout these
experiments, we use the ASAP 7nm technology library [5].
4.2 Effectiveness of the Pool Extraction Method
For fast and efficient extraction using a technology-aware cost model,
we design the pool extraction method in Section 3.2. To pick a proper
sampling size for our pool extraction method, we conduct exper-
iments to measure the influence of sampling size to the QoR. We
incrementally sample more candidates on the e-graphs of test circuits
while measuring the technology-dependent costs using the follow-
ing command: strash; dch -f; map; topo; upsize; dnsize; stime.
We take record of the best area and delay among all candidates in
the pool under different sampling pool sizes, and plot their relation
with the sampling size in Figure 4. For QoR under a small sampling
size (< 100), the best in the pool may vary from run to run due to
the randomness in sampling, and it becomes more deterministic for
larger sampling sizes. It can be seen that there is a diminishing return
from expanding the sampling pool. A pool size of over 100 would
suffice in most cases.

We also compare our proposed pool extraction method to the
vanilla extraction methods in the egg library. Because we use the
XGBoost regression model as the cost function, which is not linear,
it is not feasible to compare with the ILP method. The other built-in
extractor for comparison is the default greedy extractor that takes
either AST size or AST depth as the cost function. For delay com-
parison, we use AST depth as the cost function for the vanilla egg
extractor and the delay regression model for the pool extraction
method. For area comparison, we use AST size in vanilla extractor
and the area regression model for pool extraction. We assess the
final delay and area cost by the same ABC flow above. The results

1https://opencores.org/projects/verilog_fixed_point_math_library

are plotted in Figure 5, where delay and area metrics are normal-
ized by the QoR when no e-graph rewriting is used, as indicated
by the legend ABC in the figure. Our findings suggest that e-graph
rewriting with the vanilla extractor may not always improve delay
or area. It is necessary to use pool extraction with technology-aware
cost models. Compared to the vanilla extractor, the pool extraction
method achieves up to 25% area saving (avg. 10%), and up to 34% of
reduction on delay (avg. 21%). Overall, it improves from the baseline
ABC flow by 6% and 18% in area and delay, respectively.
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Figure 5: Comparison of e-graph optimization using the
vanilla extractor vs. our pool extraction. Results are normal-
ized by QoR from the baseline ABC flow.

4.3 Comparison on the Design Space
To further validate our claim that e-graph logic rewriting can reach a
wider design space, we conduct experiments to compare circuits pro-
duced by E-Syn to those resulted from a commonly-used logic synthe-
sis flow in ABC. The default ABC synthesis flow available as the abc
command in Yosys is as follows: strash; ifraig; scorr; dc2; dretime;
retime -o -D {delay}; strash; &get -n; &dch -f; &nf -D {delay};
&put; buffer; upsize -D {delay}; dnsize -D {delay}; stime. It con-
tains a delay constraint parameter that can be set to control the delay-
area trade-off in synthesis. In addition to the various AIG rewriting
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E-Syn and AIG rewriting
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Table 2: QoR of E-Syn and ABC synthesis flow under different constraints

Circuit ABC delay-oriented E-Syn delay-oriented ABC area-oriented E-Syn area-oriented ABC balanced E-Syn balanced
Area (𝜇𝑚2) Delay (𝑝𝑠) Area (𝜇𝑚2) Delay (𝑝𝑠) Area (𝜇𝑚2) Delay (𝑝𝑠) Area (𝜇𝑚2) Delay (𝑝𝑠) Area (𝜇𝑚2) Delay (𝑝𝑠) Area (𝜇𝑚2) Delay (𝑝𝑠)

adder (EPFL) 988 2172.78 988 2168.92 981 2182.02 981 2178.23 983 2173.38 988 2169.75
bar (EPFL) 2262 197.82 2266 198.21 2235 234.2 2141 307.91 2238 218.63 2201 206.8
max (EPFL) 2122 1562.07 2071 1466.06 2109 1750.01 2021 1822.13 2112 1631.15 2105 1581.91
cavlc (EPFL) 452 150.2 466 129.12 434 186.19 415 211.37 441 151.49 442 149.67
3_3 (genmul) 41 146.44 44 113.28 37 165.24 33 181.14 40 146.95 37 117.17
5_5 (genmul) 144 424.64 132 329.64 130 466.33 116 402.48 135 437.86 120 422.85
qdiv (opencore) 1123 747.75 1280 465.18 1101 812.67 1089 709.38 1103 755.68 1102 648.15
C5315 (LGSynth91) 1075 351.03 1043 314.19 1058 384.14 1012 401.84 1062 367.51 1050 347.12
i7 (LGSynth91) 477 96.69 347 93.98 468 162.32 321 180.81 473 103.39 345 99.85
c7552 (ISCAS85) 1191 465.85 1298 299.55 1176 587.9 1175 470.56 1185 482.12 1182 459.39
c2670 (ISCAS85) 536 240.84 537 200.65 494 299.45 481 304.84 522 256.67 516 219.55
frg2 (LGSynth89) 512 191.34 521 165.04 501 280.64 470 307.57 505 210.4 488 200.95
C432 (LGSynth89) 98 372.69 112 335.19 95 451.72 91 368.79 96 396.51 94 363.48
b12 (ITC99) 770 244.33 776 219.74 736 303.24 734 299.32 750 257.07 747 249.71
GEOMEAN 540.10 342.93 540.90 290.51 520.49 414.37 487.10 416.50 529.97 358.34 507.39 334.28
Improvements 15.29% 6.42% 4.26% 6.71%

operations performed by the dc2 command, this flow also makes
use of techniques like structural hashing, correlated signal reduction
to further optimize the given logic. Moreover, the &dch command
combines different networks seen during technology-independent
synthesis into a single network with choices. This is to help the
subsequent technology mapping to better choose the logic structure
with the optimal costs. We argue that this synthesis flow in compari-
son is already a relatively powerful one. We tune the target delay in
this script to generate designs with different area-delay trade-offs
and plot the QoR on the delay-area plane. These make up the ABC
design points for comparison. As for the E-Syn flow, we plot the QoR
of all candidates in the pool for comparison.

Figure 6 shows the design points for a medium-size and a large-
size test circuit. In general, the design points from E-Syn span a
wider range in the delay-area plane. In both designs, the frontier
of E-Syn completely dominates. We also compare QoR for the test
circuits under different constraints (delay-oriented, area-oriented,
and balanced). The experiment results are shown in Table 2. Though
AIG-based rewriting has been extensively optimized towards area,
our method can further reduce the area cost by a margin of 6.42%,
if the users are willing to sacrifice more delay. On the side of delay-
oriented optimization, E-Syn achieves a delay reduction on almost all
designs, averaging 15.29%. For the delay-area-balanced optimization
target, our method outperforms in both delay and area. Overall, the
comparison over three regions in the design space indicates the
Pareto-frontier of E-Syn dominates the above ABC synthesis flow.

Regarding runtime, E-Syn flow takes 80 seconds on average to
run on a test circuit, in addition to the 300-seconds time-limit for
equality saturation, which may be lowered to trade quality for time.

5 CONCLUSION
This paper proposes using e-graph rewriting in logic synthesis. It
extends e-graph optimization to the bit level. E-graph-based optimiza-
tion explores a wider range of logic forms than local logic rewriting.
It can also factor in technology-aware costs to better target delay or
area optimization in logic synthesis.
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