
ASAP: Accurate Synthesis Analysis and Prediction with
Multi-Task Learning

Yikang Ouyang
HKUST(GZ)

Sicheng Li
Alibaba DAMO Academy

Dongsheng Zuo
HKUST(GZ)

Hanwei Fan
HKUST(GZ)

Yuzhe Ma
HKUST(GZ)

Abstract—With the ever-growing scale of circuits, the design time also
increases dramatically and hinders an efficient chip development process.
One way to accelerate the chip design process is to equip designers
with early estimations of the circuit metrics without actually running
the time-consuming circuit implementation flow. In this paper, we propose
a methodology for accurate synthesis results prediction based on deep
neural networks. More specifically, reckoning the relevance of circuit
metrics during synthesis, we propose to use multi-task learning (MTL) to
simultaneously predict circuit delay and area after logic synthesis, given
the hardware description language design and the synthesis configuration
sequence. A multi-head attention mechanism is developed to allow knowl-
edge sharing between the predictions for delay and area to improve the
model performance. Experimental results on 780,000 data points show that
the testing mean-absolute-percentage-error (MAPE) on unseen designs can
achieve 6%, which is about 3× lower than existing studies. Moreover, we
demonstrate that the proposed MTL model can facilitate circuit design
space exploration, which can effectively obtain superior designs in terms
of area and delay.

I. INTRODUCTION

The design complexity of modern very large integrated circuits
keeps soaring, and the major challenge that hinders the expedition
of hardware design is the long delay in obtaining feedback on certain
metrics, as the electronic design automation (EDA) flow for hardware
realization is time-consuming. One way to address the above issue
is to develop various models to conduct agile analysis and predict
the quality-of-results (QoR) without launching the EDA flow. Hence
designers can obtain the QoR (e.g., area, timing, and power) in a
shorter time and conduct design space exploration more efficiently.

Many previous works have investigated building these analysis and
prediction models. Regarding the design abstraction levels, various
analysis and prediction models are proposed for the architectural
level [1], [2], register transfer level or hardware description language
level [3], [4], and netlist level [5]. Regarding the modeling methodolo-
gies, there are analytical models and machine learning-based models.

Analytical models consider functionality, complexity, and other
circuit properties, along with the technology used for circuit imple-
mentation to predict the QoR [1], [6].

Machine learning-based methods train machine learning models
like support vector regression and artificial neural networks with
essential circuit features to predict metrics [7], [8]. Due to the powerful
modeling capabilities demonstrated by deep learning, methods such as
Convolutional Neural Networks (CNN) [9] and Transformer [4] have
been explored to further enhance prediction accuracy. Considering the
structure of circuits can be naturally represented as graphs, graph
neural networks prove to be valuable in learning circuit features and
predicting the QoR metrics for circuit implementations [3], [5], [10].

Furthermore, it is observed that circuit metrics can be influenced
by the synthesis configuration, which denotes a sequence of logic
optimizations in the synthesis process [11]. As a result, synthesis

RTL CodesSynthesis Flow

Input Feature

Code
Preprocessing

Multi-Task Learning
Model

Delay
Prediction

Area
Prediction

Fig. 1 Overview of our method. It takes RTL design and synthesis
flow information to predict area and delay simultaneously.

configurations have been leveraged for making predictions using long
short-term memory (LSTM) models or CNNs [12], [13].

While previous works have achieved considerable estimation accu-
racy, they all share a common limitation of considering each metric
prediction as an individual task. In this approach, dedicated features are
extracted for each metric and used to build separate models. However,
in VLSI design and implementation, the relevance among different
QoR metrics is ubiquitous. For example, optimizing the area may also
have an impact on the final power or timing of a design. Within the
logic synthesis, numerous practices can be identified that exemplify
these trade-offs. In multi-level logic optimization, techniques like
collapsing and substitution reduce delay (resp. area) but come at the
cost of increasing area (resp. delay) [14]. Similarly, optimizations like
re-substitution on And-Inverter-Graph (AIG) can save area by intro-
ducing more delay [15]. In addition, during technology mapping and
optimization, the relevance of delay and area also exists in strategies
for implementing designs with delay and area trade-offs, which include
gate-sizing, buffer insertion, etc. The analysis above indicates that there
exist implicit principles in the circuit implementation that are shared
among optimization for different metrics, which can be leveraged to
facilitate QoR modeling and prediction.

The recent surge in multi-task learning (MTL) techniques [16] has
demonstrated promising potential in simultaneously addressing several
relevant tasks using a unified model. By allowing knowledge-sharing
among tasks, there is an expectation of improved performance across
all tasks, as widely observed in other deep learning applications [17],
[18]. Considering the relevance of delay and area during the circuit
synthesis, we aim to develop a unified model to simultaneously predict
the delay and area of a design, given the RTL design and the synthesis
configuration. The predictions enable agile design iteration and guide
further design space exploration effectively. The overview of our work
is shown in Fig. 1.979-8-3503-0955-3/23/$31.00 ©2023 IEEE

20
23

 A
C

M
/IE

EE
 5

th
 W

or
ks

ho
p

on
 M

ac
hi

ne
 L

ea
rn

in
g

fo
r C

A
D

 (M
LC

A
D

) |
 9

79
-8

-3
50

3-
09

55
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
LC

A
D

58
80

7.
20

23
.1

02
99

84
0

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:50:59 UTC from IEEE Xplore. Restrictions apply.

Our multi-task learning model first contains a primary module
consisting of a GNN and an LSTM to extract synthesis-related
features. Then feature extraction and feature-sharing modules based
on the attention mechanism [19] are integrated to obtain task-specific
features for the accurate delay and area predictions, which will be
elaborated in Section III.

We construct a large dataset that contains 780,000 data points to
validate the proposed MTL model and compare it with previous meth-
ods. The results show that the proposed MTL model can generalize
well to other unseen designs. Moreover, we extend the application of
our MTL model to perform design space exploration to validate the
effectiveness of the proposed model in real front-end design scenarios.

Our contributions are summarized as follows:
• We are the first to solve circuit QoR prediction tasks by multi-task

learning, which improves prediction accuracy.
• We leverage attention-based feature extraction and feature-sharing

modules to obtain specific features to predict delay and area.
• Experimental results show that the proposed MTL model can

obtain more accurate predictions than previous works, achieving
a mean-absolute-percentage-error (MAPE) of less than 6%.

• We further validated our proposed MTL model for RTL design
space exploration to predict Pareto-optimal points. Compared
with all baseline methods, we achieved over 15% improvements
in terms of hypervolume.

II. PRELIMINARY

A. Graph Neural Network

Given a graph G = (V,E), where V represents nodes and E

represents edges, respectively. Let X : {xv, ∀v ∈ V} be the node
feature matrix for a graph with N nodes, we have xv ∈ Rdx and
X ∈ Rdx×N . Graph neural networks (GNNs) aim to learn the graph
embedding through stacking k layers, which yield node embeddings
e
(1)
v , e

(2)
v , ..., e

(k)
v for each node v. Specifically, the embedding at the

first layer is the node feature, i.e., e(1)
v = xv .

There have been many powerful GNNs raised to learn from graph-
structured data. Graph Isomorphism Network (GIN) [20] is one of
the most powerful ones, which adds up all neighbors’ embedding to
represent the neighboring structures injectively.

B. Multi-Task Learning

Multi-task learning [16] is a new learning paradigm in machine
learning which differs from typical methods that train one model for
each task. It usually uses a unified model for multiple tasks with
task-specific branches and shares features among them to improve
the performance of all tasks. Researchers in the MTL field are
constantly working on inventing advanced mechanisms for feature
sharing to improve model performance, like linear combinations of
activations [17], attention-based feature sharing [18], etc.

III. METHODOLOGIES

A. Overview

This section will describe the workflow of our method in predicting
delay and area. Some notations are shown in TABLE I for a clearer
illustration of our model. It contains the following phases:

1) Circuit Pre-processing: To make our work adaptable for different
hardware design language descriptions, we first transform the
circuit to AIG, which only comprises and gates and not gates.
The generated AIG is a directed acyclic graph (DAG). This trans-
formation is done by the open-source synthesis tool Yosys [21].

2) Synthesis-Related Feature Extraction: The framework of our
multi-task learning model is shown in Fig. 2. It first uses a primary
module to extract features related to synthesis.

TABLE I Notations in Multi-task Learning Model

Notations Explanations

X The input node feature matrix.

e
(l)
v Node embedding of node v at layer l.

s The input synthesis sequence.

Tc The synthesis-related feature from the primary module.

T
(j)
i Feature from layer j in feature extraction module for task i.

F
(j)
i Feature from layer j in feature-sharing module for task i.

Q,K,V The input matrices for multi-head attention.

W
(Q)
g ,W

(K)
g , The projection matrices in multi-head attention

W
(V)
g for Q,K,V at head g, respectively.

Hg The computation at head g in multi-head attention.

W(O) The matrix for fusing outputs from G heads
in multi-head attention.

ci The classifier’s output in ensemble prediction for task i.

mi The MLPs’ output in ensemble prediction for task i.

3) Task-Specific Feature Extraction: Our model extracts specific
delay and area prediction features through two task-specific
feature extraction modules.

4) Task Feature Sharing: After task-specific features are extracted,
feature-sharing modules use an attention mechanism to relate
delay and area features and allow sharing between each other.

5) Ensemble Prediction: The ensemble prediction modules take the
features after sharing and use a set of multi-layer perceptrons
(MLPs) and a classifier synergistically to predict delay or area.

B. Synthesis-Related Feature Extraction

First, we use a primary module containing GIN and LSTM to extract
crucial features in logic synthesis, i.e., circuit and synthesis flow
features. It is shown in Fig. 2(b). The GIN learns graph embedding
through aggregating transformed node features. We employ four types
of input node features, i.e., xv, ∀v ∈ V: node type, logic level of
nodes, number of fan-in of nodes, and number of fan-out of nodes.
The node features are inspired by the cut-based synthesis [11]. Cuts
are clusters of AIG nodes such that each cluster consists of a set of
connected nodes rooted at one node producing its output [14].

The node type is either and or not, representing the node’s function-
ality. During synthesis, cuts in AIG will be optimized by rewriting or
refactoring with cuts with the same function but less delay or area [22].
The functionality of nodes is essential as it determines what kind of
cuts will be used to optimize the original one, consequently affecting
the delay and area of the circuit. The logic level is the number of
nodes along the longest paths from any primary input to the concerned
node. Logic optimization often involves cuts with reconvergence paths
to reduce delay [23]. Therefore, the difference in logic level between
two nodes in a cut indicates the possible reconvergence structure and
the potential for optimization. The number of fan-in and fan-out are
features that indicate the connectivity of the nodes. Besides, fan-out
is also an indicator of circuit QoR, as gates with large fan-out will
have high capacitive loads and will be optimized during synthesis by
methods like buffer insertion and gate sizing.

The computation of GIN in the primary module is shown in
Equation (1). For a GIN with k layers, e

(l)
v is the embedding for

the l-th layer, e
(l+1)
v is the updated embedding for layer l + 1. We

2Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:50:59 UTC from IEEE Xplore. Restrictions apply.

b rfz rsz rw rs

Circuit Graph

Synthesis Sequence

 F
ea

tu
re

Ex

tra
ct

io
n

s 2 Rds
<latexit sha1_base64="nIwhsGmkmkOhg0OoRIwICKj3hpU=">AAACCXicbVC7TsMwFL3hWcorwMhiUSExVUlBgrGChbEg+pDaUDmu01p1nMh2kKooKwu/wsIAQqz8ARt/g9NmgJYjWTo+517de48fc6a043xbS8srq2vrpY3y5tb2zq69t99SUSIJbZKIR7LjY0U5E7Spmea0E0uKQ5/Ttj++yv32A5WKReJOT2LqhXgoWMAI1kbq26gXYj3yg1RlqMdE8fXT2+w+RYO+yvp2xak6U6BF4hakAgUaffurN4hIElKhCcdKdV0n1l6KpWaE06zcSxSNMRnjIe0aKnBIlZdOL8nQsVEGKIikeUKjqfq7I8WhUpPQN5X5omrey8X/vG6igwsvZSJONBVkNihIONIRymNBAyYp0XxiCCaSmV0RGWGJiTbhlU0I7vzJi6RVq7qn1drNWaV+WcRRgkM4ghNw4RzqcA0NaAKBR3iGV3iznqwX6936mJUuWUXPAfyB9fkDvFGaWw==</latexit>

Synthesis-related
Feature

Tc = T
(1)
1<latexit sha1_base64="6zQxew0v+9ib4zPore7wodgZOMs=">AAACCnicbVC7TsMwFHXKq5RXgJHFUCGVpUoKEixIFSyMRepLakPkuE5r1XEi20Gqosws/AoLAwix8gVs/A1Om6G0HMnS8Tn36t57vIhRqSzrxyisrK6tbxQ3S1vbO7t75v5BW4axwKSFQxaKrockYZSTlqKKkW4kCAo8Rjre+DbzO49ESBrypppExAnQkFOfYqS05JrH/QCpkecnzdRNcHo997Ufkop9lrpm2apaU8BlYuekDHI0XPO7PwhxHBCuMENS9mwrUk6ChKKYkbTUjyWJEB6jIelpylFApJNMT0nhqVYG0A+FflzBqTrfkaBAykng6cpsU7noZeJ/Xi9W/pWTUB7FinA8G+THDKoQZrnAARUEKzbRBGFB9a4Qj5BAWOn0SjoEe/HkZdKuVe3zau3+oly/yeMogiNwAirABpegDu5AA7QABk/gBbyBd+PZeDU+jM9ZacHIew7BHxhfvy+Dmow=</latexit>

Layers Layersk1
<latexit sha1_base64="i9R+18BtIguIlAEHNZb25FolrNU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0MO57/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AH5IY2X</latexit>

 F
ea

tu
re

Ex

tra
ct

io
n

 F
ea

tu
re

Sh

ar
in

gT
(k1)
1 = F

(1)
1<latexit sha1_base64="oMtSA0ckibMvCnmM9I+hnP1Re8Q=">AAACEHicbZDLSsNAFIYnXmu9RV26GSxi3ZSkCroRioK4rNAbtDFMppN26GQSZiZCCXkEN76KGxeKuHXpzrdx0kbQ1h8Gfr5zDnPO70WMSmVZX8bC4tLyymphrbi+sbm1be7stmQYC0yaOGSh6HhIEkY5aSqqGOlEgqDAY6Ttja6yevueCElD3lDjiDgBGnDqU4yURq551AuQGnp+0khd+y4pj1z7OL34gddTqJFrlqyKNRGcN3ZuSiBX3TU/e/0QxwHhCjMkZde2IuUkSCiKGUmLvViSCOERGpCuthwFRDrJ5KAUHmrSh34o9OMKTujviQQFUo4DT3dmm8rZWgb/q3Vj5Z87CeVRrAjH04/8mEEVwiwd2KeCYMXG2iAsqN4V4iESCCudYVGHYM+ePG9a1Yp9UqnenpZql3kcBbAPDkAZ2OAM1MANqIMmwOABPIEX8Go8Gs/Gm/E+bV0w8pk98EfGxzd0B5wy</latexit>

k2
<latexit sha1_base64="XzuyH4+lg7EwjyM4piYJk7h1+c8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB4jXjxGNA9IljA76U2GzM4uM7NCWAL+gBcPinj1i7z5N04eB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91iMqzWP5YMYJ+hEdSB5yRo2V7ke9Sq9YcsvuDGSVeAtSggXqveJXtx+zNEJpmKBadzw3MX5GleFM4KTQTTUmlI3oADuWShqh9rPZqRNyZpU+CWNlSxoyU39PZDTSehwFtjOiZqiXvan4n9dJTXjlZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3Ua7cVUu166d5HHk4gVM4Bw8uoQa3UIcGMBjAM7zCmyOcF+fd+Zi35pxFhMfwB87nDyBnjhc=</latexit>

Ensemble
Prediction

Ensemble
Prediction

Delay
 Prediction

Area
Prediction

 F
ea

tu
re

Ex

tra
ct

io
n

 F
ea

tu
re

Ex

tra
ct

io
n

 F
ea

tu
re

Sh

ar
in

g

 F
ea

tu
re

Sh

ar
in

g
 F

ea
tu

re

Sh
ar

in
g

 P
rim

ar
y

M
od

ul
e

Tc
<latexit sha1_base64="sJ+Qufa9mlcbk8XbJxB30sknoVQ=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuiG5cV+oLOUDJppg3NZIYkI5Shv+HGhSJu/Rl3/o2ZdhbaeiBwOOde7skJEsG1cZxvVNrY3NreKe9W9vYPDo+qxyddHaeKsg6NRaz6AdFMcMk6hhvB+oliJAoE6wXT+9zvPTGleSzbZpYwPyJjyUNOibGS50XETIIwa8+HdFitOXVnAbxO3ILUoEBrWP3yRjFNIyYNFUTrgeskxs+IMpwKNq94qWYJoVMyZgNLJYmY9rNF5jm+sMoIh7GyTxq8UH9vZCTSehYFdjLPqFe9XPzPG6QmvPUzLpPUMEmXh8JUYBPjvAA84opRI2aWEKq4zYrphChCja2pYktwV7+8TrqNuntVbzxe15p3RR1lOINzuAQXbqAJD9CCDlBI4Ble4Q2l6AW9o4/laAkVO6fwB+jzB0B6kdI=</latexit>

T
(k1)
2 = F

(1)
2<latexit sha1_base64="u4R8gN+5FQ7+mxVkUY4AucPiyJI=">AAACEHicbZDLSsNAFIYnXmu9RV26GSxi3ZSkCroRioK4rNAbtDFMppN26GQSZiZCCXkEN76KGxeKuHXpzrdx0kbQ1h8Gfr5zDnPO70WMSmVZX8bC4tLyymphrbi+sbm1be7stmQYC0yaOGSh6HhIEkY5aSqqGOlEgqDAY6Ttja6yevueCElD3lDjiDgBGnDqU4yURq551AuQGnp+0kjd6l1SHrn2cXrxA6+nUCPXLFkVayI4b+zclECuumt+9vohjgPCFWZIyq5tRcpJkFAUM5IWe7EkEcIjNCBdbTkKiHSSyUEpPNSkD/1Q6McVnNDfEwkKpBwHnu7MNpWztQz+V+vGyj93EsqjWBGOpx/5MYMqhFk6sE8FwYqNtUFYUL0rxEMkEFY6w6IOwZ49ed60qhX7pFK9PS3VLvM4CmAfHIAysMEZqIEbUAdNgMEDeAIv4NV4NJ6NN+N92rpg5DN74I+Mj293MJw0</latexit>

F
(k2)
2<latexit sha1_base64="vHysI4edhs0lRKoXx8xECfniEiU=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZQkCrosCuKygn1AG8NkOmmHTiZhZiLUEPwVNy4Ucet/uPNvnLRZaOuBgcM593LPHD9mVCrL+jZKS8srq2vl9crG5tb2jrm715ZRIjBp4YhFousjSRjlpKWoYqQbC4JCn5GOP77K/c4DEZJG/E5NYuKGaMhpQDFSWvLMg36I1MgP0uvMc+7T2thzTjLPrFp1awq4SOyCVEGBpmd+9QcRTkLCFWZIyp5txcpNkVAUM5JV+okkMcJjNCQ9TTkKiXTTafoMHmtlAINI6McVnKq/N1IUSjkJfT2ZZ5XzXi7+5/USFVy4KeVxogjHs0NBwqCKYF4FHFBBsGITTRAWVGeFeIQEwkoXVtEl2PNfXiRtp26f1p3bs2rjsqijDA7BEagBG5yDBrgBTdACGDyCZ/AK3own48V4Nz5moyWj2NkHf2B8/gCu/ZS3</latexit>

F
(k2)
1<latexit sha1_base64="LGDknT6GxRQQjLSPa/uVDVgTTjg=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyxC3ZSkCrosCuKygn1AG8NkOmmHTiZhZiLUEPwVNy4Ucet/uPNvnLZZaOuBgcM593LPHD9mVCrb/jYKS8srq2vF9dLG5tb2jrm715JRIjBp4ohFouMjSRjlpKmoYqQTC4JCn5G2P7qa+O0HIiSN+J0ax8QN0YDTgGKktOSZB70QqaEfpNeZ59ynlZFXO8k8s2xX7SmsReLkpAw5Gp751etHOAkJV5ghKbuOHSs3RUJRzEhW6iWSxAiP0IB0NeUoJNJNp+kz61grfSuIhH5cWVP190aKQinHoa8nJ1nlvDcR//O6iQou3JTyOFGE49mhIGGWiqxJFVafCoIVG2uCsKA6q4WHSCCsdGElXYIz/+VF0qpVndNq7fasXL/M6yjCIRxBBRw4hzrcQAOagOERnuEV3own48V4Nz5mowUj39mHPzA+fwCtcZS2</latexit> y1

<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

y2
<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

Tc = T
(1)
2<latexit sha1_base64="y3IJ8sAmlaaZ90jq52ZhDnBjptY=">AAACDHicbVDLSsNAFL3xWeur6tLNYBHqpiRV0I1QdOOyQl/QxjCZTtqhkwczE6GEfIAbf8WNC0Xc+gHu/BsnbRBtPTBw5px7ufceN+JMKtP8MpaWV1bX1gsbxc2t7Z3d0t5+W4axILRFQh6Krosl5SygLcUUp91IUOy7nHbc8XXmd+6pkCwMmmoSUdvHw4B5jGClJadU7vtYjVwvaTokRZfo55s6SS29SyrWSaqrzKo5BVokVk7KkKPhlD77g5DEPg0U4VjKnmVGyk6wUIxwmhb7saQRJmM8pD1NA+xTaSfTY1J0rJUB8kKhX6DQVP3dkWBfyonv6spsVznvZeJ/Xi9W3oWdsCCKFQ3IbJAXc6RClCWDBkxQovhEE0wE07siMsICE6XzK+oQrPmTF0m7VrVOq7Xbs3L9Ko+jAIdwBBWw4BzqcAMNaAGBB3iCF3g1Ho1n4814n5UuGXnPAfyB8fEN6Pua4Q==</latexit>

X 2 Rdx⇥N
<latexit sha1_base64="TEAb9+aRJzXDCLy49Fwxk2V4x0w=">AAACEXicbVC7TsMwFHXKq5RXgJHFokLqVCUFCcYKFiZUEH1ITYgcx2mtOk5kO4gqyi+w8CssDCDEysbG3+C0HaDlSJaOz7lX997jJ4xKZVnfRmlpeWV1rbxe2djc2t4xd/c6Mk4FJm0cs1j0fCQJo5y0FVWM9BJBUOQz0vVHF4XfvSdC0pjfqnFC3AgNOA0pRkpLnllzIqSGfpj1cuhQDqdfP7vJ77LAe4COohGR8Cr3zKpVtyaAi8SekSqYoeWZX04Q4zQiXGGGpOzbVqLcDAlFMSN5xUklSRAeoQHpa8qRnuNmk4tyeKSVAIax0I8rOFF/d2QoknIc+bqyWFjOe4X4n9dPVXjmZpQnqSIcTweFKYMqhkU8MKCCYMXGmiAsqN4V4iESCCsdYkWHYM+fvEg6jbp9XG9cn1Sb57M4yuAAHIIasMEpaIJL0AJtgMEjeAav4M14Ml6Md+NjWloyZj374A+Mzx+enJ2B</latexit>

(a) The framework of our multi-task learning model.

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

Layers

G
IN

LS
TM

C
on
ca
tG
INX<latexit sha1_base64="ug3MRTkFEmuvBZK7pT+b5UnBryw=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcRSEWWfaL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bJ54Ss6sMiBhrO1TSObq742MRsZMosBOzhKaZW8m/ud1Uwyv/UyoJEWu2OKjMJUEYzI7nwyE5gzlxBLKtLBZCRtRTRnakkq2BG/55FXSqlW9i2rt/rJSv8nrKMIJnMI5eHAFdbiDBjSBgYJneIU3xzgvzrvzsRgtOPnOMfyB8/kDzeeRAA==</latexit>

s
<latexit sha1_base64="lILmndifYlXYYd3TBDeiCV0kJuw=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhpqf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofazeeIpObPKgISxsk8aMld/b2Q00noSBXZyllAvezPxP6+bmvDaz7hMUoOSLT4KU0FMTGbnkwFXyIyYWEKZ4jYrYSOqKDO2pJItwVs+eZW0alXvolq7v6zUb/I6inACp3AOHlxBHe6gAU1gIOEZXuHN0c6L8+58LEYLTr5zDH/gfP4A9u6RGw==</latexit>

Tc
<latexit sha1_base64="sJ+Qufa9mlcbk8XbJxB30sknoVQ=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuiG5cV+oLOUDJppg3NZIYkI5Shv+HGhSJu/Rl3/o2ZdhbaeiBwOOde7skJEsG1cZxvVNrY3NreKe9W9vYPDo+qxyddHaeKsg6NRaz6AdFMcMk6hhvB+oliJAoE6wXT+9zvPTGleSzbZpYwPyJjyUNOibGS50XETIIwa8+HdFitOXVnAbxO3ILUoEBrWP3yRjFNIyYNFUTrgeskxs+IMpwKNq94qWYJoVMyZgNLJYmY9rNF5jm+sMoIh7GyTxq8UH9vZCTSehYFdjLPqFe9XPzPG6QmvPUzLpPUMEmXh8JUYBPjvAA84opRI2aWEKq4zYrphChCja2pYktwV7+8TrqNuntVbzxe15p3RR1lOINzuAQXbqAJD9CCDlBI4Ble4Q2l6AW9o4/laAkVO6fwB+jzB0B6kdI=</latexit>

(b) Primary feature extraction
module.

 MHA

MLP

�
<latexit sha1_base64="Kfe2l2iGdo8ph/MEHW/TMNkFtOM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WTKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ipp1arBRbV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP0UyPSQ==</latexit>

T
(j)
i

<latexit sha1_base64="GweEde7PSI55Kg/lI3udtovQdrI=">AAAB/XicbVDLSsNAFL3xWesrPnZugkWom5JUQZdFNy4r9AVtDJPppB07mYSZiVBD8FfcuFDErf/hzr9x0nahrQcGDufcyz1z/JhRqWz721haXlldWy9sFDe3tnd2zb39lowSgUkTRywSHR9JwignTUUVI51YEBT6jLT90XXutx+IkDTiDTWOiRuiAacBxUhpyTMPeyFSQz9IG5mX0uwuLd+fZp5Zsiv2BNYicWakBDPUPfOr149wEhKuMENSdh07Vm6KhKKYkazYSySJER6hAelqylFIpJtO0mfWiVb6VhAJ/biyJurvjRSFUo5DX0/mWeW8l4v/ed1EBZduSnmcKMLx9FCQMEtFVl6F1aeCYMXGmiAsqM5q4SESCCtdWFGX4Mx/eZG0qhXnrFK9PS/VrmZ1FOAIjqEMDlxADW6gDk3A8AjP8ApvxpPxYrwbH9PRJWO2cwB/YHz+ALaMlWI=</latexit>

Q = T
(j)
i

<latexit sha1_base64="PtnMuW7Ey7b4iepxcCzFA3/wV+E=">AAACCHicbZDLSsNAFIYn9VbrLerShYNFqJuSVEE3QtGNyxZ6gzaGyXTSjp1MwsxEKCFLN76KGxeKuPUR3Pk2TtoK2vrDwMd/zmHO+b2IUaks68vILS2vrK7l1wsbm1vbO+buXkuGscCkiUMWio6HJGGUk6aiipFOJAgKPEba3ug6q7fviZA05A01jogToAGnPsVIacs1D3sBUkPPT+rp5Q82Ujeh6W1SujtJXbNola2J4CLYMyiCmWqu+dnrhzgOCFeYISm7thUpJ0FCUcxIWujFkkQIj9CAdDVyFBDpJJNDUnisnT70Q6EfV3Di/p5IUCDlOPB0Z7arnK9l5n+1bqz8CyehPIoV4Xj6kR8zqEKYpQL7VBCs2FgDwoLqXSEeIoGw0tkVdAj2/MmL0KqU7dNypX5WrF7N4siDA3AESsAG56AKbkANNAEGD+AJvIBX49F4Nt6M92lrzpjN7IM/Mj6+AUxHmiQ=</latexit>

K = T
(j)
i

<latexit sha1_base64="9nkCQ01JpEnlofrndJMiULe0hC8=">AAACCHicbZDLSsNAFIYn9VbrLerShYNFqJuSVEE3QtGN4KZCb9DGMJlO2rGTSZiZCCVk6cZXceNCEbc+gjvfxklbQVt/GPj4zznMOb8XMSqVZX0ZuYXFpeWV/GphbX1jc8vc3mnKMBaYNHDIQtH2kCSMctJQVDHSjgRBgcdIyxteZvXWPRGShryuRhFxAtTn1KcYKW255n43QGrg+cl1ev6D9dRNaHqblO6OUtcsWmVrLDgP9hSKYKqaa352eyGOA8IVZkjKjm1FykmQUBQzkha6sSQRwkPUJx2NHAVEOsn4kBQeaqcH/VDoxxUcu78nEhRIOQo83ZntKmdrmflfrRMr/8xJKI9iRTiefOTHDKoQZqnAHhUEKzbSgLCgeleIB0ggrHR2BR2CPXvyPDQrZfu4XLk5KVYvpnHkwR44ACVgg1NQBVegBhoAgwfwBF7Aq/FoPBtvxvukNWdMZ3bBHxkf30Krmh4=</latexit>

V = T
(j)
i

<latexit sha1_base64="hJ3ER57tqmHwTrCJNz0T7WmeJn8=">AAACCHicbZDLSsNAFIYnXmu9RV26cLAIdVOSKuhGKLpxWaE3aGOYTCft2MkkzEyEErJ046u4caGIWx/BnW/jpI2grT8MfPznHOac34sYlcqyvoyFxaXlldXCWnF9Y3Nr29zZbckwFpg0cchC0fGQJIxy0lRUMdKJBEGBx0jbG11l9fY9EZKGvKHGEXECNODUpxgpbbnmQS9Aauj5SSu9+MFG6iY0vU3Kd8epa5asijURnAc7hxLIVXfNz14/xHFAuMIMSdm1rUg5CRKKYkbSYi+WJEJ4hAakq5GjgEgnmRySwiPt9KEfCv24ghP390SCAinHgac7s13lbC0z/6t1Y+WfOwnlUawIx9OP/JhBFcIsFdingmDFxhoQFlTvCvEQCYSVzq6oQ7BnT56HVrVin1SqN6el2mUeRwHsg0NQBjY4AzVwDeqgCTB4AE/gBbwaj8az8Wa8T1sXjHxmD/yR8fENVEmaKQ==</latexit>

T̂
(j)
i

<latexit sha1_base64="WRikLF0rvvj+w9zsWTCnQrF4VMM=">AAACA3icbVDLSsNAFJ34rPUVdaebYBHqpiRV0GXRjcsKfUETw2Q6acdOJmFmIpQh4MZfceNCEbf+hDv/xkmbhbYeuHA4517uvSdIKBHStr+NpeWV1bX10kZ5c2t7Z9fc2++IOOUIt1FMY94LoMCUMNyWRFLcSziGUUBxNxhf5373AXNBYtaSkwR7ERwyEhIEpZZ889CNoBwFoXJHUKpWlvmKZHeqen+a+WbFrtlTWIvEKUgFFGj65pc7iFEaYSYRhUL0HTuRnoJcEkRxVnZTgROIxnCI+5oyGGHhqekPmXWilYEVxlwXk9ZU/T2hYCTEJAp0Z36xmPdy8T+vn8rw0lOEJanEDM0WhSm1ZGzlgVgDwjGSdKIJRJzoWy00ghwiqWMr6xCc+ZcXSadec85q9dvzSuOqiKMEjsAxqAIHXIAGuAFN0AYIPIJn8ArejCfjxXg3PmatS0YxcwD+wPj8AbH6mC8=</latexit>

T
(j+1)
i

<latexit sha1_base64="usBHIvd/HU/voVC8Z/SDpjgL8hs=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKkJJqqDLohuXFfqCNobJdNKOnUzCzEQoMQt/xY0LRdz6G+78GydtFtp6YOBwzr3cM8eLGJXKsr6NwtLyyupacb20sbm1vWPu7rVlGAtMWjhkoeh6SBJGOWkpqhjpRoKgwGOk442vM7/zQISkIW+qSUScAA059SlGSkuuedAPkBp5ftJM3YSmd0nl/tQ+SV2zbFWtKeAisXNSBjkarvnVH4Q4DghXmCEpe7YVKSdBQlHMSFrqx5JECI/RkPQ05Sgg0kmm+VN4rJUB9EOhH1dwqv7eSFAg5STw9GSWVs57mfif14uVf+kklEexIhzPDvkxgyqEWRlwQAXBik00QVhQnRXiERIIK11ZSZdgz395kbRrVfusWrs9L9ev8jqK4BAcgQqwwQWogxvQAC2AwSN4Bq/gzXgyXox342M2WjDynX3wB8bnD5vMldI=</latexit>

(c) Task-specific feature extraction

 MHA

 MHA

�
<latexit sha1_base64="Kfe2l2iGdo8ph/MEHW/TMNkFtOM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WTKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ipp1arBRbV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP0UyPSQ==</latexit>

MLP

�
<latexit sha1_base64="Kfe2l2iGdo8ph/MEHW/TMNkFtOM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WTKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ipp1arBRbV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP0UyPSQ==</latexit>

Concat

 MHA

A
(j)
i

<latexit sha1_base64="i0O2CviYFbiG87ftkL72OJ4dp+0=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuilJFXRZdeOygn1AG8tkOmnHTh7MTIQagr/ixoUibv0Pd/6NkzYLrR4YOJxzL/fMcSPOpLKsL6OwsLi0vFJcLa2tb2xumds7LRnGgtAmCXkoOi6WlLOANhVTnHYiQbHvctp2x5eZ376nQrIwuFGTiDo+HgbMYwQrLfXNvZ6P1cj1kvO0n7D0NqncHaV9s2xVrSnQX2LnpAw5Gn3zszcISezTQBGOpezaVqScBAvFCKdpqRdLGmEyxkPa1TTAPpVOMk2fokOtDJAXCv0Chabqz40E+1JOfFdPZlnlvJeJ/3ndWHlnTsKCKFY0ILNDXsyRClFWBRowQYniE00wEUxnRWSEBSZKF1bSJdjzX/5LWrWqfVytXZ+U6xd5HUXYhwOogA2nUIcraEATCDzAE7zAq/FoPBtvxvtstGDkO7vwC8bHN5jvlU8=</latexit>

Q = F
(j)
1<latexit sha1_base64="NFRevfD0Ya4tKcKrQB9060bBmis=">AAACCHicbZDLSsNAFIYn9VbrLerShYNFqJuSVEE3QlEQly3YC7QxTKaTduxkEmYmQglZuvFV3LhQxK2P4M63cdJW0NYfBj7+cw5zzu9FjEplWV9GbmFxaXklv1pYW9/Y3DK3d5oyjAUmDRyyULQ9JAmjnDQUVYy0I0FQ4DHS8oaXWb11T4SkIb9Ro4g4Aepz6lOMlLZcc78bIDXw/KSenv/gVeomdnqblO6OUtcsWmVrLDgP9hSKYKqaa352eyGOA8IVZkjKjm1FykmQUBQzkha6sSQRwkPUJx2NHAVEOsn4kBQeaqcH/VDoxxUcu78nEhRIOQo83ZntKmdrmflfrRMr/8xJKI9iRTiefOTHDKoQZqnAHhUEKzbSgLCgeleIB0ggrHR2BR2CPXvyPDQrZfu4XKmfFKsX0zjyYA8cgBKwwSmogmtQAw2AwQN4Ai/g1Xg0no03433SmjOmM7vgj4yPb9/+md4=</latexit>

K = F
(j)
1<latexit sha1_base64="JKVjT5Zr9i7KH0mqlrDv3swJan8=">AAACCHicbZDLSsNAFIYn9VbrLerShYNFqJuSVEE3QlEQwU0Fe4E2hsl00o6dTMLMRCghSze+ihsXirj1Edz5Nk7aCtr6w8DHf85hzvm9iFGpLOvLyM3NLywu5ZcLK6tr6xvm5lZDhrHApI5DFoqWhyRhlJO6ooqRViQICjxGmt7gPKs374mQNOQ3ahgRJ0A9Tn2KkdKWa+52AqT6np9cpac/eJG6iZ3eJqW7g9Q1i1bZGgnOgj2BIpio5pqfnW6I44BwhRmSsm1bkXISJBTFjKSFTixJhPAA9UhbI0cBkU4yOiSF+9rpQj8U+nEFR+7viQQFUg4DT3dmu8rpWmb+V2vHyj9xEsqjWBGOxx/5MYMqhFkqsEsFwYoNNSAsqN4V4j4SCCudXUGHYE+fPAuNStk+LFeuj4rVs0kcebAD9kAJ2OAYVMElqIE6wOABPIEX8Go8Gs/Gm/E+bs0Zk5lt8EfGxzfWYpnY</latexit>

V = F
(j)
i

<latexit sha1_base64="83yQI2bPOGIId2JzgZrmKwpfQPg=">AAACCHicbZDLSsNAFIYnXmu9RV26cLAIdVOSKuhGKArisoK9QBvDZDppx04mYWYilJClG1/FjQtF3PoI7nwbJ20Ebf1h4OM/5zDn/F7EqFSW9WXMzS8sLi0XVoqra+sbm+bWdlOGscCkgUMWiraHJGGUk4aiipF2JAgKPEZa3vAiq7fuiZA05DdqFBEnQH1OfYqR0pZr7nUDpAaenzTTsx+8TN2EprdJ+e4wdc2SVbHGgrNg51ACuequ+dnthTgOCFeYISk7thUpJ0FCUcxIWuzGkkQID1GfdDRyFBDpJONDUnignR70Q6EfV3Ds/p5IUCDlKPB0Z7arnK5l5n+1Tqz8UyehPIoV4XjykR8zqEKYpQJ7VBCs2EgDwoLqXSEeIIGw0tkVdQj29Mmz0KxW7KNK9fq4VDvP4yiAXbAPysAGJ6AGrkAdNAAGD+AJvIBX49F4Nt6M90nrnJHP7IA/Mj6+AT53mhs=</latexit>

Q = F
(j)
i

<latexit sha1_base64="kbmkZnWuBEr8ggBCbjDaOerEkeM=">AAACBnicbZDLSsNAFIYn9VbrLepShMEi1E1JqqAboSiIyxbsBdoYJtNJO3YyCTMToYSs3Pgqblwo4tZncOfbOGkraOsPAx//OYc55/ciRqWyrC8jt7C4tLySXy2srW9sbpnbO00ZxgKTBg5ZKNoekoRRThqKKkbakSAo8BhpecPLrN66J0LSkN+oUUScAPU59SlGSluuud8NkBp4flJPz3/wKnXpbVK6O0pds2iVrbHgPNhTKIKpaq752e2FOA4IV5ghKTu2FSknQUJRzEha6MaSRAgPUZ90NHIUEOkk4zNSeKidHvRDoR9XcOz+nkhQIOUo8HRntqmcrWXmf7VOrPwzJ6E8ihXhePKRHzOoQphlAntUEKzYSAPCgupdIR4ggbDSyRV0CPbsyfPQrJTt43KlflKsXkzjyIM9cABKwAanoAquQQ00AAYP4Am8gFfj0Xg23oz3SWvOmM7sgj8yPr4BW1KZCg==</latexit>

K = F
(j)
i

<latexit sha1_base64="oH2AGSJ/VYtC1p76Ps8XrgknUhA=">AAACBnicbZDLSsNAFIYn9VbrLepShMEi1E1JqqAboSiI4KaCvUAbw2Q6acdOJmFmIpSQlRtfxY0LRdz6DO58GydtBW39YeDjP+cw5/xexKhUlvVl5ObmFxaX8suFldW19Q1zc6shw1hgUschC0XLQ5IwykldUcVIKxIEBR4jTW9wntWb90RIGvIbNYyIE6Aepz7FSGnLNXc7AVJ9z0+u0tMfvEhdepuU7g5S1yxaZWskOAv2BIpgopprfna6IY4DwhVmSMq2bUXKSZBQFDOSFjqxJBHCA9QjbY0cBUQ6yeiMFO5rpwv9UOjHFRy5vycSFEg5DDzdmW0qp2uZ+V+tHSv/xEkoj2JFOB5/5McMqhBmmcAuFQQrNtSAsKB6V4j7SCCsdHIFHYI9ffIsNCpl+7BcuT4qVs8mceTBDtgDJWCDY1AFl6AG6gCDB/AEXsCr8Wg8G2/G+7g1Z0xmtsEfGR/fUcKZBA==</latexit>

V = F
(j)
i

<latexit sha1_base64="Sk6cftv37BkscY2pxmkmflnxi0E=">AAACBnicbZDLSsNAFIYnXmu9RV2KMFiEuilJFXQjFAVxWcFeoI1hMp20YyeTMDMRSsjKja/ixoUibn0Gd76NkzaCtv4w8PGfc5hzfi9iVCrL+jLm5hcWl5YLK8XVtfWNTXNruynDWGDSwCELRdtDkjDKSUNRxUg7EgQFHiMtb3iR1Vv3REga8hs1iogToD6nPsVIacs197oBUgPPT5rp2Q9epi69Tcp3h6lrlqyKNRacBTuHEshVd83Pbi/EcUC4wgxJ2bGtSDkJEopiRtJiN5YkQniI+qSjkaOASCcZn5HCA+30oB8K/biCY/f3RIICKUeBpzuzTeV0LTP/q3Vi5Z86CeVRrAjHk4/8mEEVwiwT2KOCYMVGGhAWVO8K8QAJhJVOrqhDsKdPnoVmtWIfVarXx6XaeR5HAeyCfVAGNjgBNXAF6qABMHgAT+AFvBqPxrPxZrxPWueMfGYH/JHx8Q1jSpkP</latexit>

V = F
(j)
i

<latexit sha1_base64="Sk6cftv37BkscY2pxmkmflnxi0E=">AAACBnicbZDLSsNAFIYnXmu9RV2KMFiEuilJFXQjFAVxWcFeoI1hMp20YyeTMDMRSsjKja/ixoUibn0Gd76NkzaCtv4w8PGfc5hzfi9iVCrL+jLm5hcWl5YLK8XVtfWNTXNruynDWGDSwCELRdtDkjDKSUNRxUg7EgQFHiMtb3iR1Vv3REga8hs1iogToD6nPsVIacs197oBUgPPT5rp2Q9epi69Tcp3h6lrlqyKNRacBTuHEshVd83Pbi/EcUC4wgxJ2bGtSDkJEopiRtJiN5YkQniI+qSjkaOASCcZn5HCA+30oB8K/biCY/f3RIICKUeBpzuzTeV0LTP/q3Vi5Z86CeVRrAjHk4/8mEEVwiwT2KOCYMVGGhAWVO8K8QAJhJVOrqhDsKdPnoVmtWIfVarXx6XaeR5HAeyCfVAGNjgBNXAF6qABMHgAT+AFvBqPxrPxZrxPWueMfGYH/JHx8Q1jSpkP</latexit>

Q = F(j)
n<latexit sha1_base64="ctpXF/yPMx5tZCC24+U/BWuhF50=">AAACBnicbZDLSsNAFIYn9VbrLepShMEi1E1JqqAboSiIyxbsBdoYJtNJO3YyCTMToYSs3Pgqblwo4tZncOfbOGkraOsPAx//OYc55/ciRqWyrC8jt7C4tLySXy2srW9sbpnbO00ZxgKTBg5ZKNoekoRRThqKKkbakSAo8BhpecPLrN66J0LSkN+oUUScAPU59SlGSluuud8NkBp4flJPz3/wKnX5bVK6O0pds2iVrbHgPNhTKIKpaq752e2FOA4IV5ghKTu2FSknQUJRzEha6MaSRAgPUZ90NHIUEOkk4zNSeKidHvRDoR9XcOz+nkhQIOUo8HRntqmcrWXmf7VOrPwzJ6E8ihXhePKRHzOoQphlAntUEKzYSAPCgupdIR4ggbDSyRV0CPbsyfPQrJTt43KlflKsXkzjyIM9cABKwAanoAquQQ00AAYP4Am8gFfj0Xg23oz3SWvOmM7sgj8yPr4BYwSZDw==</latexit>

K = F(j)
n<latexit sha1_base64="tL+YYpm1WmbrVuopmd+Cw++OYOs=">AAACBnicbZDLSsNAFIYn9VbrLepShMEi1E1JqqAboSiI4KaCvUAbw2Q6acdOJmFmIpSQlRtfxY0LRdz6DO58GydtBW39YeDjP+cw5/xexKhUlvVl5ObmFxaX8suFldW19Q1zc6shw1hgUschC0XLQ5IwykldUcVIKxIEBR4jTW9wntWb90RIGvIbNYyIE6Aepz7FSGnLNXc7AVJ9z0+u0tMfvEhdfpuU7g5S1yxaZWskOAv2BIpgopprfna6IY4DwhVmSMq2bUXKSZBQFDOSFjqxJBHCA9QjbY0cBUQ6yeiMFO5rpwv9UOjHFRy5vycSFEg5DDzdmW0qp2uZ+V+tHSv/xEkoj2JFOB5/5McMqhBmmcAuFQQrNtSAsKB6V4j7SCCsdHIFHYI9ffIsNCpl+7BcuT4qVs8mceTBDtgDJWCDY1AFl6AG6gCDB/AEXsCr8Wg8G2/G+7g1Z0xmtsEfGR/fWXSZCQ==</latexit>

A
(j)
1<latexit sha1_base64="qLEALtZedaz0Fb8/kB9xrqyeK7c=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBahbkpSBV1W3bisYB/QxjKZTtqxkwczE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOG3EmlWV9G4WV1bX1jeJmaWt7Z3fP3C+3ZRgLQlsk5KHoulhSzgLaUkxx2o0Exb7LacedXGd+55EKycLgTk0j6vh4FDCPEay0NDDLfR+rsesll+nAvk+qDyfpwKxYNWsGtEzsnFQgR3NgfvWHIYl9GijCsZQ924qUk2ChGOE0LfVjSSNMJnhEe5oG2KfSSWbZU3SslSHyQqFfoNBM/b2RYF/Kqe/qySypXPQy8T+vFyvvwklYEMWKBmR+yIs5UiHKikBDJihRfKoJJoLprIiMscBE6bpKugR78cvLpF2v2ae1+u1ZpXGV11GEQziCKthwDg24gSa0gMATPMMrvBmp8WK8Gx/z0YKR7xzAHxifP3B6lAs=</latexit>

A(j)
n<latexit sha1_base64="VXfVZQEnMfn0i1xTrRc58jAHNYg=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQNyWpgi6rblxWsA9oY5lMJ+3YySTMTMQS8ituXCji1h9x5984abPQ1gMDh3Pu5Z45XsSoVLb9bRRWVtfWN4qbpa3tnd09c7/clmEsMGnhkIWi6yFJGOWkpahipBsJggKPkY43uc78ziMRkob8Tk0j4gZoxKlPMVJaGpjlfoDU2POTy3TA75Pqw0k6MCt2zZ7BWiZOTiqQozkwv/rDEMcB4QozJGXPsSPlJkgoihlJS/1YkgjhCRqRnqYcBUS6ySx7ah1rZWj5odCPK2um/t5IUCDlNPD0ZJZULnqZ+J/Xi5V/4SaUR7EiHM8P+TGzVGhlRVhDKghWbKoJwoLqrBYeI4Gw0nWVdAnO4peXSbtec05r9duzSuMqr6MIh3AEVXDgHBpwA01oAYYneIZXeDNS48V4Nz7mowUj3zmAPzA+fwDOXJRI</latexit>

Â
(j)
i

<latexit sha1_base64="BQCxOgWNwVje+DUR89LKhpNa4ck=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAR6qYkVdBl1Y3LCvYBTQyT6aQdO5mEmYlQQtz4K25cKOLWv3Dn3zhps9DqgQuHc+7l3nv8mFGpLOvLKC0sLi2vlFcra+sbm1vm9k5HRonApI0jFomejyRhlJO2ooqRXiwICn1Guv74Mve790RIGvEbNYmJG6IhpwHFSGnJM/ecEKmRH6TOCKn0PMs8epvW7o4yz6xadWsK+JfYBamCAi3P/HQGEU5CwhVmSMq+bcXKTZFQFDOSVZxEkhjhMRqSvqYchUS66fSDDB5qZQCDSOjiCk7VnxMpCqWchL7uzO+V814u/uf1ExWcuSnlcaIIx7NFQcKgimAeBxxQQbBiE00QFlTfCvEICYSVDq2iQ7DnX/5LOo26fVxvXJ9UmxdFHGWwDw5ADdjgFDTBFWiBNsDgATyBF/BqPBrPxpvxPmstGcXMLvgF4+MbvMuXEA==</latexit>

F
(j)
1<latexit sha1_base64="Xnm984gU8E0bv0fDOITc0Ap6OSA=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuilJFXRZFMRlBfuANpbJdNKOnTyYmQg1BH/FjQtF3Pof7vwbJ20WWj0wcDjnXu6Z40acSWVZX0ZhYXFpeaW4Wlpb39jcMrd3WjKMBaFNEvJQdFwsKWcBbSqmOO1EgmLf5bTtji8yv31PhWRhcKMmEXV8PAyYxwhWWuqbez0fq5HrJZdpP7HT26Ryd5T2zbJVtaZAf4mdkzLkaPTNz94gJLFPA0U4lrJrW5FyEiwUI5ympV4saYTJGA9pV9MA+1Q6yTR9ig61MkBeKPQLFJqqPzcS7Es58V09mWWV814m/ud1Y+WdOQkLoljRgMwOeTFHKkRZFWjABCWKTzTBRDCdFZERFpgoXVhJl2DPf/kvadWq9nG1dn1Srp/ndRRhHw6gAjacQh2uoAFNIPAAT/ACr8aj8Wy8Ge+z0YKR7+zCLxgf30pSlRw=</latexit>

F
(j)
i

<latexit sha1_base64="+q6VPP6KJ90BomrOo/XItpBNJ+Y=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuilJFXRZFMRlBfuANpbJdNKOnTyYmQg1BH/FjQtF3Pof7vwbJ20WWj0wcDjnXu6Z40acSWVZX0ZhYXFpeaW4Wlpb39jcMrd3WjKMBaFNEvJQdFwsKWcBbSqmOO1EgmLf5bTtji8yv31PhWRhcKMmEXV8PAyYxwhWWuqbez0fq5HrJZdpP2HpbVK5O0r7ZtmqWlOgv8TOSRlyNPrmZ28QktingSIcS9m1rUg5CRaKEU7TUi+WNMJkjIe0q2mAfSqdZJo+RYdaGSAvFPoFCk3VnxsJ9qWc+K6ezLLKeS8T//O6sfLOnIQFUaxoQGaHvJgjFaKsCjRgghLFJ5pgIpjOisgIC0yULqykS7Dnv/yXtGpV+7hauz4p18/zOoqwDwdQARtOoQ5X0IAmEHiAJ3iBV+PReDbejPfZaMHId3bhF4yPb6C6lVQ=</latexit>

F(j)
n<latexit sha1_base64="znSxWnPnaIJUiapFJbKWPCQPA4U=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyxC3ZSkCrosCuKygn1AG8tkOmnHTiZhZiLUEPwVNy4Ucet/uPNvnLRZaPXAwOGce7lnjhcxKpVtfxmFhcWl5ZXiamltfWNzy9zeackwFpg0cchC0fGQJIxy0lRUMdKJBEGBx0jbG19kfvueCElDfqMmEXEDNOTUpxgpLfXNvV6A1Mjzk8u0n/D0NqncHaV9s2xX7Smsv8TJSRlyNPrmZ28Q4jggXGGGpOw6dqTcBAlFMSNpqRdLEiE8RkPS1ZSjgEg3maZPrUOtDCw/FPpxZU3VnxsJCqScBJ6ezLLKeS8T//O6sfLP3ITyKFaE49khP2aWCq2sCmtABcGKTTRBWFCd1cIjJBBWurCSLsGZ//Jf0qpVneNq7fqkXD/P6yjCPhxABRw4hTpcQQOagOEBnuAFXo1H49l4M95nowUj39mFXzA+vgGocZVZ</latexit>

F
(j+1)
i

<latexit sha1_base64="gBDu0urCvnZLJW9kvueLbxc4CxA=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKkJJqqDLoiAuK9gHtDFMppN27GQSZiZCiVn4K25cKOLW33Dn3zhps9DWAwOHc+7lnjlexKhUlvVtFBYWl5ZXiqultfWNzS1ze6clw1hg0sQhC0XHQ5IwyklTUcVIJxIEBR4jbW90mfntByIkDfmtGkfECdCAU59ipLTkmnu9AKmh5ydXqZvQ9C6p3B/bR6lrlq2qNQGcJ3ZOyiBHwzW/ev0QxwHhCjMkZde2IuUkSCiKGUlLvViSCOERGpCuphwFRDrJJH8KD7XSh34o9OMKTtTfGwkKpBwHnp7M0spZLxP/87qx8s+dhPIoVoTj6SE/ZlCFMCsD9qkgWLGxJggLqrNCPEQCYaUrK+kS7Nkvz5NWrWqfVGs3p+X6RV5HEeyDA1ABNjgDdXANGqAJMHgEz+AVvBlPxovxbnxMRwtGvrML/sD4/AGF3pXE</latexit>

(d) Task feature sharing.

MLP0

MLP1

MLP2

MLP3

4-Class
Classifier

Prediction-0

Prediction-1

Prediction-2

Prediction-3
0
1
0
0

0

1

0

0

Prediction
F

(k2)
i

<latexit sha1_base64="UsNtEBQ8QnWMGtIouro75ym3vSQ=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR6qYkVdBlURCXFewD2hgm00k7dDIJMxOhxCz8FTcuFHHrb7jzb5y2WWjrgYHDOfdyzxw/ZlQq2/42CkvLK6trxfXSxubW9o65u9eSUSIwaeKIRaLjI0kY5aSpqGKkEwuCQp+Rtj+6mvjtByIkjfidGsfEDdGA04BipLTkmQe9EKmhH6TXmZfS7D6tjLzaSeaZZbtqT2EtEicnZcjR8MyvXj/CSUi4wgxJ2XXsWLkpEopiRrJSL5EkRniEBqSrKUchkW46zZ9Zx1rpW0Ek9OPKmqq/N1IUSjkOfT05SSvnvYn4n9dNVHDhppTHiSIczw4FCbNUZE3KsPpUEKzYWBOEBdVZLTxEAmGlKyvpEpz5Ly+SVq3qnFZrt2fl+mVeRxEO4Qgq4MA51OEGGtAEDI/wDK/wZjwZL8a78TEbLRj5zj78gfH5A9hYlfo=</latexit>

yi
<latexit sha1_base64="Kr9zKiAScfd9h9AHI+C+F2nCG10=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHkyXoR3QoecgZNVZ6yPq8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGn1BlOBM4LfVSjQllYzrErqWSRqj9yfzUKTmzyoCEsbIlDZmrvycmNNI6iwLbGVEz0sveTPzP66YmvPYnXCapQckWi8JUEBOT2d9kwBUyIzJLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBjZI3d</latexit>

ci
<latexit sha1_base64="ablRka85tyJ/4pmKNmVk4OF7KYo=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqApZTKdtEMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE14P6IjJULBKFrJ9yOK4yDM2GwgBpWqW3PnIKvEK0gVCjQHlS9/GLM04gqZpMb0PDfBfkY1Cib5rOynhieUTeiI9yxVNOKmn80zz8i5VYYkjLV9Cslc/b2R0ciYaRTYyTyjWfZy8T+vl2J408+ESlLkii0OhakkGJO8ADIUmjOUU0so08JmJWxMNWVoayrbErzlL6+Sdr3mXdbqD1fVxm1RRwlO4QwuwINraMA9NKEFDBJ4hld4c1LnxXl3Phaja06xcwJ/4Hz+AGB7kec=</latexit>

(e) Ensemble prediction.

Fig. 2 (a) The whole framework of our multi-task learning model. It takes input as a circuit graph and synthesis sequence and outputs delay and
area prediction. (b) A primary module containing GIN and LSTM that extracts primary features from the circuit structure and synthesis flow. (c)
This module uses the attention mechanism to extract specific features of the circuit metrics from the synthesis-related feature. (d) This module
shares specific features for circuit metrics across tasks. (e) Ensemble prediction module uses a set of MLPs and a classifier together to give an
accurate prediction.

have e
(1)
v = xv as the initial node embedding.

e(l+1)
v = MLP(l)

(1 + ϵ(l)
)
· e(l)

v +
∑

u∈N(v)

e(l)
u

 , (1)

where MLP is multi-layer perceptron, and ϵ(l) is a learnable parameter.
The updated node embedding contains embeddings from the con-

cerned node and its neighbors, which are also transitive fan-in nodes in
the DAG. Consequently, the node embedding reflects the structure and
functionality of the cut rooted at the concerned node. We further add
up all nodes’ embeddings to get the embedding of the entire circuit.

Apart from the circuit itself, the logic synthesis flow also affects
the circuit QoR after implementation and can be represented as
a sequence [10], [12]. We use LSTM to learn the embedding of
synthesis flows. For each circuit and synthesis flow, we concatenate
the graph embedding provided by the GIN with the synthesis sequence
embedding generated by LSTM. The concatenation resembles the pro-
cess of applying logic optimizations on the circuit. The concatenated
embedding is our primary module’s output and encompasses crucial
features of circuit and synthesis flows.

C. Task-Specific Feature Extraction and Sharing

After we get the features related to logic synthesis and the circuit
structure from a high level, we proceed to derive task-specific features
for the delay and area prediction tasks. Inspired by [18], we use the
multi-head attention mechanism [19] in our multi-task learning model.
For feature extraction, self-task attention is used to extract distinct
feature representations for delay prediction and area prediction tasks.
Then, feature-sharing modules use cross-task attention to help each
task get relevant and beneficial features from the other task.

The multi-head attention (MHA) allows a model to attend to parts
of the information globally. The Q,K,V are the inputs of MHA and

are called query, key, and value, respectively. Suppose there are G
heads and each head is with projection matrices W(Q)

g ,W
(K)
g ,W

(V)
g

to project the query, key, value so that different heads can attend to
information from different representation subspaces of the input [19].
The computation is as follows:

MHA(Q,K,V) = Concat (H1, . . . ,HG)W
(O), (2)

where Hg, g ∈ {1, 2, . . . , G}, is the output of a single scaled dot-
product attention and G is the number of heads. For Hg , it computes
the similarity between projected QW

(Q)
g and KW

(K)
g and applies

it to the projected VW
(V)
g to get the attention between query and

value through looking into key, which is computed by:

Hg = Attention
(
QW(Q)

g ,KW(K)
g ,VW(V)

g

)
= softmax

(
(QW

(Q)
g)(KW

(K)
g)T√

df

)
VW(V)

g ,
(3)

where df is the feature dimension for input K. Finally, the projection
matrix W(O) is used to fuse the attention from each head and get a
feature with richer information.

The feature extraction modules will extract specific features for
delay and area. The input Q,K,V are the same as the synthesis-
related feature Tc from the primary module. This module is shown
in Fig. 2(c), and we call the output of MHA attention map. We first
compute the attention map for task i by feature from layer j in feature
extraction modules and add it again as Equation (4) shows.

T̂
(j)
i = MHA(T

(j)
i ,T

(j)
i ,T

(j)
i) +T

(j)
i . (4)

Then we use MLP to project the attention map further and add it back
to get the specific feature for the next layer, as Equation (5) shows.

T
(j+1)
i = MLP(T̂

(j)
i) + T̂

(j)
i . (5)

3Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:50:59 UTC from IEEE Xplore. Restrictions apply.

The MHA in this module can attend to delay or area information from
the input synthesis-related feature. The original feature T

(j)
i and the

attention map T̂
(j)
i is added back in this module MHA, so multiple

layers can be stacked to extract more specific features for each task
from the synthesis-related feature in a repetitive manner.

After extracting task-specific features, feature-sharing modules aim
to help the prediction for one circuit metric obtain beneficial features
from the prediction for the other metric.

Without the loss of generality, the computation for the feature of
task i is shown in Fig. 2(d). It takes the specific features from all tasks
as the input Q,K and the features from task i as V. For the feature
of task i at layer j, F(j)

i , we can get n attention maps for n tasks.

A
(j)
1 = MHA

(
F

(j)
1 ,F

(j)
1 ,F

(j)
i

)
;

...

A(j)
n = MHA

(
F(j)

n ,F(j)
n ,F

(j)
i

)
.

(6)

The initial input features for feature-sharing modules are specific
features for circuit metrics extracted previously. After we get n
attention maps for each task, we concatenate all of them and use an
MLP for projection. Then, the attention map is added back from task
i to get a fused attention map Â

(j)
i .

Â
(j)
i = MLP(Concat(A

(j)
1 , . . . ,A(j)

n)) +A
(j)
i . (7)

Finally, Â(j)
i is further projected and the original feature of task i,

F
(j)
i , is added back to generate the new feature F

(j+1)
i for task i:

F
(j+1)
i = MLP(Â

(j)
i) + F

(j)
i . (8)

MHAs will relate features for each circuit metric, i.e., F
(j)
i , i ∈

{1, 2, . . . , n}, with the features for the concerned feature at task i,
i.e., F(j)

i . This is achieved by computing attention maps with Q,K,V,
where Q and K are from all circuit metrics being predicted, and V
is from the concerned one. The features are then shared to the task i
through concatenation. For each task self-task attention map A

(j)
i and

the self-task feature F
(j)
i are added back during the computation. It

aligns with the intuition that when predicting delay (resp. area), delay
(resp. area) features should take the principal role while area (resp.
delay) features take the auxiliary role.

D. Ensemble Prediction Module

Conventionally, regression models like MLPs are used to conduct
the final prediction for delay and area of a design. However, the sizes
of circuits with different functions vary significantly, and the ground-
truth values also span across a large range. For instance, the delay of
a decoder is 26ps, whereas a square root circuit can have a delay of
21500ps [24], leading to a tough training process.

To handle this problem, we use an ensemble prediction module to
get the final prediction for each task. We set 4 data ranges for our data
points and use 4 MLP branches for each task, each for one data range.
They are fed with the same feature generated by the feature-sharing
module. We also feed the feature to a classifier to decide which output
range should be used among the four MLP branches.

For each data point, the outputs of four MLPs for task i can be
viewed as a vector, denoted as mi ∈ R4. The output of the classifier
is a one-hot vector denoted by ci ∈ R4 that indicates which output of
the MLPs should be used as the final prediction yi. To get yi, we can
take the product of mi and ci, as shown in Equation (9) and Fig. 2(e).

yi = mT
i ci. (9)

-40 -20 0 20 40
0

2

4

·104

Percentage Error (%)

N
um

be
r

of
Po

in
ts

-40 -20 0 20 40
0

2

4

·104

Percentage Error (%)

N
um

be
r

of
Po

in
ts

-40 -20 0 20 40
0

2

4

·104

Percentage Error (%)

N
um

be
r

of
Po

in
ts

-40 -20 0 20 40
0

2

4

·104

Percentage Error (%)

N
um

be
r

of
Po

in
ts

Fig. 3 Distribution of the prediction errors. Each row, from left to
right, shows the number of predictions based on the percentage error
of inductive testing results on area and delay, respectively. The first
row is for LOSTIN [10], and the second is for the proposed method.

We use Mean-Squared-Error (MSE) as the final prediction loss func-
tion, as computed by

L
(pred)
i = (yi − ŷi)

2, (10)

where ŷi is the ground truth for prediction yi. In addition, we can
also get the label of the classification result ĉi ∈ R4 and utilize an
auxiliary loss function for the classifier, in which the cross-entropy
(CE) loss is applied and can be formulated as

L
(aux)
i = CE(ci, ĉi). (11)

Therefore, for a single data point, the loss can be calculated by
combining the losses from all the tasks, as computed by

L =

n∑
i=1

(L
(pred)
i + L

(aux)
i). (12)

IV. EXPERIMENTAL RESULTS

In this section, we first describe the dataset details and the ex-
periment setups. Then we compare the performance of circuit QoR
prediction of our MTL model against a set of baseline models,
including conventional single-task prediction models and other multi-
task learning models. We also show that the proposed method can
facilitate design space exploration by predicting Pareto-optimal points.

A. Dataset Generation and Evaluation

The input to the synthesis results prediction model contains two
parts: a design and a synthesis sequence. We collect the designs from
EPFL15 benchmark [24], ISCAS85 benchmark [25], an online adder
generator [26], and an in-house multiplier generator, which contains 39
combinational circuits in total. Then we synthesize each circuit with
20000 different synthesis flows and map them using ASAP 7nm low-
voltage technologies [27] with open-source synthesis tool ABC [11]
to get the ground truth of delay and area.

To assess the models’ ability to generalize, we devise two testing
scenarios. The first scenario, termed transductive testing, comprises
seen designs with unseen synthesis sequences during training. This
scenario corresponds to exploring synthesis flows that yield favorable
QoR during circuit implementation. The second scenario, referred to
as inductive testing, consists of unseen circuits during training with all

4Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:50:59 UTC from IEEE Xplore. Restrictions apply.

TABLE II MAPE Results Comparison with Baseline Methods.

LR CNN [13] LSTM [12] LOSTIN [10] 2Ea [16] SAb [18] CSc [17] Ours

Transductive
Testing

Delay Prediction 23.37% 42.21% 80.27% 11.52% 1.32% 0.90% 1.34% 0.79%

Area Prediction 98.07% 63.58% 16.30% 10.85% 1.23% 1.06% 1.22% 0.83%

Inductive
Testing

Delay Prediction 26.33% 38.04% - 22.51% 7.78% 7.27% 12.35% 5.80%

Area Prediction 146.05% 74.57% - 25.78% 11.11% 7.63% 9.34% 5.84%
a 2-Ensemble baseline. b Self-attention baseline. c Cross-stitch baseline.

synthesis sequences. It corresponds to the exploration of entirely new
designs. For the design points used for training, we split the training,
validation, and test set with a ratio of 20%, 5%, and 75%, respectively.

B. Model Configuration

For our MTL model, we choose the node embedding dimension to
be 128 (32 for each node feature) in the primary module. The number
of layers of the GIN and LSTM are both 2. The dimension for the
hidden layers in MLPs in the ensemble prediction modules is 200.
Both task-specific feature extraction and feature-sharing modules have
2 layers with 4 heads in the multi-head attention. We use an Adam
optimizer with a learning rate of 0.005.

C. Comparison with Baseline Methods

We use Mean Absolute Percentage Error (MAPE) to evaluate the
performance of our work. It computes the percentage error between
prediction value ym and ground-truth value ŷm for M prediction
values, as shown in Equation (13).

MAPE =
100%

M

M∑
m=1

∣∣∣∣ ŷm − ym
ŷm

∣∣∣∣ (13)

We conduct a comprehensive comparison of our model with both
single-task and multi-task methods. The single-task methods treat
predicting delay and area as independent tasks, including Linear
Regression (LR), CNN [13], LSTM [12], and a Spacial-Temporal
model, LOSTIN [10].

To ensure the CNN and LR methods are capable of predicting
unseen designs, we encode specific circuit properties (e.g., number
of inputs/outputs, number of nodes, logic level, etc.) into their inputs.
The LSTM method can only predict seen designs during training, but
it is tested on unseen synthesis flows, i.e., transductive testing.

Regarding multi-task learning baselines, since no existing work
is available, we construct them based on prior MTL research. The
first baseline, denoted as 2-Ensemble, simply employs two ensemble
prediction modules to directly predict delay and area from the same
synthesis-related features obtained from a primary module [16]. The
second named Self-attention, involves using task-specific feature
extraction after the primary module, incorporating self-task attention
to derive specific features for delay and area [18]. The third one is a
cross-stitch-based model [17], which linearly combines delay and area
features extracted by two primary modules (namely Cross-stitch).

Our MTL model excels in both transductive and inductive testing.
In transductive testing, we achieve an impressive MAPE of 0.79% and
0.83% for delay and area, respectively. Even in the more challenging
inductive testing, our method performs well, with a MAPE of 5.80%
and 5.84% for delay and area, respectively.

Compared with single-task baselines, our MTL model outperforms
the best single-task baseline, LOSTIN [10], by more than 3 times.

In inductive testing, all predictions made by our model have errors
below 20%, with most falling under 10%. In contrast, the errors in
LOSTIN [10] are more widely spread, as shown in Fig. 3. This

highlights our model’s strong generalizability to unseen designs,
avoiding predictions with large errors.

In TABLE II, we further compare our model with multi-task
learning baselines (2E, SA, and CS). The 2-Ensemble, a simple
MTL model directly using common synthesis-related features for both
delay and area, outperforms all single-task baselines. This shows
the effectiveness of multi-task learning in capturing the relevance
among QoR metrics during circuit implementation, resulting in higher
accuracy and generalizability. The self-attention utilizes task-specific
feature extraction, providing unique representations for delay and
area features, leading to higher accuracy compared to 2-Ensemble.
Moreover, the cross-stitch model performs similarly to 2-Ensemble but
worse than both self-attention and our model. This suggests that more
complex mechanisms like attention, are better suited for exploiting the
relevance of delay and area features rather than linear combinations.

The proposed MTL model utilizes self-task attention to extract
specific features for delay and area from the synthesis-related features
and cross-task attention to share the features with each other. The
resulting feature for predicting delay (resp. area) combines task-
specific features from both delay and area but is still based on delay
(resp. area). Therefore it outperforms all baseline methods in both
transductive and inductive scenarios on delay and area.

Judging from the MAPE value, our work reaches an error of less
than 1% in the transductive testing scenario. This indicates that our
model facilitates designers to explore new synthesis flows for better
QoR without the need for time-consuming synthesis. Our work is
also generalizable to predict designs never seen before, thus equipping
designers with the ability to rapidly assess the QoR of new designs.

D. Enabling Design Space Exploration

In this section, we demonstrate that the proposed MTL model can
facilitate the design space exploration workflow by alleviating the time
overhead in running countless times of design implementations.

We generate a datapath circuit dataset by the open-source adder
generator [26] and the in-house compressor tree multiplier generator.
It contains 36 adders and 35 multipliers. Each design is synthesized
by ABC [11] with the aforementioned 20000 different synthesis flows
to form 20000 points to explore. There are 6 types of prefix adders,
each with bit-widths of 4, 8, 16, 32, 64, and 128. The multipliers are
generated with bit-widths of 4, 8, 16, and 64, each of which consists of
7 designs with different random compressor structures. For adders and
multipliers of each bit-width, we randomly select one design for the
inductive testing, leaving the others in the transductive testing scenario.

The design space exploration aims to identify Pareto-optimal de-
signs concerning multiple trade-off metrics, such as delay and area.
In this experiment, we utilize our MTL models and baseline models
to predict designs on the datapath dataset and select those predicted
to be Pareto-optimal. These selected designs are then mapped in the
real design space to determine if they form a desired Pareto-frontier.

To assess the quality of the Pareto-frontiers, we use the widely-used
metric, hypervolume, which represents the bounded region between
the Pareto-frontier and a reference point (as shown in Fig. 4). The

5Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:50:59 UTC from IEEE Xplore. Restrictions apply.

TABLE III Hypervolume Ratio of Delay and Area Comparison.

Design ADD32 ADD64 ADD128 MUL16 MUL32 MUL64 Averaged

LOSTIN [10] 0.705 0.704 0.826 0.873 0.693 0.352 0.692

2-Ensemble [16] 0.889 0.831 0.927 0.931 0.593 0.861 0.838

Self-attention [18] 0.814 0.859 0.835 0.802 0.870 0.939 0.853

Cross-stitch [17] 0.724 0.861 0.964 0.558 0.910 0.804 0.803

Ours 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Reference Point
Pareto-optimal Points
Non-optimal Points
Hypervolume

Delay

A
re

a

Fig. 4 An illustration of hypervolume.

240 260 280

2,200

2,400

2,600

Delay (ps)

A
re

a
(µ
m

2
)

400 420 440 460
7,500

8,000

8,500

9,000

9,500

Delay (ps)

A
re

a
(µ
m

2
)

LOSTIN 2-Ensemble Self-attention
Cross-stitch Ours

Fig. 5 Pareto-frontiers comparison of baseline methods. From left to
right are results for 16-bit and 32-bit multipliers, respectively.

hypervolume value is influenced by the choice of the reference point.
Thus, we compare the normalized hypervolume ratio of different
Pareto-frontiers generated by various models.

For brevity, we only show the results for high bit-width designs
in TABLE III. Our proposed method reaches the largest hypervolume
for all bit widths. The average hypervolume ratio is 30% higher than
the best single-task baseline (LOSTIN) and 15% higher than the best
MTL baseline (Self-attention). For simplicity, we only show the Pareto
frontiers for multipliers of 16 and 32 bit in Fig. 5, which shows that the
Pareto-frontiers given by our model have better coverage of different
scenarios, including small area, small delay, and area-delay trade-off.

V. CONCLUSION

In this paper, a multi-task learning model is proposed to predict the
delay and area of RTL designs after logic synthesis. It considers the
effect on circuit metrics from both the circuit structure and synthesis
flows. More importantly, it leverages the relevance of circuit metrics
in synthesis with attention-based feature extraction and feature-sharing
mechanisms to make more accurate predictions. Experiments on a
dataset of various circuits show that our model is more accurate com-
pared with previous methods that take metric prediction as individual
tasks. We also show that our MTL model facilitates design space
exploration by predicting Pareto-optimal design points. Future work
will focus on extending the multi-task learning to more EDA stages.

VI. ACKNOWLEDGEMENT

This work is supported by the Guangzhou-HKUST(GZ) Joint Fund-
ing Program (No. 2023A03J0013).

REFERENCES

[1] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. MICRO,
2009, pp. 469–480.

[2] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “Boom-explorer:
Risc-v boom microarchitecture design space exploration framework,” in
Proc. ICCAD, 2021, pp. 1–9.

[3] P. Sengupta, A. Tyagi, Y. Chen, and J. Hu, “How good is your verilog
rtl code? a quick answer from machine learning,” in Proc. ICCAD, 2022,
pp. 1–9.

[4] C. Xu, C. Kjellqvist, and L. W. Wills, “Sns’s not a synthesizer: a deep-
learning-based synthesis predictor,” in Proc. ISCA, 2022, pp. 847–859.

[5] Y. Zhang, H. Ren, and B. Khailany, “Grannite: Graph neural network
inference for transferable power estimation,” in Proc. DAC, 2020, pp.
1–6.

[6] A. Srinivasan, G. D. Huber, and D. P. LaPotin, “Accurate area and delay
estimation from rtl descriptions,” IEEE TVLSI, vol. 6, no. 1, pp. 168–172,
1998.

[7] S. Roy, Y. Ma, J. Miao, and B. Yu, “A learning bridge from architec-
tural synthesis to physical design for exploring power efficient high-
performance adders,” in Proc. ISLPED, 2017, pp. 1–6.

[8] D. S. Lopera, L. Servadei, S. Prebeck, and W. Ecker, “Early rtl delay
prediction using neural networks,” Microprocessors and Microsystems,
vol. 94, p. 104671, 2022.

[9] Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany, and Z. Zhang, “Primal:
Power inference using machine learning,” in Proc. DAC, 2019, pp. 1–6.

[10] N. Wu, J. Lee, Y. Xie, and C. Hao, “Lostin: Logic optimization via spatio-
temporal information with hybrid graph models,” in Proc. ASAP, 2022,
pp. 11–18.

[11] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Proc. CAV. Springer, 2010, pp. 24–40.

[12] C. Yu and W. Zhou, “Decision making in synthesis cross technologies
using lstms and transfer learning,” in Proc. MLCAD, 2020, pp. 55–60.

[13] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows without
human knowledge,” in Proc. DAC, 2018, pp. 1–6.

[14] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic design automa-
tion: synthesis, verification, and test. Morgan Kaufmann, 2009.

[15] A. M. R. Brayton, “Scalable logic synthesis using a simple circuit
structure,” in Proc. IWLS, vol. 6, 2006, pp. 15–22.

[16] R. Caruana, “Multitask learning,” Machine learning, vol. 28, pp. 41–75,
1997.

[17] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks
for multi-task learning,” in Proc. CVPR, 2016, pp. 3994–4003.

[18] X. Xu, H. Zhao, V. Vineet, S.-N. Lim, and A. Torralba, “Mtformer: Multi-
task learning via transformer and cross-task reasoning,” in Proc. ECCV.
Springer, 2022, pp. 304–321.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proc. NIPS,
vol. 30, 2017.

[20] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[21] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[22] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting

a fresh look at combinational logic synthesis,” in Proc. DAC, 2006, pp.
532–535.

[23] R. Brayton, J.-H. R. Jiang, and S. Jang, “Sat-based logic optimization and
resynthesis,” in Proc. IWLS, 2007, pp. 358–364.

[24] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in Proc. IWLS, 2015.

[25] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85
benchmarks: A case study in reverse engineering,” IEEE Design & Test
of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[26] L. Flea, “Iamflea/addercircuitgenerator: This script generates and analyzes
prefix tree adders.” 2021. [Online]. Available: https://github.com/IamFlea/
AdderCircuitGenerator

[27] X. Xu, N. Shah, A. Evans, S. Sinha, B. Cline, and G. Yeric, “Standard
cell library design and optimization methodology for asap7 pdk,” in
Proc. ICCAD, 2017, pp. 999–1004.

6Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:50:59 UTC from IEEE Xplore. Restrictions apply.

