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Background and Mot

» The complexity and size of modern VLSI keeps soaring.
» It’s costly to obtain feedback from running EDA flows, which hinders the
expedition of hardware designs.
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Background and Motivation

» To facilitate hardware design, many works have been raised to predict the metrics
of circuits without launching EDA flows.

M. Nemani and F. N. Najm, “Delay estimation vlsi circuits from a high-level view,” in Proc. DAC, 1998, pp. 591-594.

S. Li et al., “Mcpat: An integrated power, area, and timing modeling framework for multicore and manycore architecture
Proc. MICRO, 2009, pp. 469-480.

D. S. Lopera et al., “Barly rtl delay prediction using neural networks,” Microprocessors and Microsystems, vol. 94, p. 104671,

2022, S. Roy et al., “A learning bridge from architectural synthesis to physical design for exploring power efficient
high-performance adders,” in Proc. ISLPED, 2017, pp. 1-6.

N. Wu et al., “Lostin: Logic optimization via spatio-temporal information with hybrid graph models,” in Proc. ASAP, 2022,
pp. 11-18.



Background and Motivation

To facilitate hardware design, many works have been raised to predict the metrics

of circuits without launching EDA flows.

» These works can be classified into two types:
® Analytical: Boolean complexity Analysis, design functionality analysis

M. Nemani and F. N. Najm, “Delay estimation vlsi circuits from a high-level view,” in Proc. DAC, 1998, pp. 591-594
S. Li et al., “Mcpat: An integrated power, area, and timing modeling framework for multicore and manycore architectures,” in
ystems, vol. 94, p. 104671,

ors and Micr

Proc. MICRO, 2009, pp. 469-480.
D. S. Lopera et al., “Early rtl delay prediction using neural networks,” Microproc
2022, S. Roy et al., “A learning bridge from architectural synthesis to physical design for exploring power efficient
* in Proc. ISLPED, 2017, pp. 1-6.

high-performance adders,”
N. Wu et al., “Lostin: Logic optimization via spatio-temporal information with hybrid graph models,” in Proc. ASAP, 2022,

pp. 11-18.



Background and Motivation

» To facilitate hardware design, many works have been raised to predict the metrics

of circuits without launching EDA flows.

» These works can be classified into two types:
® Analytical: Boolean complexity Analysis, design functionality analysis
® Machine Learning-based: Artificial neural networks, support vector regression, graph

neural networks
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Background and Motivation

» Logic synthesis gives a first look at circuit metrics like delay and area.

» During logic synthesis certain metrics are correlated.
® Collapsing Eq.(1) is a logic optimization technique that reduces delay but increases

area, while substitution works in the opposite way.
® Gate-sizing and buffer-insertion are strategies that trade off between delay and area

during technology mapping.

F=G-a+-G-band G=c+d
Collapsing G into F results in (1)
F=a-c+a-d+b-—c-—d
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Background and Motivation

» Multi-task Learning (MTL) solves related tasks simultaneously

R. Caruana, “Multitask learning,” Machine learning
I. Misra et al.,

, vol. 28,

pp. 41-75, 1997.
‘Cross-stitch networks for multi-task learning,”

in Proc. CVPR, 2016, pp. 3994-4003.
pp. 304-321.

X. Xu et al., “Mtformer: Multi-task learning via transformer and cross-task reasoning,” in Proc. ECCV, Springer, 2022,

S. Ruder, “An overview of multi-task learning in deep neural networks,” arXiv preprint arXiv:1706.05098, 2017.



ground and Motivation

> Multi-task Learning (MTL) solves related tasks simultaneously.
» Advanced mechanisms are exploited to share features, like:

® Linear combination of activations,

® Attention-based feature sharing.
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Figure 2: An example of feature sharing in MTL.
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Background and Motivation

We propose ASAP, a multi-task learning model that predicts delay and area of RTL
design after logic synthesis simultaneously.
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Figure 3: Our multi-task learning model.



Overview of Our Model

Our model consists of the following parts:

1. A primary module that extracts synthesis-related features from RTL design and

synthesis sequence.
2. Attention-based feature-extraction and feature-sharing modules extract specific

features for delay and area and share them.
3. Ensemble prediction modules give the final prediction for delay and area.
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Figure 4: Overview of our model.



sis-related Primary Module

» The node features in GIN include node functionality (and or not), logic level, and
number of fan-in and fan-out.

» The LSTM yield embedding for synthesis sequence.

» The GIN updates node embedding e, by aggregating the neighbors’, Eq.(2).

Figure 5: Primary module.

K. Xu et al., “How powerful are graph neural networks?” arXiv preprint arXiv:1810.00826, 2018

A. M. R. Brayton, “Scalable logic synthesis using a simple circuit structure,” in Proc. IWLS, vol. 6, 2006, pp. 15 22.
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Attention-based Feature-extraction

We use multi-head attention (MHA) mechanism to further extract specific features for
each task.

A. Vaswani et al., “Attention is all you need,” Proc. NIPS, vol. 30, 2017.
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We use multi-head attention (MHA) mechanism to further extract specific features for
each task.

» The Q,K,V are the same so each branch extracts specific features for the
corresponding task.

» Multiple layers are stacked to get more specific representation.
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Figure 7: Feature-extraction.
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sed Feature-ext

We use multi-head attention (MHA) mechanism to further extract specific features for
each task.

» The Q,K,V are the same so each branch extracts specific features for the
corresponding task.

» Multiple layers are stacked to get more specific representation.
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» Then they are merged to get the new representation of features.
» Multiple layers are stacked to improve sharing.

MIIAQ _ ng)

F(lj )

F(])_

FU

Figure 8: Feature sharing module for task i at layer j.
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Ensemble Prediction

» Usually, regression models like MLLP are used to obtain the final prediction from
the features.

» Since the values of our data span across 3 orders of magnitudes, we use a classifier
and a set of MLPS to give predictions.

10



Ensemble Prediction

» Usually, regression models like MLLP are used to obtain the final prediction from
the features.

» Since the values of our data span across 3 orders of magnitudes, we use a classifier
and a set of MLPS to give predictions.

» The output of the classifier will decide which MLP will be used for the final
prediction.
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Figure 9: Ensemble prediction for task i.
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periment Settings

» The designs are collected from EPFL15, ISCAS85 benchmark, prefix adders, and
compressor-tree multipliers.

» Number of layers of GIN and LSTM are 2.

» Numbers of layers of feature-extraction and feature sharing are both 2, with 4
heads in multi-head attention.

L. Amaru et al., “The epfl combinational benchmark suite,” in Proc. IWLS, 2015.

M. C. Hansen et al., “Unveiling the iscas-85 benchmarks: A case study in reverse engineering,’

" IEEE Design & Test of
Computers, vol. 16, no. 3, pp. 72-80, 1999.

L. Flea, lamflea/addercircuitgenerator: This script generates and analyzes prefix tree adders. 2021. [Online]. Available:
https://github.com/TamFlea/AdderCircuitGenerator.
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compressor-tree multipliers.

» Number of layers of GIN and LSTM are 2.
» Numbers of layers of feature-extraction and feature sharing are both 2, with 4
heads in multi-head attention.

To test the ability of our model to generalize, we devise two scenarios:

» Transductive Testing: The model will be tested on unseen synthesis flows with
seen designs during training.

» Inductive Testing: The model will be tested on new designs.
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Experimental Results

» We evaluate the model performance by mean-absolute-percentage-error (MAPE)
with Linear Regression, CNN, LSTM, and LOSTIN.
» MTL baselines: 2-Ensemble, Self-attention, and Cross-stitch.

LR | ONN | LSTM | LOSTIN | 2E* | SAP | CS° | Ours
1.32% | 0.90% | 1.34% | 0.79%

Transductive ‘ Delay Prediction ‘ 23.37% ‘ 42.21% ‘ 80.27% ‘ 11.52%

|
Testing 1 Avea Prediction | 98.07% | 63.58% | 16.30% | 1085% | 1.23% | 1.06% | 1.22% | 0.83%
Inductive | Delay Prediction | 26.33% | 38.04% | - | 2251% | 7.78% | 7.27% | 12.35% | 5.80%
Testing ‘

| Area Prediction | 146.05% | 74.57% | - | 25.78% | 11.11% | 7.63% | 9.34% | 5.84%

2 9-Ensemble baseline. P Self-attention baseline. ¢ Cross-stitch baseline.

Table 1: MAPE Results Comparison with Baseline Methods.

C. Yu et al., “Developing synthesis flows without human knowledge,” in Proc. DAC, 2018, pp. 1-6.

C. Yu and W. Zhou, “Decision making in synthesis cross technologies using lstms and transfer learning,” in Proc. MLCAD,
2020, pp. 55-60.

N. Wu et al., “Lostin: Logic optimization via spatio-temporal information with hybrid graph models,” in Proc. ASAP, 2022,
pp. 11-18.
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berimental Results

» We further validate our model on a dataset solely consisting of adders and
multipliers.

» Adders are of 4,8,16,32,64,128 bit., multipliers are of 4,8,16,32,64 bits.

» We compare the results in terms of normalized hypervolumn.

Table 2: Hypervolume Ratio of Delay and Area Comparison.

g O Reference Point
. © Pareto-optimal Points
Design | ADD32 | ADD64 | ADD128 | MUL16 | MUL32 | MUL64 | Averaged @ Non-optimal Points
LOSTIN [5] | 0705 | 0.704 | 0826 | 0873 | 0693 | 0352 | 0692 B Hypervolume
2-Ensemble [7] | 0.889 | 0831 | 0927 | 0931 | 0593 | 0861 | 0.838 Delay
Self-attention [9] | 0.814 | 0.859 | 0835 | 0.802 | 0870 | 0939 | 0.853 i
Figure 10: An illustration of
Cross-stitch [8] | 0.724 | 0.861 | 0964 | 0558 | 0910 | 0.804 | 0803  hypervolume.
Ours | 1.000 | 1000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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Experiment Results

We can also look at the Pareto frontier given by the model on 16 and 32-bit multipliers.

Our model has better coverage than baseline methods.
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Figure 11: Pareto-frontiers comparison of baseline methods on 16 and 32-bit multipliers.
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