
RL-MUL: Multiplier Design Optimization with Deep
Reinforcement Learning

Dongsheng Zuo
HKUST(GZ)

dzuo721@connect.hkust-gz.edu.cn

Yikang Ouyang
HKUST(GZ)

youyang929@connect.hkust-gz.edu.cn

Yuzhe Ma
HKUST(GZ)

yuzhema@ust.hk

Abstract—Multiplication is a fundamental operation in many
applications, and multipliers are widely adopted in various circuits.
However, optimizing multipliers is challenging and non-trivial due
to the huge design space. In this paper, we propose RL-MUL, a
multiplier design optimization framework based on reinforcement
learning. Specifically, we utilize matrix and tensor representations
for the compressor tree of a multiplier, based on which the
convolutional neural networks can be seamlessly incorporated as
the agent network. The agent can learn to adjust the multiplier
structure based on a Pareto-driven reward which is customized to
accommodate the trade-off between area and delay. Experiments
are conducted on different bit widths of multipliers. The results
demonstrate that the multipliers produced by RL-MUL dominate
all baseline designs in terms of both area and delay. The per-
formance gain of RL-MUL is further validated by comparing the
area and delay of processing element arrays using multipliers from
RL-MUL and baseline approaches.

I. INTRODUCTION

Datapath designs are fundamental building blocks of digital inte-
grated circuits, which have become increasingly critical in mod-
ern computing platforms. Particularly, the multiply-accumulate
(MAC) operations are heavily used in many applications, includ-
ing digital signal processing, deep neural networks (DNNs), and
image processing. Especially, MAC operations may account for
more than 99% of all operations in conventional DNNs, as shown
in Fig. 1. On the hardware level, these operations are executed
by datapath circuits, among which multipliers contribute a
substantial portion of overhead in terms of performance, power,
area, and design costs.

Generally, these designs can be completed manually by re-
fining from regular structures, which effectively optimizes area,
power, and performance for a particular technology node and ap-
plication scenario [1]–[4]. However, it is not so flexible consider-
ing the required engineering effort. Algorithmic approaches can
generate circuit structures based on particular strategies, which
mainly contain two categories, namely mathematical program-
ming and heuristic search. Integer linear programming (ILP) has
been widely investigated for datapath circuits optimization [5]–
[7]. GOMIL [7] proposed an ILP formulation for global multi-
plier optimization, and the optimization of multipliers on FPGA
designs is explored in [6]. In addition, ILP has also been applied
for adder trees based on analytical area, power, and timing
models [5]. Heuristic search is another approach that attempts
to obtain desired circuit structures effectively based on a well-
defined representation of the structure [8], [9], where different
pruning techniques are introduced to avoid exhaustive searching.
Recently design space exploration methodologies have become

Effi
cie

ntN
et

ResN
et ViT

BERT

RoB
ERTa

ELECTRA
90

95

100

R
at

io
of

M
A

C
(%

)

Fig. 1 Ratios of MAC computations in various neural networks.

promising solutions for circuit design and optimization, where
various machine learning models are leveraged, including graph
learning and Bayesian optimization [10], [11]. All these methods
rely on proxy estimation or surrogate models to evaluate a design
during the search or optimization.

In contrast to the aforementioned methods, reinforcement
learning (RL) can make use of the actual evaluation within
the optimization loop. In this paper, we propose an RL-based
framework for multiplier design optimization, specifically for
compressor tree structures. Recently, RL has been applied to
solve different problems [12]–[14] in electronic design automa-
tion (EDA). Regarding the circuit structure optimization, Pre-
fixRL [12] proposed to apply deep Q-learning to adder structure
exploration. GCN-RL [13] applied the actor-critic algorithm to
solve the transistor sizing problem. In this work, we made the
first attempt toward multiplier optimization based on reinforce-
ment learning. We propose a matrix and a tensor representation
for the compressor tree structures, based on which an RL agent
is trained to make adjustments to the structures. The agent can
learn to make good moves based on a Pareto-driven reward
which is customized to accommodate the trade-off between area
and delay. To validate the effectiveness, RL-MUL is applied to
design and optimize different bit widths of multipliers, which
can outperform various baseline designs from different methods,
including legacy designs, evolutionary algorithms, and integer
linear programming. The main contributions of this work are as
follows:

• We propose RL-MUL, a multiplier optimization framework
based on reinforcement learning. To the best of our knowl-
edge, it is the first work to leverage RL for multiplier
optimization.

• We present a matrix and a tensor representation for multi-
pliers, based on which conventional deep neural networks

20
23

 6
0t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

94
1

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:35:52 UTC from IEEE Xplore. Restrictions apply.

Result

PP Generation

A(N-bit) B(N-bit)

Compressor Tree

Full Adder

A(N-bit) B(N-bit)

Full Adder

1 0 1 0
0 1 0 1X
1 0

1

0
0 0 0

0

1 0 1 0
0 0 0 0

0

1

00
0
0

0
1

0

10
0

0000 1
0

1
0

1
0

1 00 0 1 1 0 0

Stage1

Stage2

0

2:2
Compressor

3:2
Compressor

Fig. 2 Multiplier architecture

can be seamlessly incorporated as the agent network.
• A Pareto-driven reward is utilized to accommodate the

trade-off between the area and delay so that the agent can
learn to achieve Pareto-optimal designs.

• Experimental results demonstrate that the multipliers pro-
duced by RL-MUL dominate all baseline designs in terms
of both area and delay. The performance gain of RL-MUL
is further validated by comparing the area and delay of pro-
cessing element array designs using different multipliers.

II. PRELIMINARY

A. Multiplier Architecture

The multiplier is usually implemented as three main parts: a
partial product generator (PPG), a compressor tree (CT), and
a carry propagation adder, as shown in Fig. 2. PPG produces
partial products (PPs) from the multiplicand and multiplier. The
CT is used to compress the PPs to two rows in parallel. After
the compression process, an adder is applied to sum up the two
rows of PPs to get the final product.

A typical partial product generator is based on AND gate,
which uses N2 AND gates for N bit multiplier to generate
parallelogram-shaped PPs. A CT has multiple compression
stages to compress the PPs into two rows. The most commonly
used compressors include 3:2 compressors and 2:2 compressors,
which are implemented using a full adder and a half adder,
respectively. For a 3:2 (resp. 2:2) compressor applied at stage
i and column j, it takes (resp. 2) partial products from stage i
column j as input and passes the sum output to stage i+1 column
j and the carry out to stage i+1 column j+1. Therefore, a 3:2
and a 2:2 compressor reduces 2 and 1 partial products of column
j, respectively, and increases one partial product of column j+1.

B. Q-Learning

RL involves a set of optimization instances named state S, and
a set of actions A per state. The agent transitions from state
s to state s′ by performing an action a ∈ A, and receives
a reward r(s, a) from the RL environment as evaluation. The
action selection model is called policy π, and the RL agent aims
to learn a policy that maximizes accumulative reward.

Q-learning is an RL algorithm that learns the scores of each
action a corresponding to the given state s, and the score is
called Q-value, which is denoted as Q(s, a). From Bellman

01123456

Stage 1
01123456

Stage 2
01123456

<latexit sha1_base64="XFIGBPIrE7bIAJt9/sFu8QYZI9U=">AAACyXicjVHLTsJAFD3UF+ILdemmEUxckZaFuiS6MXGDiYAJEtKWASt92ZkakbjyB9zqjxn/QP/CO+OQqMToNG3PnHvPmbn3ukngc2FZrzljZnZufiG/WFhaXlldK65vNHmcpR5reHEQp+euw1ngR6whfBGw8yRlTugGrOUOj2S8dcNS7sfRmRglrBM6g8jv+54jiGqWeVeUC91iyapYapnTwNagBL3qcfEFF+ghhocMIRgiCMIBHHB62rBhISGugzFxKSFfxRnuUSBtRlmMMhxih/Qd0K6t2Yj20pMrtUenBPSmpDSxQ5qY8lLC8jRTxTPlLNnfvMfKU95tRH9Xe4XEClwS+5dukvlfnaxFoI8DVYNPNSWKkdV52iVTXZE3N79UJcghIU7iHsVTwp5STvpsKg1XtcveOir+pjIlK/eezs3wLm9JA7Z/jnMaNKsVe69in1ZLtUM96jy2sI1dmuc+ajhGHQ3yvsIjnvBsnBjXxq1x95lq5LRmE9+W8fAB2h6Q0w==</latexit>st

01123456

Stage 1
01123456

Stage 2
01123456

Agent
<latexit sha1_base64="UogO6Whu4PalJomics2IyGEeJFw=">AAACyHicjVHLTsJAFD3UF+ILdemmEUxckZaFuiS6Ma4wsUCChLTDgBP6SjvVEOLGH3CrX2b8A/0L74wlUYnRadqeOfeeM3Pv9WJfpNKyXgvGwuLS8kpxtbS2vrG5Vd7eaaVRljDusMiPko7nptwXIXekkD7vxAl3A8/nbW98puLtW56kIgqv5CTmvcAdhWIomCuJcqpuX1b75YpVs/Qy54Gdgwry1YzKL7jGABEYMgTgCCEJ+3CR0tOFDQsxcT1MiUsICR3nuEeJtBllccpwiR3Td0S7bs6GtFeeqVYzOsWnNyGliQPSRJSXEFanmTqeaWfF/uY91Z7qbhP6e7lXQKzEDbF/6WaZ/9WpWiSGONE1CKop1oyqjuUume6Kurn5pSpJDjFxCg8onhBmWjnrs6k1qa5d9dbV8TedqVi1Z3luhnd1Sxqw/XOc86BVr9lHNfuyXmmc5qMuYg/7OKR5HqOBczThkLfAI57wbFwYsXFnTD5TjUKu2cW3ZTx8AHASkK0=</latexit>at

<latexit sha1_base64="+yfjPjSb7Nh7LuglW9kTqxpWoiE=">AAACzHicjVHLSsNAFD2Nr1pfVZdugq0gCCXpQl0W3biSCvYhtZQkndaheZFMhFK69Qfc6neJf6B/4Z1xCmoRnZDkzLn3nJl7rxv7PBWW9ZozFhaXllfyq4W19Y3NreL2TjONssRjDS/yo6TtOinzecgaggufteOEOYHrs5Y7Opfx1j1LUh6F12Ics27gDEM+4J4jiLopp72JOLKn5V6xZFUstcx5YGtQgl71qPiCW/QRwUOGAAwhBGEfDlJ6OrBhISauiwlxCSGu4gxTFEibURajDIfYEX2HtOtoNqS99EyV2qNTfHoTUpo4IE1EeQlheZqp4plyluxv3hPlKe82pr+rvQJiBe6I/Us3y/yvTtYiMMCpqoFTTbFiZHWedslUV+TNzS9VCXKIiZO4T/GEsKeUsz6bSpOq2mVvHRV/U5mSlXtP52Z4l7ekAds/xzkPmtWKfVyxr6ql2pkedR572MchzfMENVygjgZ5B3jEE56NS0MYE2P6mWrktGYX35bx8AFi65I7</latexit>st+1

Change
Structure

Synthesis
& STA

Synthesis
& STA

<latexit sha1_base64="gOCi8TZDcmMFMKKnJwfD6xu4DBY=">AAACyXicjVHLTsJAFD3UF+ILdemmEUxckZaFuiS6MXGDiYAJEtIOA1b6cjo1InHlD7jVHzP+gf6Fd8aSqMToNG3PnHvPmbn3urHvJdKyXnPGzOzc/EJ+sbC0vLK6VlzfaCZRKhhvsMiPxLnrJNz3Qt6QnvT5eSy4E7g+b7nDIxVv3XCReFF4Jkcx7wTOIPT6HnMkUc2y6MpyoVssWRVLL3Ma2BkoIVv1qPiCC/QQgSFFAI4QkrAPBwk9bdiwEBPXwZg4QcjTcY57FEibUhanDIfYIX0HtGtnbEh75ZloNaNTfHoFKU3skCaiPEFYnWbqeKqdFfub91h7qruN6O9mXgGxEpfE/qWbZP5Xp2qR6ONA1+BRTbFmVHUsc0l1V9TNzS9VSXKIiVO4R3FBmGnlpM+m1iS6dtVbR8ffdKZi1Z5luSne1S1pwPbPcU6DZrVi71Xs02qpdpiNOo8tbGOX5rmPGo5RR4O8r/CIJzwbJ8a1cWvcfaYauUyziW/LePgA17qQ0g==</latexit>rt

Next step

Fig. 3 RL-based multiplier optimization framework

equation [15], the Q-value is expected as follows:

Q (s, a) = r (s, a) + γmax
a′

Q (s′, a′) , (1)

where s′ indicates the next state, and γ is the discount factor.
Therefore, the Q-value is updated by:

Q (s, a) = Q (s, a) + α
[
r (s, a) + γmax

a′
Q (s′, a′)−Q (s, a)

]
,

(2)
where α is the learning rate.

In this paper, we adopt the deep Q-learning method, which
employs a deep neural network as the Q-value approximator. We
define the state s as the multiplier structure whose representation
will be described in Section III-B. An action a modifies the
current structure to a new multiplier structure, i.e., the next state.
Reward r is defined as the actual improvement in terms of the
area and delay of the multiplier.

III. PROPOSED METHOD

A. Overview
Fig. 3 shows our RL-MUL optimization framework. In the RL
process, an agent continuously interacts with the environment.
At the beginning of every episode, the environment will be at an
initial state s0, which is a Wallace tree structure. At state st, the
RL-MUL agent selects an action from a set of legal actions based
on its policy π in the form of a neural network parameterized
by θ, which approximates the Q-value of the actions. The action
at modifies the multiplier structure to construct a new structure,
which is the next state st+1. Then, the reward rt is obtained
from the EDA tools, based on which the agent will update its
neural network model.

B. Multiplier Representation
The RL state space S consists of all N -bit multiplier structures.
It is noted that a primary feature of a multiplier is the number of
different compressors in each column, which has a direct impact
on its performance after synthesis. Therefore, we use the total
number of 3:2 and 2:2 compressors in each column to present
the multiplier structure, which can be represented by a matrix

2
Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:35:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Compressor Assignment

Require: M: Matrix representation
Ensure: T : Tensor representation.

1: for j ← 1 to 2N do
2: i← 0
3: while column j exists not assigned comp. do
4: Assign 3:2 comp. to stage i column j first
5: Update t

(0)
ij in T(0)

6: if Remaining PPs ≥ 2 then
7: Assign 2:2 comp. to stage i column j

8: Update t
(1)
ij in T(1)

9: end if
10: i← i+ 1
11: end while
12: end for
13: T0,:,: ← T(0)

14: T1,:,: ← T(1)

M ∈ R2N×2. The first and second rows of the matrix represent
the total number of 3:2 and 2:2 compressors used in each
column, respectively. For example, a 4-bit multiplier structure
and its matrix representation M are shown in Fig. 4. To build
a complete multiplier structure from matrix representation M,
we need to assign the compressors to the corresponding stages.
However, the mapping from M to the structures is not unique
since different assignments of compressors in multiple stages
may have the same overall number in each column. In order to
obtain a unique representation, we extend our matrix represen-
tation to a more informative tensor representation, as shown in
Fig. 4. We denote T ∈ RK×2N×ST as the tensor representation,
where K is the total kinds of compressors used and ST is the
number of stages. In this work, 3:2 and 2:2 compressors are
used, thus K = 2. Note that it can be future extended to support
more compressor types. Let T(0) = T0,:,: ∈ R2N×ST and
T(1) = T1,:,: ∈ R2N×ST denote the assignment of 3:2 compres-
sors and 2:2 compressors, respectively. t(0)ij and t

(1)
ij indicate 3:2

and 2:2 compressor numbers at stage i column j, respectively.
Given a matrix M that contains the information of the overall
number of compressors in each column, we can construct the
tensor representation T correspondingly based on an assignment
scheme of the compressors in different stages. Since the scheme
is deterministic and straightforward, the mapping between M
and T is unique. Thus we can obtain a unique representation for
a multiplier structure. The procedure is presented in Algorithm 1.
The assignment method is to assign the compressors from the
least significant bit (LSB) columns to the most significant bit
(MSB) columns. At column j of stage i, we first assign 3:2
compressors as many as possible (Lines 4 and 5). If there still
remain two or more PPs at stage i, we further assign the 2:2
compressors (Lines 6 to 8). Then we move to the next stage
until all compressors in column j are assigned.

C. Multiplier Modification
An action a refers to the decision from the RL agent to modify
the current multiplier structure. There are four actions for each
column, including adding a 2:2 compressor, removing a 2:2
compressor, replacing a 3:2 compressor, and replacing a 2:2

01123456

Stage 1
 matrix representation

tensor representation

01123456

Stage 2
01123456

<latexit sha1_base64="knQ7tIj2kjjCc7W4pPRNNyRhvfc=">AAADAnicjVHNTtwwGBxSaOmWli09colYdcVplSAEvVRCcOFIJRaQCEJJ1iwW+ZPjoKIVt74JN26oV16AKz1UfYP2LRgbI2gRKracjOeb+ezPX1JlstZB8GvMezE+8fLV5OvWm6m376bb72e26rJRqeinZVaqnSSuRSYL0ddSZ2KnUiLOk0xsJ0drJr59LFQty2JTn1RiL4+HhTyQaaxJ7bc/R4kYymKU5LFW8utpK+gG3bC7wEXkRxEJtzGzFYlicC/eb3eCXmCH/xiEDnTgxkbZ/okIA5RI0SCHQAFNnCFGzbmLEAEqcnsYkVNE0sYFTtGit6FKUBGTPeJ3yN2uYwvuTc7aulOeknEpOn18pKekThGb03wbb2xmwz6Ve2Rzmrud8J+4XDlZjUOy//PdKZ/rM7VoHOCTrUGypsoyprrUZWnsq5ib+w+q0sxQkTN4wLgiTq3z7p1966lt7eZtYxv/bZWGNfvUaRv8Mbdkg8N/2/kYbC30wqVe+GWxs7LqWj2JWcxhnv1cxgrWsYE+c5/hCtf44X3zzr0L7/ut1Btzng/4a3iXN93VotU=</latexit>
0 0 1 2 1 0 0
0 2 1 0 0 0 0

�

Compressor Tree

<latexit sha1_base64="wcgnoDkChr1071+VFglGfTGVEYs=">AAACJXicbVDLSgMxFM3UVx1fVZdugsXiqmRE1IWLggtdVrC10Cklk962oZnMkGTEMvRn3PgrblxYRHDlr5hOi2jrCYGTc88l954gFlwbQj6d3NLyyupaft3d2Nza3ins7tV1lCgGNRaJSDUCqkFwCTXDjYBGrICGgYD7YHA1qd8/gNI8kndmGEMrpD3Ju5xRY6V24dIPoMdlGoTUKP44ckmJlLzsWIZ9PxPI9Fkirg+y82NuF4qkTDLgReLNSBHNUG0Xxn4nYkkI0jBBtW56JDatlCrDmYCR6ycaYsoGtAdNSyUNQbfSbMsRPrJKB3cjZa80OFN/d6Q01HoYBtZp5+vr+dpE/K/WTEz3opVyGScGJJt+1E0ENhGeRIY7XAEzYmgJZYrbWTHrU0WZscG6NgRvfuVFUj8pe2dl7/a0WLmexZFHB+gQHSMPnaMKukFVVEMMPaEX9IbGzrPz6rw7H1Nrzpn17KM/cL6+AVP2oEI=</latexit>
0 0 1 1 1 0 0
0 0 0 1 0 0 0

�

<latexit sha1_base64="mz84/XiFKzkO9F30/EGttEc7CQU=">AAACJHicbVDLSsNAFJ34rPEVdekmWCyuSiKigpuCIC4r2Ac0oUymt+3QySTMTMQS+jFu/BU3Lnzgwo3f4jSNRVvPMHDm3HOZe08QMyqV43waC4tLyyurhTVzfWNza9va2a3LKBEEaiRikWgGWAKjHGqKKgbNWAAOAwaNYHA5rjfuQEga8Vs1jMEPcY/TLiVYaaltXXgB9ChPgxArQe9HplNyS87P8bzsPVVMD3hn6m1bRafsZLDniZuTIspRbVtvXiciSQhcEYalbLlOrPwUC0UJg5HpJRJiTAa4By1NOQ5B+mm25Mg+1ErH7kZCX67sTP3dkeJQymEYaKeery9na2Pxv1orUd1zP6U8ThRwMvmomzBbRfY4MbtDBRDFhppgIqie1SZ9LDBROldTh+DOrjxP6sdl97Ts3pwUK1d5HAW0jw7QEXLRGaqga1RFNUTQA3pCL+jVeDSejXfjY2JdMPKePfQHxtc376SgFg==</latexit>
0 1 0 0 0 0 0
0 1 1 0 0 0 0

�

<latexit sha1_base64="WSvTkspEC6l7g+U738YI1K/+Kks=">AAACz3icjVHLTsJAFD3UF+ILdemmEUxckZaFujS6cWMCiYAJEDMtAzT0lXaqMQTj1h9wq39l/AP9C++MQ6ISo9O0PXPuPWfm3uvEvpcKy3rNGXPzC4tL+eXCyura+kZxc6uZRlni8oYb+VFy6bCU+17IG8ITPr+ME84Cx+ctZ3Qq461rnqReFF6I25h3AzYIvb7nMkFUp9wJmBg6/fH5pHxVLFkVSy1zFtgalKBXLSq+oIMeIrjIEIAjhCDsgyGlpw0bFmLiuhgTlxDyVJxjggJpM8rilMGIHdF3QLu2ZkPaS89UqV06xac3IaWJPdJElJcQlqeZKp4pZ8n+5j1WnvJut/R3tFdArMCQ2L9008z/6mQtAn0cqRo8qilWjKzO1S6Z6oq8ufmlKkEOMXES9yieEHaVctpnU2lSVbvsLVPxN5UpWbl3dW6Gd3lLGrD9c5yzoFmt2AcVu14tHZ/oUeexg13s0zwPcYwz1NAg7xiPeMKzUTdujDvj/jPVyGnNNr4t4+EDX46T0g==</latexit>

M

<latexit sha1_base64="RtfvI8xdDt1B7vcRzR28K+kbeQY=">AAAC13icjVHLTsJAFD3UF74Rl24awQQ3pGWhLoluXGLCywCStgzQ0FfaqZEQ4s649Qfc6h8Z/0D/wjtjSVRidJq2Z86958zce83AsSOuaa8pZWFxaXklvbq2vrG5tZ3ZydYjPw4tVrN8xw+bphExx/ZYjdvcYc0gZIZrOqxhjs5EvHHNwsj2vSofB6zjGgPP7tuWwYnqZrL5tmvwodmfVKdXk4J2OM13MzmtqMmlzgM9ATkkq+JnXtBGDz4sxHDB4IETdmAgoqcFHRoC4jqYEBcSsmWcYYo10saUxSjDIHZE3wHtWgnr0V54RlJt0SkOvSEpVRyQxqe8kLA4TZXxWDoL9jfvifQUdxvT30y8XGI5hsT+pZtl/lcnauHo40TWYFNNgWREdVbiEsuuiJurX6ri5BAQJ3CP4iFhSypnfValJpK1i94aMv4mMwUr9laSG+Nd3JIGrP8c5zyol4r6UVG/KOXKp8mo09jDPgo0z2OUcY4KauR9g0c84Vm5VG6VO+X+M1VJJZpdfFvKwwdlHJYd</latexit>

T(0)

<latexit sha1_base64="Dlhw5BRSxXtiU8IeCzHQvYFNjuY=">AAAC13icjVHLTsJAFD3UF74Rl24awQQ3pGWhLoluXGLCywCStgzQ0FfaqZEQ4s649Qfc6h8Z/0D/wjtjSVRidJq2Z86958zce83AsSOuaa8pZWFxaXklvbq2vrG5tZ3ZydYjPw4tVrN8xw+bphExx/ZYjdvcYc0gZIZrOqxhjs5EvHHNwsj2vSofB6zjGgPP7tuWwYnqZrL5tmvwodmfVKdXk4J+OM13MzmtqMmlzgM9ATkkq+JnXtBGDz4sxHDB4IETdmAgoqcFHRoC4jqYEBcSsmWcYYo10saUxSjDIHZE3wHtWgnr0V54RlJt0SkOvSEpVRyQxqe8kLA4TZXxWDoL9jfvifQUdxvT30y8XGI5hsT+pZtl/lcnauHo40TWYFNNgWREdVbiEsuuiJurX6ri5BAQJ3CP4iFhSypnfValJpK1i94aMv4mMwUr9laSG+Nd3JIGrP8c5zyol4r6UVG/KOXKp8mo09jDPgo0z2OUcY4KauR9g0c84Vm5VG6VO+X+M1VJJZpdfFvKwwdnf5Ye</latexit>

T(1)

Fig. 4 Structure representation.

compressor. We denote resj to present the PP number after
compression of column j, which should only be 1 or 2. Adding
or removing a 3:2 compressor at column j will cause the resj
to be 0 or 3 and, thus this action is not used. Hence, the action
space |A| = 2N × 4 = 8N . Note that not all actions are valid,
e.g., we cannot remove or replace a compressor that even does
not exist. For example, there is no 2:2 compressor at column
1 in Fig. 4, thus removing a 2:2 compressor from column 1 is
invalid. On the other hand, an action a applied on column j is
invalid if a leads the PP numbers after compression to 0 or 3
in column j. For example, if a 2:2 compressor is removed in
column 4 in Fig. 4, then res4 will be three, thus the action is
invalid.

For a compressor tree with 2N columns, the output of a deep
Q-network is a vector that indicates the predicted Q-values:

Q(st) = [q11, q12, q13, q14, · · · , q2N,1, q2N,2, q2N,3,q2N,4], (3)

where each group of qj1, qj2, qj3, qj4 indicates the Q-value of
the four actions aj1, aj2, aj3, aj4 in column j. To ensure only
legal actions can be selected, a mask m is utilized as the selector
to enable valid actions and forbid invalid actions.

m = [m10,m11,m12,m13, · · · ,m2N,0,m2N,1,m2N,2,m2N,3],
(4)

where each entry is a binary value. If an action aij is valid,
the corresponding entry in mij is 1. Otherwise, it is 0. In
RL-MUL, the final masked Q-value vector is the element-wise
multiplication of the mask vector and Q-value vector:

Q′(st) = Q(st)⊙m. (5)

Now the decision is given by

at = argmax
a

Q′ (st, a) . (6)

Note that only non-zero entries are considered. The action ap-
plied to column j changes the number of 3:2 or 2:2 compressors
of the current column j, which may cause the number of
compressed PPs of subsequent column j + 1 to become 0 or
3. We use the legalization strategy shown in Algorithm 2 to
refine the multiplier structure to ensure the PPs are compressed
to 2 rows. It refines from column j+1 to the MSB column until
all columns have been refined. If there is lack-of-compression
we add a 3:2 or replace a 2:2 (Lines 5 to 9), and if there is
over-compression, we delete a compressor (Lines 11 to 16).
Similar to the assignment procedure, the legalization process is
also deterministic. Under state st, we can get a new state st+1

3
Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:35:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Legalization

Require: Multiplier structure to be legalized; C: action column
Ensure: Legalized multiplier structure

1: for j ← (C + 1) to 2N do
2: resj ← Get residual PPs after compression
3: if resj = 1 or resj = 2 then
4: return ▷ legalization done
5: else if resj == 3 then
6: if exists 2:2 comp. in column j then
7: Replace a 2:2 compressor
8: else
9: Add a 3:2 compressor

10: end if
11: else if resj == 0 then
12: if exists 2:2 compressor in column j then
13: Delete a 2:2 compressor
14: else
15: Delete a 3:2 compressor
16: end if
17: end if
18: end for

after performing action at to modify the structure along with the
legalization.

D. Pareto-driven Reward
In RL-MUL, reward rt is the improvement on the circuit
criteria after applying action at at state st, including area and
delay. Considering the nature of the trade-off between area and
delay, a superior multiplier design is always expected to achieve
Pareto-optimal in terms of these two dimensions. To do that,
we further incorporate a Pareto-driven reward to facilitate that
the RL agent can learn to generate Pareto-optimal designs. To
train the RL-MUL agent to design Pareto-optimal multipliers,
we conduct synthesis flow with multiple design constraints so
that the obtained rewards can cover a wide range of scenarios,
including area-driven scenario, timing-driven scenario, and area-
delay-balance scenario. The total cost is calculated by a weighted
sum of area and delay values in different scenarios.

cost =

n∑

i=1

areai + w

n∑

i=1

delayi (7)

where areai and delayi is the in synthesised metrics with i-th
constraint, w is the weight to trade off area and delay. We define
our reward r as the difference between st and st+1:

rt = costt − costt+1 (8)

E. Training Algorithm
We use ResNet-18 [16] as the backbone of Q-Network with the
parameters denoted by θ. The state is encoded into the tensor
representation T described in Section III-B and then fed into the
Q-network. Algorithm 3 presents the training process of RL-
MUL, which is based on the DQN algorithm. Actions a are
chosen randomly in warm-up steps (Line 6) and chosen by the
policy in future steps (Line 8). At each step t, the agent modifies
the multiplier structure st to a new structure st+1 and receives
reward rt through the synthesis and timing analysis process.

Algorithm 3 RL-MUL flow

Require: θ0: Initial Q-network parameters; M0: initial multi-
plier structure; γ: discount factor; α: learning rate; T : total
training steps; TB : warm-up steps

Ensure: θ: Q-network parameters
1: Replay buffer B ← {}
2: Encode s0 into T based on M0 ▷ Algorithm 1
3: t← 0
4: for t← 0 to T do
5: if t < TB then
6: at ← randomly choose from legal actions
7: else
8: Get at by Equation (6)
9: end if

10: Perform at to st and get st+1

11: Run EDA tools on st+1 and get rt ▷ Equation (8)
12: Push (st, at, rt, st+1) to B
13: Sample a batch of transitions from B
14: Update θ by gradient descent ▷ Equations (9) and (10)
15: end for

Then a new transition (st, at, rt, st+1) is obtained, and we push
it to the replay buffer (Line 12). With the new transition stored,
we randomly sample a batch of transitions (s′, a′, r′) from the
replay buffer (Line 13). The target Q-value regarding the state-
action pair at the sampled step is computed as:

y = r′ + γmax
a′

Q(s′, a′; θ), (9)

where γ is the discount factor. Based on the expected Q-value
y, a gradient of θ can be obtained by:

∆θ = ∇θ(y −Q(s, a; θ))2. (10)

Then the network parameter θ is updated by gradient descent
(Line 14).

IV. EXPERIMENTAL RESULTS

A. Setup

RL-MUL is implemented on a Linux machine with a 2.8 GHz
AMD EPYC CPU and NVIDIA RTX 3090 GPU. We use
EasyMAC [17] for RTL generation. Default adders provided by
the synthesis tool are used for the final adder of the generated
multiplier. The designs are synthesized by OpenROAD flow [18]
with NanGate 45nm Open Cell Library [19]. The number of
constraints in Equation (7) is four, and the weight w is 0.25 to
trade-off area and delay. OpenSTA [20] is utilized to perform
timing analysis. The RL model is implemented with PyTorch.
We set γ to 0.8, ϵ to decay from 0.95 to 0.05, and use RMSProp
optimizer for the training.

B. Multiplier Results

Since 8-bit and 16-bit multipliers are commonly used, we
validate our RL-MUL framework on 8-bit and 16-bit multipli-
ers with both AND-based PPG and modified Booth-encoding
(MBE)-based PPG. The baselines include the Wallace tree [1],
GOMIL [7] (ILP-based), and the simulated annealing (SA)
approach. We train the RL-MUL agent for 3000 steps and run the
SA for the same number of steps. We use the open-source C++

4
Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:35:52 UTC from IEEE Xplore. Restrictions apply.

400 450 500 550
0.7

0.75
0.8

0.85
0.9

Area (µm2)

D
el

ay
(n

s)

550 600 650 700
0.9

1

1.1

Area (µm2)

D
el

ay
(n

s)

Wallace [1] GOMIL [7] SA Ours

1,700 2,000 2,300

1.2

1.3

1.4

Area (µm2)

D
el

ay
(n

s)

2,000 2,300 2,600
1.3
1.4
1.5
1.6
1.7

Area (µm2)

D
el

ay
(n

s)

Fig. 5 Pareto-frontiers of the synthesis results on multipliers. From left to right: 8-bit AND-based; 8-bit MBE-based; 16-bit AND-
based; 16-bit MBE-based

1.8 2

1
1.05
1.1

1.15

Area (·105µm2)

D
el

ay
(n

s)

2 2.2 2.4 2.6
1.1

1.2

1.3

1.4

Area (·105µm2)

D
el

ay
(n

s)

Wallace [1] GOMIL [7] SA Ours

6 7

1.5

1.6

Area (·105µm2)

D
el

ay
(n

s)

6 7 8

1.6

1.7

1.8

Area (·105µm2)

D
el

ay
(n

s)

Fig. 6 Pareto-frontiers of the synthesis results on PE arrays. From left to right: 8-bit AND-based; 8-bit MBE-based; 16-bit AND-
based; 16-bit MBE-based

code provided by GOMIL [7] to get the multiplier structures,
which is also based on NanGate 45nm library.

Synthesizing with different design constraints may generate
different netlists for the same RTL design. We synthesize the
multipliers obtained from RL-MUL and baseline approaches at
target delay ranging from 0.05 ns to 1.2 ns and present the
area-delay curve as shown Fig. 5. We can see the multiplier
obtained by RL-MUL dominates all baseline designs. TABLE I
records the comparison of the minimum area, minimum delay,
and area-delay-balance points on the curves. The multipliers
obtained from RL-MUL have the least area and delay in all
four cases, achieving a maximum reduction of 13.4% on delay
under minimum delay constraint and a maximum area saving of
9.1% under minimum area constraint.

Moreover, we utilize the hypervolume [21] to evaluate the
quality of the Pareto-frontiers, which refers to the volume fenced
by the Pareto-frontier and a reference point in the objective
space, as shown in Fig. 7. The hypervolume comparison is shown
in Fig. 8(a). Multipliers obtained from RL-MUL produce 37.0%
more hypervolume than the GOMIL on average.

We can observe that the margin of improvement over the SA
approach is different in 8-bit and 16-bit cases. GOMIL performs
better than SA in larger bit width, which may imply that the
evolutionary algorithm cannot handle large bit width cases due
to the large design space. Nevertheless, RL-MUL consistently
performs the best in all cases.

C. Implementation in PE Arrays.
To further validate the performance advantage of RL-MUL and
the generated multipliers, we implement the multipliers obtained
from all the approaches into large macros. Processing element
(PE) arrays are typical datapath designs widely used in DNN

Reference point
Pareto-optimal points

Hypervolume
Non-optimal points

Fig. 7 An illustration of hypervolume. In our problem, a larger
hypervolume is better.

accelerators and contain many MAC units. Therefore, we use
different multipliers to implement PE arrays to see whether area
and timing improvement on the PE arrays can still be obtained.
Fig. 6 and Fig. 8(b) show that the multipliers obtained from RL-
MUL still dominate all baselines, achieving an average of 34.9%
more hypervolume than the ILP approach. TABLE II shows that
the RL-MUL can achieve the best performance when synthesis
with all three scenarios.

V. CONCLUSION

In this work, we propose RL-MUL, a multiplier optimization
framework based on reinforcement learning. We propose an RL
agent that learns from the feedback from EDA tools to design
Pareto-optimal multipliers. We demonstrate that RL-MUL can
design multipliers that Pareto-dominate multipliers produced by
existing approaches. In our future work, we plan to extend our
RL-based framework to larger datapath modules.

REFERENCES

[1] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on
Electronic Computers, 1964.

[2] L. Dadda, “Some schemes for fast serial input multipliers,” in 1983 IEEE
6th Symposium on Computer Arithmetic (ARITH), 1983.

5
Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:35:52 UTC from IEEE Xplore. Restrictions apply.

TABLE I Multiplier area and timing comparison.

Preference Method
8-bit 16-bit

AND MBE AND MBE
Area (µm2) Delay (ns) Area (µm2) Delay (ns) Area (µm2) Delay (ns) Area (µm2) Delay (ns)

Area

Wallace [1] 427 0.8530 555 1.0880 1812 1.4073 2008 1.7016
GOMIL [7] 404 0.8420 545 1.0797 1706 1.3375 1882 1.5432

SA 411 0.8291 554 1.0284 1713 1.3566 2005 1.5783
Ours 388 0.7703 532 1.0154 1695 1.2668 1876 1.5425

Timing

Wallace [1] 545 0.7791 720 0.9601 2420 1.2672 2645 1.4709
GOMIL [7] 514 0.7750 706 0.9571 2281 1.2169 2482 1.3684

SA 524 0.7414 717 0.9153 2288 1.2619 2641 1.3738
Ours 496 0.7089 693 0.8998 2271 1.1330 2482 1.3361

Trade-off

Wallace [1] 458 0.8328 637 1.0018 2184 1.3054 2300 1.4954
GOMIL [7] 435 0.8086 629 0.9837 2061 1.2416 2106 1.4298

SA 431 0.7808 670 0.9216 1843 1.3045 2440 1.3897
Ours 419 0.7430 617 0.9187 1755 1.1900 2093 1.4177

TABLE II PE array area and timing comparison.

Preference Method
8-bit 16-bit

AND MBE AND MBE
Area (µm2) Delay (ns) Area (µm2) Delay (ns) Area (µm2) Delay (ns) Area (µm2) Delay (ns)

Area

Wallace [1] 175892 1.1347 208782 1.3302 601492 1.6693 650385 1.8543
GOMIL [7] 170036 1.1237 206058 1.3154 574117 1.6017 618107 1.7403

SA 171806 1.1010 208374 1.2706 575752 1.6216 649159 1.8174
Ours 165950 1.0421 202926 1.2512 571257 1.5305 618767 1.6976

Timing

Wallace [1] 213345 1.0436 258016 1.1988 775001 1.5809 827503 1.6992
GOMIL [7] 205378 1.0395 254475 1.1856 739591 1.5137 785896 1.6085

SA 208033 1.0059 257130 1.1587 741361 1.5398 824847 1.6767
Ours 200951 0.9752 250934 1.1282 734484 1.4306 785896 1.5607

Trade-off

Wallace [1] 191214 1.1017 236566 1.2254 628322 1.6419 735028 1.7352
GOMIL [7] 185357 1.0709 221857 1.2703 600947 1.5727 649908 1.6847

SA 184132 1.0471 224172 1.2101 602582 1.6003 680960 1.7774
Ours 178275 1.0065 218724 1.2059 585081 1.5010 624917 1.5558

8-bit-AND 8-bit-MBE 16-bit-AND 16-bit-MBE
0

0.5

1

N
or

m
al

iz
ed

H
V Wallace [1] GOMIL [7] SA Ours

(a)

8-bit-AND 8-bit-MBE 16-bit-AND16-bit-MBE
0

0.5

1

N
or

m
al

iz
ed

H
V

(b)

Fig. 8 Pareto-frontiers hypervolume comparison of (a) multipli-
ers; (b) PE arrays.

[3] J. Fadavi-Ardekani, “M*n booth encoded multiplier generator using opti-
mized wallace trees,” IEEE TVLSI, June 1993.

[4] N. Itoh, Y. Tsukamoto, T. Shibagaki, K. Nii, H. Takata, and H. Makino,
“A 32/spl times/24-bit multiplier-accumulator with advanced rectangular
styled wallace-tree structure,” in Proc. ISCAS, 2005.

[5] J. Liu, Y. Zhu, H. Zhu, C.-K. Cheng, and J. Lillis, “Optimum prefix
adders in a comprehensive area, timing and power design space,” in
Proc. ASPDAC, 2007.

[6] M. Kumm and P. Zipf, “Pipelined compressor tree optimization using
integer linear programming,” in Proc. FPL, 2014.

[7] W. Xiao, W. Qian, and W. Liu, “Gomil: Global optimization of multiplier
by integer linear programming,” 2021.

[8] J. Liu, S. Zhou, H. Zhu, and C.-K. Cheng, “An algorithmic approach for
generic parallel adders,” in Proc. ICCAD, 2003.

[9] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Towards optimal
performance-area trade-off in adders by synthesis of parallel prefix struc-
tures,” in Proc. DAC, 2013.

[10] H. Geng, Y. Ma, Q. Xu, J. Miao, S. Roy, and B. Yu, “High-speed adder
design space exploration via graph neural processes,” IEEE TCAD, 2022.

[11] S. Zhang, F. Yang, C. Yan, D. Zhou, and X. Zeng, “An efficient batch-
constrained bayesian optimization approach for analog circuit synthesis via
multiobjective acquisition ensemble,” IEEE TCAD, 2021.

[12] R. Roy, J. Raiman, N. Kant, I. Elkin, R. Kirby, M. Siu, S. Oberman,
S. Godil, and B. Catanzaro, “Prefixrl: Optimization of parallel prefix
circuits using deep reinforcement learning,” in Proc. DAC, 2021.

[13] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han,
“Gcn-rl circuit designer: Transferable transistor sizing with graph neural
networks and reinforcement learning,” in Proc. DAC, 2020.

[14] N. Siddharth, P. Geraldo, H. Corey, T. Yang, K. Brucek, and H. Ren,
“Transsizer: A novel transformer-based fast gate sizer,” in Proc. ICCAD,
2022.

[15] R. Bellman, “Dynamic programming,” Science, 1966.
[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. CVPR, 2016.
[17] J. Zhang, Q. Gao, Y. Guo, B. Shi, and G. Luo, “Easymac: Design

exploration-enabled multiplier-accumulator generator using a canonical
architectural representation,” in Proc. ASPDAC, 2022.

[18] T. Ajayi, D. Blaauw, T. Chan, C. Cheng, V. Chhabria, D. Choo, M. Coltella,
S. Dobre, R. Dreslinski, M. Fogaça et al., “Openroad: Toward a self-
driving, open-source digital layout implementation tool chain,” Proc.
GOMACTECH, 2019.

[19] Nangate Inc., “Open Cell Library v2008 10 SP1,” 2008. [Online].
Available: http://www.nangate.com/openlibrary/

[20] Parallax Software Inc., “OpenSTA,” https://github.com/
The-OpenROAD-Project/OpenSTA.

[21] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator
revisited: On the design of pareto-compliant indicators via weighted
integration,” in International Conference on Evolutionary Multi-Criterion
Optimization, 2007.

6
Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 20,2024 at 07:35:52 UTC from IEEE Xplore. Restrictions apply.

