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> Multipliers are widely adopted in various circuits, especially in the Al field.
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Figure 1: Ratios of MAC computations in various neural networks.
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Background and Motivation

» Reinforcement learning (RL) enables efficient search in huge solution
spaces.

» RL can make use of the actual evaluation within the optimization loop.

> PrefixRL use RL to optimize prefix adders
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Preliminaries

» The multiplier is usually implemented as three main parts:
e A partial product generator (PPG)
e A compressor tree (CT), which is the most critical part.

® A carry propagation adder
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Figure 2: Multiplier architecture




Compressor Tree

» Build a compressor tree.
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Figure 3: 3:2 and 2:2 compressor.
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RL Framework

» Deep Q-learning(DQN) based
framework

> ResNet-18 as the agent
> A state s refers to a structure.

» An action a refers to modification
on current structure s

» Pareto-driven Reward
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Multiplier Representation and State Space

> State space S: all N-bit multiplier structures.

> We use a matrix M € R2VM*K 1o present the structure.
® Only consider total compressor number in each column.

> We also denote T~ € REX2NxST 35 the tensor representation
e With compressor information of each stage and each column
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» Four actions for each column:
® Add a2:2 compressor
® Delete a 2:2 compressor
® Replace a 3:2 compressor with a 2:2 compressor
® Replace a 2:2 compressor with a 3:2 compressor
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» Four actions for each column:
® Add a2:2 compressor
® Delete a 2:2 compressor
® Replace a 3:2 compressor with a 2:2 compressor
e Replace a 2:2 compressor with a 3:2 compressor
> Hence, the action space |A| = 2N x 4 = 8N.
» For a compressor tree with 2N columns, the output of a deep Q-network is
a vector that indicates the predicted Q-values:

Q(St) - [(]117 q125 9135 q14, " - ) ) 3 ]7 (1)

» Only legal actions can be selected.
» The compressor tree may not be legal after action.
® \We proposed an legalization strategy to refine the structure after action q, to
ensure legality of the new structure sy1.




Pareto-driven Reward

» The total cost of a structure is calculated by a weighted sum of area and
delay values in different constraints:

n

n
cost = Z area; + wz delay;

=1 =1

where area; and delay; is the synthesised metrics with 4-th constraint, wis
the weight to trade off area and delay.

» We define our reward ras the difference between s; and s;11:

Ty = COSty — COSti41

R. Roy et al., “Prefixrl: Optimization of parallel prefix circuits using deep reinforcement
learning,”, 2021, pp. 853-858. DOI: 10.1109/DAC18074.2021.9586094.
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Experiment Settings

> Multiplier RTL Generator: EasyMAC

» Synthesis tool: Yosys built in OpenROAD

» STA tool: OpenSTA[Par] built in OpenROAD

» Standard Cell Library: NanGate 45nm Open Cell Library
» Multiplier: 8-bit and 16-bit, Booth and Non-booth

J. Zhang et al., “Easymac: Design exploration-enabled multiplier-accumulator generator using
a canonical architectural representation,’, 2022, pp. 647-653.
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Experiment Settings

Multiplier RTL Generator: EasyMAC

Synthesis tool: Yosys built in OpenROAD

STA tool: OpenSTA[Par] built in OpenROAD

Standard Cell Library: NanGate 45nm Open Cell Library
Multiplier: 8-bit and 16-bit, Booth and Non-booth

vV vy VvYyVvYyy

v

Baselines: GOMIL (ILP), Wallace, simulated annealing (SA)
RL training:

® 50 episodes

® 60 steps in each episode

® Runtime: About 20s per step for 16-bit multipliers.

v

J. Zhang et al., “Easymac: Design exploration-enabled multiplier-accumulator generator using
a canonical architectural representation,’, 2022, pp. 647-653.




Experimental Results

» We run synthesis flow for multipliers from RL-MUL and baseline

approaches:
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Figure 5: Pareto-frontiers of the synthesis results on multipliers. From left to right:
8-bit AND-based; 8-bit MBE-based:; 16-bit AND-based; 16-bit MBE-based




Experimental Results

» We further validated by implemented multipliers from RL-MUL and
baseline approaches in processing element (PE) arrays.
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Figure 6: Pareto-frontiers of the synthesis results on PE arrays. From left to right: 8-bit
AND-based; 8-bit MBE-based; 16-bit AND-based; 16-bit MBE-based
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