RL-MUL: Multiplier Design Optimization with Deep
Reinforcement Learning

Dongsheng Zuo Yikang Ouyang Yuzhe Ma
December 21, 2024

The Hong Kong University of Science and Technology (Guangzhou)

Background and Motivation

» Multiplication is a fundamental operation in many applications.

Background and Motivation

» Multiplication is a fundamental operation in many applications.

> Multipliers are widely adopted in various circuits, especially in the Al field.

100 -

Ratio of MAC (%)

90

Figure 1: Ratios of MAC computations in various neural networks.

Background and Motivation

» Optimizing multipliers is challenging and non-trivial due to the huge
design space.

C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Electronic Computers,
vol. EC-13, no. 1, pp. 14=17, 1964.

L. Dadda, “Some schemes for fast serial input multipliers,” in 1983 IEEE 6th Symposium on
Computer Arithmetic (ARITH), 1983, pp. 52-59.

W. Xiao et al,, “Gomil: Global optimization of multiplier by integer linear programming,”,
pp. 374-379, 2021.

Background and Motivation

» Optimizing multipliers is challenging and non-trivial due to the huge
design space.
» Previous multiplier design and optimization approaches:
® Manual design: Wallace Tree, Dadda Tree, full custom multiplier

C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Electronic Computers,
vol. EC-13, no. 1, pp. 14=17, 1964.

L. Dadda, “Some schemes for fast serial input multipliers,” in 1983 IEEE 6th Symposium on
Computer Arithmetic (ARITH), 1983, pp. 52-59.

W. Xiao et al,, “Gomil: Global optimization of multiplier by integer linear programming,”,
pp. 374-379, 2021.

Background and Motivation

» Optimizing multipliers is challenging and non-trivial due to the huge
design space.
» Previous multiplier design and optimization approaches:

® Manual design: Wallace Tree, Dadda Tree, full custom multiplier
e Mathematical programming: GOMIL(ILP based)

C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Electronic Computers,
vol. EC-13, no. 1, pp. 14=17, 1964.

L. Dadda, “Some schemes for fast serial input multipliers,” in 1983 IEEE 6th Symposium on
Computer Arithmetic (ARITH), 1983, pp. 52-59.

W. Xiao et al,, “Gomil: Global optimization of multiplier by integer linear programming,”,
pp. 374-379, 2021.

Background and Motivation

» Reinforcement learning (RL) enables efficient search in huge solution
spaces.

» RL can make use of the actual evaluation within the optimization loop.

> PrefixRL use RL to optimize prefix adders

R. Roy et al., “Prefixrl: Optimization of parallel prefix circuits using deep reinforcement
learning,”, 2021, pp. 853-858. DOI: 10.1109/DAC18074.2021.9586094.

https://doi.org/10.1109/DAC18074.2021.9586094

Background and Motivation

» Reinforcement learning (RL) enables efficient search in huge solution
spaces.

» RL can make use of the actual evaluation within the optimization loop.
> PrefixRL use RL to optimize prefix adders
» How to formulate multiplier optimization problem into an RL formulation?

R. Roy et al., “Prefixrl: Optimization of parallel prefix circuits using deep reinforcement
learning,”, 2021, pp. 853-858. DOI: 10.1109/DAC18074.2021.9586094.

https://doi.org/10.1109/DAC18074.2021.9586094

Background and Motivation

» Reinforcement learning (RL) enables efficient search in huge solution
spaces.

RL can make use of the actual evaluation within the optimization loop.
PrefixRL use RL to optimize prefix adders

How to formulate multiplier optimization problem into an RL formulation?

vV vyyvYyy

We propose RL-MUL, a multiplier optimization framework based on deep
reinforcement learning.

R. Roy et al., “Prefixrl: Optimization of parallel prefix circuits using deep reinforcement
learning,”, 2021, pp. 853-858. DOI: 10.1109/DAC18074.2021.9586094.

https://doi.org/10.1109/DAC18074.2021.9586094

Background and Motivation

» Reinforcement learning (RL) enables efficient search in huge solution
spaces.

RL can make use of the actual evaluation within the optimization loop.
PrefixRL use RL to optimize prefix adders

How to formulate multiplier optimization problem into an RL formulation?

vV vyyvYyy

We propose RL-MUL, a multiplier optimization framework based on deep
reinforcement learning.

R. Roy et al., “Prefixrl: Optimization of parallel prefix circuits using deep reinforcement
learning,”, 2021, pp. 853-858. DOI: 10.1109/DAC18074.2021.9586094.

https://doi.org/10.1109/DAC18074.2021.9586094

Background and Motivation

» Reinforcement learning (RL) enables efficient search in huge solution
spaces.

RL can make use of the actual evaluation within the optimization loop.
PrefixRL use RL to optimize prefix adders

How to formulate multiplier optimization problem into an RL formulation?

vV vyyvYyy

We propose RL-MUL, a multiplier optimization framework based on deep
reinforcement learning.

R. Roy et al., “Prefixrl: Optimization of parallel prefix circuits using deep reinforcement
learning,”, 2021, pp. 853-858. DOI: 10.1109/DAC18074.2021.9586094.

https://doi.org/10.1109/DAC18074.2021.9586094

Preliminaries

» The multiplier is usually implemented as three main parts:

Preliminaries

» The multiplier is usually implemented as three main parts:
e A partial product generator (PPG)
e A compressor tree (CT), which is the most critical part.

® A carry propagation adder

A(N-bit) B(N-bit) A(N-bit) B(N-bit)

D 2:2
Compressor

PP Generation 32 1010
e | o, b 84
Stagel 0 0
ofol0 M
I
Stage2 1 8 0
0T T 001
000 0
Full Adder
Full Adder
Result 00110010

Figure 2: Multiplier architecture

Compressor Tree

» Build a compressor tree.

A
Sum +—| B Compressor Q: Compressor
Goute—i| o (Full Adder) =] (Half Adder)

3 2 1 0 10
o0 oo
[9 (
\ J [}
° Cout| |sum Stager ° Cout| |sum Staget
3 ‘_»; 10 3 ‘_»; 10
([[N J o [N J
([o o [N J
[) Stage2 [) Stage2

Figure 3: 3:2 and 2:2 compressor.

1 10 9 8 7 6 5 4 3 2

\V‘
g
‘
g; ..
g r .
L
. . Stage 1

1 10 9 8 4

||i""‘“°°'

Stage 2

1 10 9 4

1
0 IIQ Q . .
LJ)

Stage 3

Figure 4:

1 10 9 8

7 6 5 4 3 2
00000000
00000000

ompressor tree.

RL Framework

» Deep Q-learning(DQN) based
framework

> ResNet-18 as the agent
> A state s refers to a structure.

» An action a refers to modification
on current structure s

» Pareto-driven Reward

At

St

6 5 4 3 2

Iih.
U

.Stagel
65 43210

°0 00
(]

(I
(X
®

ooumx)
oo,

S}

tage

as

00
00
[X N
[J

@

Synthesis
& STA

4

3 2
e :*°
ww
Next step

Synthesis
rt

Multiplier Representation and State Space

> State space S: all N-bit multiplier structures.

> We use a matrix M € R2VM*K 1o present the structure.
® Only consider total compressor number in each column.

> We also denote T~ € REX2NxST 35 the tensor representation
e With compressor information of each stage and each column

6 5 4 3 2 1 0

F012100]

® QQ
021 0 0 00 ll
matrix representation M l
J\J

Stage 1
6 5 4 3 2 1 0

” ooo
0 0 Op '
0 0 0 \

Stage 2

o O (e

P10
T(U\o11
\

8 5 4 3 2 1 0

0011:100 0000000
<0>0001000 000 °

tensor representation 7~ Compressor Tree

» Four actions for each column:
® Add a2:2 compressor
® Delete a 2:2 compressor
® Replace a 3:2 compressor with a 2:2 compressor
® Replace a 2:2 compressor with a 3:2 compressor

» Four actions for each column:
® Add a2:2 compressor
® Delete a 2:2 compressor
® Replace a 3:2 compressor with a 2:2 compressor
® Replace a 2:2 compressor with a 3:2 compressor

> Hence, the action space |A| = 2N x 4 = 8N.

» Four actions for each column:
® Add a2:2 compressor
® Delete a 2:2 compressor
® Replace a 3:2 compressor with a 2:2 compressor
e Replace a 2:2 compressor with a 3:2 compressor
> Hence, the action space |A| = 2N x 4 = 8N.
» For a compressor tree with 2N columns, the output of a deep Q-network is
a vector that indicates the predicted Q-values:

Q(St) - [(]117 q125 9135 q14, " -)) 3]7 (1)

» Four actions for each column:
® Add a2:2 compressor
® Delete a 2:2 compressor
® Replace a 3:2 compressor with a 2:2 compressor
e Replace a 2:2 compressor with a 3:2 compressor
> Hence, the action space |A| = 2N x 4 = 8N.
» For a compressor tree with 2N columns, the output of a deep Q-network is
a vector that indicates the predicted Q-values:

Q(St) - [(]117 q125 9135 q14, " -)) 3]7 (1)

» Only legal actions can be selected.

» Four actions for each column:
® Add a2:2 compressor
® Delete a 2:2 compressor
® Replace a 3:2 compressor with a 2:2 compressor
e Replace a 2:2 compressor with a 3:2 compressor
> Hence, the action space |A| = 2N x 4 = 8N.
» For a compressor tree with 2N columns, the output of a deep Q-network is
a vector that indicates the predicted Q-values:

Q(St) - [(]117 q125 9135 q14, " -)) 3]7 (1)

» Only legal actions can be selected.
» The compressor tree may not be legal after action.
® \We proposed an legalization strategy to refine the structure after action q, to
ensure legality of the new structure sy1.

Pareto-driven Reward

» The total cost of a structure is calculated by a weighted sum of area and
delay values in different constraints:

n

n
cost = Z area; + wz delay;

=1 =1

where area; and delay; is the synthesised metrics with 4-th constraint, wis
the weight to trade off area and delay.

» We define our reward ras the difference between s; and s;11:

Ty = COSty — COSti41

R. Roy et al., “Prefixrl: Optimization of parallel prefix circuits using deep reinforcement
learning,”, 2021, pp. 853-858. DOI: 10.1109/DAC18074.2021.9586094.

https://doi.org/10.1109/DAC18074.2021.9586094

Experiment Settings

> Multiplier RTL Generator: EasyMAC

» Synthesis tool: Yosys built in OpenROAD

» STA tool: OpenSTA[Par] built in OpenROAD

» Standard Cell Library: NanGate 45nm Open Cell Library
» Multiplier: 8-bit and 16-bit, Booth and Non-booth

J. Zhang et al., “Easymac: Design exploration-enabled multiplier-accumulator generator using
a canonical architectural representation,’, 2022, pp. 647-653.

Experiment Settings

> Multiplier RTL Generator: EasyMAC

» Synthesis tool: Yosys built in OpenROAD

» STA tool: OpenSTA[Par] built in OpenROAD

» Standard Cell Library: NanGate 45nm Open Cell Library
» Multiplier: 8-bit and 16-bit, Booth and Non-booth

» Baselines: GOMIL (ILP), Wallace, simulated annealing (SA)

J. Zhang et al., “Easymac: Design exploration-enabled multiplier-accumulator generator using
a canonical architectural representation,’, 2022, pp. 647-653.

Experiment Settings

Multiplier RTL Generator: EasyMAC

Synthesis tool: Yosys built in OpenROAD

STA tool: OpenSTA[Par] built in OpenROAD

Standard Cell Library: NanGate 45nm Open Cell Library
Multiplier: 8-bit and 16-bit, Booth and Non-booth

vV vy VvYyVvYyy

v

Baselines: GOMIL (ILP), Wallace, simulated annealing (SA)
RL training:

® 50 episodes

® 60 steps in each episode

® Runtime: About 20s per step for 16-bit multipliers.

v

J. Zhang et al., “Easymac: Design exploration-enabled multiplier-accumulator generator using
a canonical architectural representation,’, 2022, pp. 647-653.

Experimental Results

» We run synthesis flow for multipliers from RL-MUL and baseline

approaches:

0.9 —— Wallace[Wal64] —— GOMIL[XQL21] SA——Ours
/a . T T T T /_U?\ 1 1 N T T T T] /(77 1‘4 [T il /a 1.7 = T L
£ 085 o 12 b 2z A" = i
5 o8 K\\\\\W? 1\%? SL\:\\ ® 1'5’%\‘ 1
< 075 13 = L2F 13 I - 4
8 —l\‘\\\“\ - 8 09kt I] A 8 I L | 8 %g I —

400 450 500 550 550 600 650 700 1,700 2,000 2,300 2,000 2,300 2,600
Area (um?) Area (um?) Area (um?2) Area (um32)

Figure 5: Pareto-frontiers of the synthesis results on multipliers. From left to right:
8-bit AND-based; 8-bit MBE-based:; 16-bit AND-based; 16-bit MBE-based

Experimental Results

» We further validated by implemented multipliers from RL-MUL and
baseline approaches in processing element (PE) arrays.

115 —— Wallace [Wal64] —— GOMIL[XQL21] SA —— Ours

— . T T LA T T IRy T N r T T

Z:’/ Gl \\\hié L3 \Kié ol k\\7§ el \7

> 1.05| 1= > S .

= - 1 1'27_‘—\\- s 1.57\‘“_\—‘ 1< k‘\\\-

8 1 k\\\r 3 1.1l ! w & ! . 3 1.6 71\“?‘%]

1.8 2 2 22 24 26 6 7 6 7 8

Area (-10°m?) Area (-10°m?) Area (-10°m?) Area (-10°m?)

Figure 6: Pareto-frontiers of the synthesis results on PE arrays. From left to right: 8-bit
AND-based; 8-bit MBE-based; 16-bit AND-based; 16-bit MBE-based

Thanks for listening

	Thanks for listening

