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Abstract—As the transistor feature size keeps shrinking, manufac-
turability has become an urgent issue in semiconductor industry. In
order to improve the manufacturability, various resolution enhancement
techniques have been proposed, among which layout decomposition and
mask optimization have been considered as the most powerful solutions in
advanced technology nodes. Different from many previous survey papers
that categorize literatures by type of manufacturing process, we argue that
different manufacturing scenarios can share similar mathematical models.
This paper carefully summarizes a series of methodologies that have been
successfully applied to VLSI layout decomposition and mask optimization
problems.

I. INTRODUCTION

Due to the delay of the next generation of lithography techniques,
current lithography wavelength is stuck at 193nm. As a result, resolution
enhancement techniques (RETs) on layout and mask are of great
importance to improve the yield. Multiple patterning lithography (MPL)
has achieved great success in pushing forward the technology node.
There are two of the most critical stages in MPL process, including
layout decomposition and mask optimization. In layout decomposition,
the target layout is decomposed into several layouts so that each
decomposed layout can be manufactured under the current lithography
condition. Two main types of MPL manufacturing process are litho-
etch-litho-etch (LELE)-type MPL and spacer-type MPL. Spacer-type
MPL typically refers to self-aligned double patterning (SADP). LELE-
type refers to conventional double patterning layout decomposition
(DPLD) or triple patterning layout decomposition (TPLD), depending
on the number of masks that are used to separate the violating patterns.
Examples of LELE-type MPL are presented in Fig. 1. SADP deposits
a spacer layer over the chip covering all mask features. The covered
layer is selectively etched away leaving two sidewalls along any ridge,
and then the ridge is removed, as shown in Fig. 2.

E-beam lithography (EBL) is another promising candidates for MPL.
Charged electron beams can be easily focused onto nanometer diameter,
thus tiny patterns can be manufactured. EBL allows a great flexibility
for fast turnaround times and late design modifications to adapt a given
layout. Directed self-assembly (DSA) is an emerging technique which
is particularly suitable for contact layers which have uniform size.
Guiding templates are usually used to form contacts. In sparse layout,
each feature can be created using a single-hole template. In a dense
layout, two or more features can be grouped and thus manufactured by
a multiple-hole template to ensure there is no conflict.

The diffraction effect of the light cannot be ignored since the size
of the patterns on layout is comparable with the wavelength of the
lithography light source, which may result in low fidelity of the final
on-wafer image. In mask optimization, e.g., optical proximity correction
(OPC), each mask is refined to compensate the diffraction effect of the
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Fig. 1: Examples of (a) DPLD and (b) TPLD.
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Fig. 2: An example to show SADP decomposition result: (a) Target
pattern; (b) Core pattern and spacer; (c) Spacers after core pattern
removal and trim mask; (d) Final pattern.
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Fig. 3: Example of directed self-assembly: (a) Layout; (b) Mask and
template assignment.

light in advance to ensure the high quality of on-wafer image. Finally,
all optimized masks go through lithography process separately, then all
printed images are combined together to generate the target image.

Recall that the target of layout decomposition and mask optimization
is to improve the manufacturability of the layout. However, each
problem is solved independently, which may lose a global view.
Basically, the layout decomposition is based on simple design or
coloring rules; while the mask optimization is verified by accurate and
sophisticated lithography simulation. It is intuitive that the effect of
one stage should be taken into consideration in another stage. In other
words, layout decomposition and mask optimization may be considered
simultaneously.

There are previous surveys introducing the problems of layout
decomposition and mask optimization [1]–[4], but all of them categorize
different work by type of manufacturing process. We argue that the
layout decomposition problem in different manufacturing processes may
share analogous mathematical metrics, and the methodologies applied



b

c da

(a)

a
a1

a2

dc

b

(b)

Fig. 4: (a) Layout; (b) Decomposition graph of LELE-type MPL.

in different scenarios can be very similar. To avoid ad-hoc layout
decomposition solution to a particular manufacturing process, in this
paper we summarize a series of methodologies that have been widely
used in this field.

The rest of the survey is organized as follows. Section II will
introduce various methodologies proposed for solving the problem
of layout decomposition. While different techniques for mask opti-
mization, mainly for OPC, will be summarized in Section III. Those
work which considered layout decomposition and mask optimization
simultaneously will be shown in Section IV, followed by the conclusion
in Section V.

II. LAYOUT DECOMPOSITION

Definition 1 (Conflict). A conflict is introduced when the distance
between two features is less than minimum coloring distance mins.

Definition 2 (Stitch). Some coloring conflict can be resolved by
inserting stitch to split a pattern into two touching parts, which leads
to yield loss due to the potential overlay issue.

For LELE-type MPLD, a decomposition graph (DG) is an undirected
graph with a set of vertices V , and two sets of edges, including conflict
edges (CE) and stitch edges (SE). Each vertex in V corresponds to a
polygonal shape in the layout. An edge is in CE if there is a conflict
between two vertices. An edge is in SE if there is a stitch between
the two vertices which are associated with the same polygonal shape.
Fig. 4 gives an example of DG of LELE-type MPLD in which there are
five vertices. Solid lines represent edges in CE and dash line represents
edge in SE.

For other types of MPLD problem, the geometry of the layout can
also be represented by a graph. The DG for EBL is very similar to
Fig. 4. For MPLD with DSA, stitch insertion is not allowed. However,
conflict patterns within grouping distance can be manufactured with the
template, thus there is no stitch edge but grouping edge in DG for DSA.

A. Integer Linear Programming
Integer linear programming (ILP) is adopted to solve the problem of
layout decomposition, including DPLD [5]–[7] and TPLD [8], [9]. For
DPLD, the problem can be formulated as the following ILP:

min
x

∑
cij + α×

∑
sij , (1)

s.t. xi + xj − 1 ≤ cij , ∀eij ∈ CE, (1a)

1− xi − xj ≤ cij , ∀eij ∈ CE, (1b)

xi − xj ≤ sij , ∀eij ∈ SE, (1c)

xj − xi ≤ sij , ∀eij ∈ SE, (1d)

xi ∈ {0, 1}, ∀i ∈ V, (1e)

where xi and xj are binary variables for the colors of vertices vi and
vj . cij is a binary variable for conflict edge eij ∈ CE and sij is a
binary variable for stitch edge eij ∈ SE. cij = 0 when xi 6= xj and
cij = 1 when xi = xj . A cost α is incurred when vi and vj are
assigned different colors, i.e., a stitch is introduced.

Xu et al. [6] formulated the problem into a maximum-cut problem
and utilized an ILP formulation on stitch minimization.

For the TPLD problem, the objective is also to simultaneously
minimize the conflict number and the stitch number. A user-defined
parameter α is set to define relative importance between conflict number
and stitch number. The ILP formulation for TPLD can be given in a
similar way as that in DPLD [8]. We skip the detailed formulation here
due to the page limit.

In addition to DPLD and TPLD problem, ILP is also widely used
in MPL with DSA. In [10], an ILP based approach and a maximum
matching based heuristic are proposed to solve the mask assignment
problem in DSA. Ou et al. [11] apply ILP to assign cuts to different
guiding templates, minimizing both conflict and line-end extension.
Some speed up techniques are also proposed to improve the scalability
of ILP. In [12], [13], ILP is used for simultaneous guiding template
optimization and redundant via insertion for DSA.

B. Mathematical Relaxation

Relaxation is a significant approach to some optimization problems
which are hard to solve. It can provide an upper bound or a lower bound
on the optimal value of the original problem. Considering the layout
decomposition is NP-hard which may suffer from runtime overhead,
some relaxation techniques are proposed to tackle the issue efficiently.

In [8], a semidefinite programming (SDP) relaxation is proposed,
which can be solved in polynomial time.

min
X

A •X, (2)

s.t. Xii = 1, ∀i ∈ V, (2a)

Xij ≥
1

2
, ∀eij ∈ CE, (2b)

X � 0, (2c)

where Xij is the entry of the i-th row and j-th column of X. Similarly,
we let Aij denote each entry in matrix A, where Aij is defined as
follows.

Aij =


1, ∀eij ∈ CE,
− α, ∀eij ∈ SE,
0, otherwise.

(3)

Then the coloring solution may be extracted from the optimal solution
X. Essentially, if xij is close to 1, then vertices i and j tend to be in the
same color; if xij is close to 0.5, vertices i and j tend to be in different
colors. For those solutions whose xijs are vague, a partition-based
mapping algorithm was used to perform the color assignment. SDP
relaxation is also adopted in [14]–[16]. Note that [16] uses randomized
rounding proposed in [17] to recover the final coloring solution.

Lin et al. [18] formulate the problem of TPLD for contact layer
into an ILP. Note that instead of minimizing the total cost from
conflicts, the target of our ILP formulation is to seek a feasible color
assignment to the variables. Then the ILP formulation is relaxed to
linear programming (LP) to avoid the infeasibility issue and find a
solution with few conflicts. Since the solution of LP could be non-
integer, additional constraints are introduced to prune these native non-
integer solutions. For an odd cycle with five vertices each of which
is denoted by two bits, if the first bits of the vertices are equal, i.e.,
xi1 = xj1 = xk1 = xl1 = xm1 = 1 or 0, it is not possible to obtain
a solution without conflicts by adjusting the second bit. Instead, the
LP relaxation will produce all 0.5 solutions to satisfy the constraints,
which is undesired. To avoid the first bits or the second bits being equal,
following constraints are added.{
xi1 + xj1 + xk1 + xl1 + xm1 ≥ 1,

(1− xi1) + (1− xj1) + (1− xk1) + (1− xl1) + (1− xm1) ≥ 1.

In order to push non-integer to integers, objective function keeps chang-
ing in original LP formulation in each iteration until no improvement



Fig. 5: Example of embedding the stitch graph in a plane [23]: (a)
Segments and stitch arcs embedding; (b) Segments expansion; (c) The
planar embedding of the stitch graph.

is found.
Li et al. [19] propose a discrete relaxation method for TPLD problem.

Firstly, the original TPLD problem is relaxed to an ILP by ignoring
stitch insertion, whose optimal value can be treated as a lower bound
of the optimal value of original TPLD problem. The ILP formulation
of the relaxed problem has fewer variables and fewer constraints than
the reduced version of [8]. After the relaxation solution is obtained, a
feasible solution can be generated by a legalization process, including
stitch insertion and backtrack coloring.

C. Satisfiability
Satisfiability (SAT) is a kind of problem which asks whether the
variables of a given Boolean formula can be consistently replaced by
the values true or false in such a way that the formula evaluates to true.

From the Fig. 2, it can be seen that the final feature is generated in
the non-sidewall region which is also covered by trim mask. We can use
a Boolean variable Sidewall = TRUE to denote that a sidewall exists
in one location and use Trim = TRUE to denote that this location
is covered by trim mask. Then the feature generation is expressed a
boolean function as Feature = ¬Sidewall ∧ Trim.

SAT has been used for solving the layout decomposition problem in
SADP [20], [21]. First the layout area is divided into tiles. Boolean
variables Ci, Si and Ti are used to represent whether the tile i is core,
sidewall or trim mask, respectively. The featured and non-featured tiles
can be expressed by the Boolean clauses as below.

Fi = ¬Si ∧ Ti = TRUE, (4a)

¬Fi = Si ∨ ¬Ti = TRUE. (4b)

Then, the design rules and geometry constraints are formulated as
Boolean expressions in SAT. The objective is to determine whether there
is a satisfiable assignment which corresponds to a valid decomposition.

Tian et al. [22] adopted SAT for TPLD problem of row-structure
layout. Cell boundary constraints and cell inner constraints are captured
by SAT clauses. Then coloring solutions of polygons within a cell
are enumerated. A solution is a combination of coloring solution for
different cells. Illegal combinations are forbidden by extra SAT clause.

D. Optimality for Special Situations
There are some special cases when handling the layout decomposition
problem regarding the decomposition graph we derive and the layout
structure.

Xu et al. [24] prove that the conflict graph that is used to model
DPLD problem is planar graph. Then stitching and conflict elimination
merge neighboring faces in conflict graph. In this work, a structure
called face graph is proposed to model face merging. All odd nodes
in face graph are paired up optimally to eliminate all odd cycles in
conflict graph. The complexity of the algorithm is O(n3). Tang et
al. [23] compute a stitch graph from conflict graph and prove that the
stitch graph is planar, which can be illustrated with Fig. 5. In (a), the
segments and the stitch arcs are embedded in a plane, similar to the
original layout. All the segments are expanded by an amount of half
of the spacing threshold. Then the segments within one component

Fig. 6: Example given in [26]: (a) Input layout; (b) Constraint graph;
(c) Solution graph.

are unioned into one polygon shape. From the planar embedding of the
stitch graph it can be seen that merging the multiple stitch arcs between
two components into one stitch arc is equivalent to removing some stitch
arcs. And it will not change the property of planarity. Furthermore, they
showed the min-cut in the stitch graph gives the decomposition solution
to the original layout with the minimum number of stitches. The time
complexity of the method for DPLD is O(n1.5 logn), where n is the
number of patterns.

In standard cell-based designs, pre-designed standard cells from a
given library are used. A layout consists of multiple rows, and the cells
are aligned with power and ground connecting each other in each row.
For row-structure layout, the shortest path-based method is proposed
in [25] and [26]. With pre-coloring, simple coloring solutions for local
patterns are generated, based on which a solution graph is constructed.
The shortest path in the solution graph corresponds to the decomposition
solution. An example is shown in Fig. 6.

E. Search-based Approach
Kuang et al. [27] propose an efficient methodology for TPLD. A graph
library is constructed with four, five or six nodes. Given a decomposition
graph, some simplification techniques are used to divide it to sub-graphs
which will be matched with the graphs in the library. If a subgraph is
matched with a 3-colorable one, it can be colored easily. Otherwise,
stitches are inserted. Fang et al. [28] propose a stitch-aware mask
assignment algorithm. Similar to [27], graph reduction is performed
first. Then, a heuristic method finds a mask assignment in which the
conflicts in the same mask are more likely to be resolved by inserting
stitches. Specifically, a weight is assigned to each conflict edge. The
larger edge weight the edge has, the more difficult the conflict can be
solved by stitch insertion. A modified recursive largest first algorithm is
then used for mask assignment. A pairwise coloring (PWC) method was
proposed by Zhang et al. [29] for solving the DPLD and TPLD. The
problem is reduced to sets of bi-coloring problems. The overall solution
is refined iteratively by applying a bi-coloring method for pairs of color
sets. In [30], a branch-and-bound method is adopted to prune suboptimal
nodes in search space. Apart from conventional coloring rules which are
minimum spacing rules, there exist other complex coloring rules which
make the problem slightly different from conventional one. Chang et
al. [31] consider more complex coloring rules for TPLD problem. The
graph coloring problem is reduced to an exact cover problem which
can be solved by DLX. Yang et al. [32] apply hybrid lithography
which consists of double patterning lithography and E-beam lithography
(EBL) to complete TPLD. A planar primal-dual method is proposed for
co-optimization of DPL and EBL.

A common concern regarding the quality of the layout decomposition
solution is the pattern density in each mask. Generally, the desired
solution is that the pattern density of each mask is balanced. Therefore,
we should not only consider the global objectives such as conflict
number and stitch number but also local objective such as pattern
density. To do so, some partitioning-based methods are proposed. Yang
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Fig. 7: Illustration of EPE measurement.

et al. [33] study the density balanced issue of the DPLD problem.
The color assignment is completed by ILP and stitch minimization is
completed by a min-cut two-way partitioning. Yu et al. [14] define the
pattern density uniformity locally and optimize conflict number, stitch
number and local uniformity simultaneously using SDP relaxation.
Different from greedy mapping used in [8], a three-way maximum-cut
partitioning-based mapping is proposed to recover the decomposition
solution from SDP solution. Chen et al. [34] address the balance issue
by applying the strategy of maximizing minimum distance of patterns
on each mask.

F. Fixed Parameter Tractability

Both DPLD and TPLD are NP-hard that cannot be solved in polynomial
time. With fixed-parameter tractable (FPT) algorithm, the exponential
runtime is confined to a parameter k, thus with small k values some NP-
hard problems can be solved efficiently. Kuang et al. [35] apply FPT to
three problems, including DPLD, DPLD + EBL hybrid lithography and
DPLD + EBL + DSA hybrid lithography. These three problems can be
reduced to odd cycle cover (OCC) problem which has FPT algorithms.
An odd cycle cover of a graph is a set of vertices whose removal leaves
a subgraph without odd cycle, and is therefore 2-colorable. Here we take
the problem of DPLD + EBL as an example to show the basic idea.
Given the layout, the decomposition graph is built as mentioned above.
Each vertex is assigned a weight which is proportional to the area of
corresponding pattern. If there is no stitch edge, then the decomposition
graph is already an instance of WOCCP. When there exist potential
stitches, each stitch edge is replaced by a virtual vertex and two virtual
edges. A virtual vertex is in the OCC means the corresponding stitch
exists in the decomposition solution.

III. MASK OPTIMIZATION

Two models are needed to transform mask patterns into printed image:
optical lithography model and photo resist model. First, an aerial image
I is generated by convolving the mask M with a set of optical kernels
[36], which is represented as

I = foptical(M) =

K∑
k=1

wk · |M⊗ hk|2, (5)

where hk is the k-th optical kernel, wk is the weight of hk, and K is
the total kernel number.

Then a resist model is applied to the aerial image. In our work a
constant threshold resist model is used, which sets an intensity threshold
Ith to binarize the aerial image, denoted by Z in the following equation.

Z(x, y) = fresist(I) =

{
1, if I(x, y) ≥ Ith,
0, otherwise.

(6)

Definition 3 (Edge Placement Error). Given a target layout and the
printed image, the edge placement error (EPE) is defined as the
geometric displacement of the image contour from the edge of target
image on the layout. A violation is introduced if the perpendicular
displacement is greater than an EPE threshold value.

Definition 4 (Process Variation Band). The process variability band
(PV Band) represents the variability in the position of the contour.,

Target contour

Printed contour

PV band

Fig. 8: Illustration of PV band.

Usually, two images are generated at 2 corners which are high
dose with nominal focus and low dose with defocus. The PV band
is calculated by the XOR of the obtained images. An example of PV
band is shown in Fig. 8.

A. Rule-Based OPC

Rule-based OPC requires comprehensive experiments determining de-
sign rules to compensate non-desired patterns, thus can only be applied
to less aggressive designs. In [37], a rule-based method is proposed to
address the issue of gate bridge by performing critical area correction.
To search for the critical areas, polygons are generated at corresponding
regions that are similar to error markers. Then by monitoring the space
critical dimensions while varying the neighboring pattern width, it is
easy to extract the OPC rules for bridge elimination.

B. Model-Based OPC

Model-based OPC segments pattern edges into small parts and moves
them slightly to make correction for final patterns. However, it is heavily
based on lithography simulation which is time-consuming. A regression
model for OPC using a hierarchical Bayes model is proposed in [38],
whose results can be used the starting point of conventional model-
based OPC flow thus can effectively avoid the runtime overhead.

A model-based flow is presented by Awad et al. [39] for minimizing
EPE and PV band. The whole flow is separated into two phases which
target EPE minimization and PV band minimization, respectively. In the
first phase, EPE is optimized by shifting two neighboring segments.
Hammers are added on the corners of the polygons to improve the
printability of the corners. In the second phase, sub-resolution assist
features (SRAFs) are inserted to improve the PV band. The width of
SRAF is determined by a regression model.

Kuang et al. propose a more robust approach in [40]. Different
from [39], they perform mask optimization in three steps. The intensity
difference is minimized first by iteratively moving the edge segments,
during which most of the EPE can be fixed. Next, EPE minimization
step conducts edge-moving operation more carefully on the spots where
there still exists EPE violation. After that, PV band is minimized by
slightly perturbing the width and length of the SRAFs near the segments
which have large PV band.

Su et al. [41] develop a model-based OPC flow called PVOPC,
where a novel dynamic edge fragmentation is used to form segment
candidates for correction. To model the process variation, they select
representative process corners with different weights, which is more
efficient than using all process corners with uniform weight. A forward
collision avoidance strategy is to prevent the image contour from open
or short, which leads to fast EPE convergence.

C. Inverse Lithography Technique

Under a certain lithography model, inverse lithography technique (ILT)
aims to find the ideal mask by solving an inverse problem of the
lithography system. The objective of ILT is typically to minimize the
difference between printed patterns of the mask and target patterns.
Different from model-based OPC which makes correction on edge
segments, ILT is based on pixel-based representation. The ILT can be
formulated as in Formula (7), where Zt is the target image and M is
the optimized mask.



min
M

F = ‖Zt − Z‖22 , (7)

s.t. M(x, y) ∈ {0, 1}, ∀x, y, (7a)

I =

K∑
k=1

wk · |M⊗ hk|2, (7b)

Z = fresist(I), (7c)

Many numerical optimization methods have been investigated for ILT.
Poonawala et al. [42] adopt relax the problem to continuous form and
solve it by gradient decent. The binary value constraint is first relax to
bounded continuous constraint as 0 ≤ M(x, y) ≤ 1, which is further
reduced to unconstrained as

M(x, y) =
1 + cos (θ(x, y))

2
. (8)

The resist model is relaxed through the sigmoid function as

Z(x, y) = sig(I(x, y)) =
1

1 + exp[−θZ(I(x, y)− Ith)]
, (9)

where θZ is a user-defined parameter which represents the steepness of
sigmoid function, and Ith is the threshold in the resist model. Then
gradient descent algorithm is used to solve the problem iteratively.

In addition to conventional gradient descent algorithm, stochastic
gradient descent (SGD) is also used in ILT [43]. SGD is a variant
of gradient descent, which also relies on gradient for optimization.
However, the true gradient is approximated by the gradient in a single
example. In [43], the process variation is considered. In order to model
that, the final printed image is obtained by averaging the intensity
of different process corners, which requires more computation when
calculating the gradient. With SGD the whole process is accelerated
significantly and achieves comparable quality of final masks. Another
acceleration technique for ILT is proposed in [44]. Considering that the
forward lithography model can be formulated by a series of weighted
sum of convolution, the “effective kernel” can be precomputed without
loss of accuracy.

K∑
k=1

wk · (M⊗ hk) =

K∑
k=1

M⊗ (wk · hk) = M⊗
K∑

k=1

wk · hk. (10)

What’s more, a precise EPE modeling formulation is proposed in [44]
which is also differentiable so that gradient descent method can be
applied.

Apart from widely used gradient-based optimization technique, level-
set-based method has also been studied. Shen et al. [45] shows that ILT
can be modeled into an image restoration problem and can be solved
by level-set method where the boundary of the pattern is iteratively
evolved. The mask M is given a level-set description associated with
an unknown function φ(x) as follows.

M(x, y) =

{
Mint, if φ(x, y) < 0,

Mext, otherwise.
(11)

Then the boundary of the patterns is governed by the zero level set
φ(x, y) = 0. To get the optimal mask M, an appropriate difference
scheme is needed. First-order accurate method is used in [45] and the
conjugate gradient method is used in [46].

IV. SIMULTANEOUS LAYOUT DECOMPOSITION AND MASK

OPTIMIZATION

It has been seen that layout decomposition and mask optimization
are powerful techniques for improving manufacturability by generating
optimized masks in two stages. It is intuitive to think that how to
combine these two techniques, hoping that the unified flow can be
even more powerful. Li et al. provided a model-based methodology
for single mask OPC which provides several techniques for improving

Target

LD
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Printed
Image

(a) (b)

Fig. 9: Same quality layout decompositions (LD) achieve different EPE
violation number after mask optimization (MO) [50]: (a) Solution 1 with
#EPE violation = 3; (b) Solution 2 with #EPE violation = 1.

printability, including ensuring sufficient overlap and compensating the
overlay [47]. However, the proposed methodology is still applied to
two-stage flow. Previous work has presented how to combine ILT with
double exposure lithography (DEL) [48], [49]. Compared with general
ILT for single mask optimization, two masks are generated in DEL-ILT
flow. The final aerial image is equal to the sum of the aerial images
obtained from the two individual exposures, which can be formulated
as Equation (12) where M1 and M2 are two masks.

I = foptical(M1) + foptical(M2). (12)

Basically, this problem is solved by gradient descent method [48],
[49]. Besides, cyclic coordinate descent is also introduced as an alter-
native optimization method [48]. Cyclic coordinate descent optimizes
the cost function with respect to only one parameter at a time, and
sequentially covering up the whole parameter vector. It is not as accurate
as gradient descent in each iteration but it is more efficient. However,
none of these work addresses the layout decomposition problem because
they only consider the multiple exposures on a single mask.

The issue of two-stage flow is the inconsistency. Fig. 9 gives an
example on such situation. Given the identical target, two different
layout decomposition results are found (LD stage in the figures), and
both of them satisfy all design rules and coloring rules. After the mask
optimization (MO stage in the figures) on each mask, however, it can be
observed that the qualities of the printed images are diverse: Fig. 9(a)
has three EPE violations, while Fig. 9(b) has only one EPE violation. To
address this issue, a unified optimization framework for simultaneous
layout decomposition and mask optimization is proposed by Ma et
al. [50]. A numerical optimization flow and a discrete optimization flow
are designed to solve the problem. These two engines are collaborative
with each other. The experimental result shows that the proposed
framework can find higher quality solutions much more efficiently than
conventional two-stage flow.

V. CONCLUSION

In this paper we have surveyed some commonly used layout decomposi-
tion and mask optimization techniques. We first introduce the basic idea
of multiple patterning layout decomposition and mask optimization.
For each technique, we select some representative previous work and
illustrate and compare the ideas behind. Since conventional two-stage
flow cannot guarantee the optimality of the printed image, we also
introduce some works which try to unify the layout decomposition and
mask optimization stage. As the feature size continues scaling, advanced
lithography techniques will be of great significance for improving the
manufacturability. We hope this paper will stimulate more systematic
studies on layout decomposition and mask optimization.
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