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Internet of Things (IoT)
IoT describes physical objects that connect and exchange data
with other devices and systems over the Internet or other
communications networks

Things include sensors, robots, smart meters, vehicles, etc.

Typical IoT applications include smart health care, smart
homes, smart manufacturing, smart transportation, smart
surveillance, etc.
IoT will impact the way we live and work in near future

Figure: Typical IoT applications
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Massive machine-type communication (mMTC)

mMTC provides connections to a large number of devices that
intermittently transmit small amount of traffic without the
involvement of a human

The total number of connected devices in the world will be
approximately 75.44 billion in 2025 and 125 billion in 2030
Very few devices from a large number of potential devices are
active and send data at a time
Key performance indicators (KPIs) include number of
connected devices, reliability, latency, etc.

mMTC has been identified as one of the three main use cases
for 5G, along with enhanced mobile broadband (eMBB) and
ultra reliable, low-latency communications (URLLC)
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Grant-free access for mMTC
Grant-free access is proposed to eliminate the dynamic
scheduling request and grant signaling overhead for uplink
data transmission in mMTC
Grant-free access relies on non-orthogonal pilot sequences
(preambles) and operates in two phases

Each device is assigned a unique non-orthogonal pilot
sequence, also serving as device ID
In phase I, active devices send pilot sequences, and the BS
detects device activities and estimates active devices’ channels
In phase II, active devices directly transmit data, and the BS
detects transmitted data

Figure: Grant-free
access.

Figure: Grant-based
random access.

Grant-free access Grant-based random access
Pre-Assigned preambles Random preambles
Unique preambles (ID) Non-unique preambles

Non-orthogonal preambles Orthogonal preambles
Access grant not needed access grant needed

Accurate detection of colliding users Accurate detection of non-colliding users
High access success probability Low access success probability
High data transmission efficiency Low data transmission efficiency
Low terminal energy consumption High terminal energy consumption

High complexity Low complexity

Table: Grant-free access vs. grant-based random
access.
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Grant-free access for mMTC

Challenges of grant-free access

Activity detection and channel estimation for colliding devices
with non-orthogonal pilot sequences

Three application types
Devices just report their activities and do not send data

Device activity detection is sufficient

Active devices have very few data to send

Data can be embedded into pilots, and joint activity and data
detection (extension of device activity detection) can be
conducted

Active devices have more data to send

Separate activity detection and channel estimation (for
detected devices with conventional methods) or joint activity
detection and channel estimation can be conducted

Focus on device activity detection (more fundamental)
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Network model
Consider a single-cell cellular network with one M-antenna BS
and a large number N of single-antenna IoT devices

Denote M , {1, · · · ,M} and N , {1, · · · ,N}
Device activity patterns for IoT traffic are sporadic

Very few devices among all potential devices are active and
access the BS at a time

The device activity states, α , (αn)n∈N ∈ {0, 1}N , are
unknown to the BS and to be estimated

Can be modeled as unknown deterministic quantities or
random variables with a known prior distribution

Each device n is assigned a unique length-L pilot sequence
sn ∈ C

L, known to the BS
The large-scale fading powers, g , (gn)n∈N ∈ R

N
++, are

assumed to be known to the BS
Can be jointly estimated with device activities if unknown

Small-scale fading follows the block-fading channel model

In each coherence block, all active devices synchronously send
their pilots, and the BS detects the device activities
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Flat Rayleigh fading model and receive signal

Consider a narrow-band system

Adopt the flat Rayleigh fading model for small-scale fading

hn ∈ C
M denotes the small-scale fading coefficients of device n

All elements of hn, n ∈ N are i.i.d. CN (0, 1)

The receive signal over the L signal dimensions and M

antennas, Y ∈ C
L×M , is:

Y =
∑

n∈N
snαn

√
gnh

T
n + Z = SAG

1
2H + Z

S , [s1, · · · , sN ] ∈ CL×N represents the pilot matrix
A , diag(α) ∈ {0, 1}N×N represents the device activities
G , diag(g) ∈ R

N×N
++ represents the large-scale fading powers

H , [h1, · · · , hN ]T ∈ CN×M represents the small-scale fading
coefficients, with all elements i.i.d. CN (0, 1)
Z ∈ CL×M represents the additive white Gaussian noise
(AWGN), with all elements i.i.d. CN (0, σ2)
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Statistics of receive signal

The receive signal at the m-th antenna, Y:,m ∈ C
L, is:

Y:,m = SAG
1
2H:,m + Z:,m

Given device activities α, Y:,m,m ∈ M are i.i.d. CN (0,Σα)

with Σα , SAGSH + σ2IL ∈ C
L×L

H:,m,Z:,m,m ∈ M are i.i.d. CN (0, IL)

E [Y:,m] = SAG
1
2E [H:,m] + E [Z:,m] = 0

E
[
Y:,mY

H
:,m

]
= SAG

1
2E
[
H:,mH

H
:,m

]
G

1
2ASH +

SAG
1
2E
[
H:,mZ

H
:,m

]
+ E

[
HH

:,mG
1
2ASHZ:,m

]
+ E

[
Z:,mZ

H
:,m

]
=

SAGASH + σ2IL = SAGSH + σ2IL
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Statistics of receive signal

The likelihood function of Y is:

fα(Y)
(a)
=
∏

m∈M

exp
(
−YH

:,mΣ
−1
α

Y:,m

)

πL|Σα|
=

exp

(
− ∑

m∈M
YH
:,mΣ

−1
α

Y:,m

)

πLM |Σα|M

(b)
=

exp

(
− ∑

m∈M
tr
(
Σ

−1
α

Y:,mY
H
:,m

))

πLM |Σα|M
=

exp

(
−tr

(
Σ

−1
α

∑
m∈M

Y:,mY
H
:,m

))

πLM |Σα|M

=
exp

(
−tr

(
Σ

−1
α

YYH
))

πLM |Σα|M

(a) is due to that Y:,m,m ∈ M are i.i.d. CN (0,Σα)
(b) is due to

YH
:,mΣ

−1
α

Y:,m = tr
(
YH
:,mΣ

−1
α

Y:,m

)
= tr

(
Σ

−1
α

Y:,mY
H
:,m

)
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Maximum likelihood (ML) estimation

[Fengler et al. (2021)]
Assume that α are unknown deterministic quantities

ML estimation of α:
min
α

fML(α) , log |Σα|+ tr(Σ−1
α

Σ̂Y)

s.t. αn ∈ {0, 1} (relax to: αn ∈ [0, 1]), n ∈ N
where Σα , SAGSH + σ2IL ∈ C

L×L, Σ̂Y , 1
M
YYH ∈ C

L×L

fML(α) is − 1
M
log fα(Y) (omit the constant), where

− log fα(Y) = M log |Σα|+ tr((Σ−1
α

YYH )+LM log(π)

Σα represents the covariance matrix of Y:,m,m ∈ M
Σ̂Y represents the sample covariance matrix of Y:,m,m ∈ M

The average over M different antennas
Σ̂Y → Σα as M → ∞
Sufficient statistics: fML(α) depends on Y only through Σ̂Y

A binary solution can be conducted by performing thresholding

Advantage in the massive MIMO regime: estimate N

variables, α, from L2 observations, Σ̂Y, irrespective of M
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Coordinate descent (CD) method for ML estimation
The problem is non-convex, as fML(α) is a difference of
convex (DC) function of α

log |Σα| is a concave function of α

tr(Σ−1
α

Σ̂Y) is a convex function of α

Standard methods for DC programming such as the
convex-concave procedure are not computationally efficient
The CD method is efficient as the coordinate optimization in
each step can be solved analytically

Given α obtained in the previous step, the optimization w.r.t.
αn equals to the optimization of the increment d in αn:

min
d∈[−αn,1−αn]

fML(α+ den) = log |Σα|+ tr((Σ−1
α

Σ̂Y)

+ log(1 + dgns
H
n Σ

−1
α

sHn )−
dgns

H
n Σ

−1
α

Σ̂YΣ
−1
α

sn
1 + dgnsHn Σbsn

The optimal solution is given by:

d∗
ML,n

(
Σ

−1
α

, αn

)
= min

{
max

{
sHn Σ

−1
α

Σ̂YΣ
−1
α

sn − sHn Σ
−1
α

sn

gn(sHn Σ
−1
α sn)2

,−αn

}
, 1− αn

}
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Prior distribution of device activities [SPAWC’20]
Assume that α is random, and its p.m.f., p(α), is known to
the BS

Adopt the Multivariate Bernoulli (MVB) model for p(α)
[Ding et al. (2011)]:

p (α) = exp

(∑

ω∈Ψ

(
cω
∏

n∈ω
αn

)
+ b

)

Ψ is the set of the nonempty subsets of N
b , − log(

∑
α∈{0,1}N exp(

∑
ω∈Ψ(cω

∏
n∈ω αn))) is the

normalization factor
cω is the coefficient reflecting the correlation among αn, n ∈ ω
cω, ω ∈ Ψ can be estimated based on the historical device
activity data using existing methods [Ding et al. (2011)]
Given p (α) in any form, the coefficients cω, ω ∈ Ψ can be
calculated [Ding et al. (2011), Lem. 2.1]

Two special cases of the MVB model:
Independent case: cω = 0 for all |ω| > 1
i.i.d. case: cω = 0 for all |ω| > 1 and cω = c for all |ω| = 1
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Two instances of MVB model
The devices in N are divided into K groups, Nk ⊆ N , k ∈ K ,
where K , {1, · · · ,K}

∪k∈KNk = N and Nk ∩ Nk′ = ∅ for k , k ′ ∈ K, k 6= k
′

The device activities in different groups are independent:

cω = 0, ω 6⊆ Nk , k ∈ K
First instance:

Each group contains two devices, i.e., |Nk | = 2, k ∈ K
Every device is active with probability pa
Every two devices in a group are correlated with correlation
coefficient η
cω is given by [SPAWC’20, Lem. 1]:

cω =





(ηpa+(1−η)p2a )(1+(η−2)pa+(1−η)p2a )
(1−η)2(pa−p2a )

2 , |ω| = 2
(1−η)(pa−p2a)

1+(η−2)pa+(1−η)p2a
, |ω| = 1

, ω ⊆ Nk , k ∈ K
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Two instances of MVB model

Second instance:

The activity states of the devices in a group are the same
Each group k ∈ K is active with probability pk
cω is given by [SPAWC’20, Lem. 2]:

cω =





(−1)|ω| log( 1−pk
ǫ

), |ω| < |Nk |
log( pk

1−pk
), |ω| = |Nk |, |ω| is odd

log( pk (1−pk )
ǫ2

), |ω| = |Nk |, |ω| is even
, ω ⊆ Nk , k ∈ K

for arbitrarily small ǫ > 0
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Maximum posterior probability (MAP) estimation
The conditional density of α, given Y, is given by:

f
α|Y(α,Y) = fα(Y)p(α) =

exp
(
−tr

(
Σ

−1
α

YYH
))

πLM |Σα|M
exp

(∑

ω∈Ψ

(
cω
∏

n∈ω

αn

)
+ b

)

MAP estimation of α:

min
α

fMAP(α) , fML(α)− 1

M

∑

ω∈Ψ

(
cω
∏

n∈ω

αn

)

s.t. αn ∈ [0, 1], n ∈ N

fMAP(α) is − 1
M
log f

α|Y(α,Y) (omit the constant), where

− log f
α|Y(α,Y) =M log |Σα|+ tr((Σ−1

α
YYH)+LM log(π)

−
∑

ω∈Ψ

(
cω
∏

n∈ω

αn

)
−b

The influence of p(α) decreases with M , as
|fML(α)− fMAP(α)| decreases with M

The problem is non-convex
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Coordinate descent (CD) method for MAP estimation

The CD method is efficient as the coordinate optimization in
each step can be solved analytically

Given α obtained in the previous step, the CD optimization
w.r.t. αn equals to the optimization of the increment d in αn:

min
d∈[−αn,1−αn]

fMAP(α+ den) = fMAP(α) + fn(d ,α)

fn(d ,α) , log(1 + dgns
H
n Σ

−1
α

sn)−
dgns

H
n Σ

−1
α

Σ̂YΣ
−1
α

sn

1 + dgnsHn Σ
−1
α sn

− dCn

Cn ,
1

M

∑

ω∈Ψ:n∈ω

(
cω

∏

n
′∈ω,n

′ 6=n

αn
′

)

Shanghai Jiao Tong University Ying Cui IEEE ICC Tutorial 2021 19 / 73



Coordinate descent (CD) method for MAP estimation

Theorem (Solution of Optimization w.r.t. αn)

The optimal solution is given by:

d∗
MAP,n

(
Σ

−1
α

, αn

)
=





min {max {sn(α),−αn} , 1− αn} , Cn ≤ 0

argmind∈{sn(α),1−αn} fn(d,α), Cn > 0,∆n > 0

−αn + 1, Cn > 0,∆n ≤ 0

where sn(α) , 1−√
∆n

2Cn
− 1

gnsHn Σ
−1
α

sn
and ∆n , 1− 4Cns

H
n Σ

−1
α

Σ̂YΣ
−1
α

sn

gn(sHn Σ
−1
α

sn)2
.

Corollary (Solution of Optimization w.r.t. αn in i.i.d. case)

If αn, n ∈ N are i.i.d. Bernoulli(pa), the optimal solution is:

d∗
MAP,n(Σ

−1
α

, αn) =min

{
max

{
M

2 log( pa
1−pa

)
Dn − 1

gnsHn Σ
−1
α sn

,−αn

}
, 1− an

}

where Dn , 1−
√
1−

4
M

log( pa
1−pa

)sHn Σ
−1
α

Σ̂YΣ
−1
α

sn

gn(sHn Σ
−1
α

sn)2
.

d∗
MAP,n(·) reduces to d∗

ML,n(·), as M → ∞ or pa → 0.5
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Algorithm for statistical device activity detection

Algorithm (CD for statistical device activity detection)

1: Initialization choose Σ
−1
α

= 1
σ2 IL and α = 0.

2: repeat

3: for n ∈ N do

4: Calculate dn = d∗
ML,n

(
Σ

−1
α

, αn

)
(ML) or dn = d∗

MAP,n

(
Σ

−1
α

, αn

)

(MAP).
5: Update αn = αn + dn (CD update).

6: Update Σ
−1
α

= Σ
−1
α

− dngnΣ
−1
α

sns
H
n Σ

−1
α

1+dgnsHn Σ
−1
α

sn
(estimated covariance matrix

update).
7: end for

8: until α satisfies some stopping criterion.

Update Σ
−1
α

instead of Σα to avoid the calculation of matrix
inversion and improve the computation efficiency
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Algorithm for statistical device activity detection

The algorithm converges to a stationary point of the
corresponding statistical estimation problem, as the number of
iterations goes to infinity [Bertsekas (1999), Prop. 2.7.1]

Different initial points usually correspond to different
stationary points
Numerical results show that the stationary point corresponding
to the initial point α = 0 usually provides good detection
performance

The computational complexities of each iteration of ML and
MAP are O(NL2) and O(N2N + NL2), respectively

The actual computational complexity of each iteration of MAP
is much lower as α is a sparse vector
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Simulation setup

N devices are uniformly distributed in a disk with radius R

Each device is active with probability pa (marginal p.m.f.)

Generalize the symbols of each pilot according to i.i.d.
CN (0, 1) and then normalize its norm to

√
L

Independently generate 2000 realizations for the locations of
devices and sn, αn, hn, n ∈ N , and evaluate the average error
probability over the 2000 realizations

Choose R = 200, γ = 3, L = 28, M = 80, and σ2 = R−γ

10

(SNR = R−γ

10 ), unless otherwise stated

Consider three baseline schemes: AMP [Liu & Yu (2018)], ML
[Fengler et al. (2021)], and MAP-i.i.d (assuming that
αn, n ∈ N are i.i.d. Bernoulli(pa))

The thresholds are numerically optimized
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Group device activities in first instance
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Figure: Error probability versus pilot length L, number of antennas M ,
and correlation coefficient η. N = 1000, pa = 0.05.

The statistical estimation schemes significantly outperform AMP

MAP-i.i.d. outperforms ML, especially at small L and M

The gain comes from the incorporation of the marginal p.m.f.
of αn, n ∈ N and becomes large at small L and M

Proposed MAP outperforms MAP-i.i.d., especially at large η
(stronger correlation)

The gain derives from the explicit consideration of the
correlation among αn, n ∈ N and becomes large at large η
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Figure: Error probability versus pilot length L, number of antennas M ,
and correlation coefficient η. N = 1000, pa = 0.05.

The error probability of each scheme decreases with L and M

The error probability of proposed MAP significantly decreases with
η, while the error probabilities of MAP-i.i.d. and ML do not change
with η

Demonstrate the value of utilizing the correlation among
αn, n ∈ N
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Group device activities in second instance
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Figure: Error probability versus group size N/K . N = 1000, pk = 0.05,
k ∈ K.

MAP-i.i.d. outperforms ML, especially at large N/K

The gain comes from the incorporation of the marginal p.m.f.
of αn, n ∈ N and becomes large at large N/K

Proposed MAP outperforms MAP-i.i.d., especially at large N/K

The gain derives from the explicit consideration of the
correlation among αn, n ∈ N and becomes large at large N/K
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Group device activities in second instance
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Figure: Error probability versus group size N/K . N = 1000, pk = 0.05,
k ∈ K.

When N/K increases, the variance of the number of active devices
increases and the sample space of device activities reduces

The error probabilities of MAP-i.i.d. and ML increase with N/K

The error probability significantly increases when the number
of active devices is large if the correlation is not utilized

The error probability of proposed MAP decreases with N/K

The exploitation of the correlation among αn, n ∈ N narrows
down the set of possible activity states
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Conclusion

We consider device activity detection in a single-cell network

We formulate the problem for the MAP estimation of device
activities based on the tractable MVB model, explicitly
specifying the general correlation among device activities

We propose an efficient iterative algorithm to obtain a
stationary point of the MAP estimation problem using the
coordinate descent method

The proposed MAP estimation enhances the existing ML
estimation by exploiting the prior distribution of device
activities, at the cost of increasing computational complexity
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Network model [WCNC’20, TWC’21]

R

 4

 0

 1

 2

 3

 5

 6

Figure: System model.
Consider a multi-cell network which consists of M-antenna
BSs and single-antenna IoT devices
The locations of BSs are distributed according to the
hexagonal grid model with the side length of each hexagonal
cell R

Can be extended [TWC’21]

The BSs and their cells are indexed by j ∈ J , J , {0, 1, · · · }
The devices are indexed by n ∈ N , N , {1, 2, · · · }
Nj denotes the set of Nj devices in cell j
αj , (αn)n∈Nj

∈ {0, 1}Nj denotes the activities of the devices
in cell j
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Channel model

Adopt the power-law path loss model for interfering devices

dn,j denotes the distance between device n and BS j

γ > 2 denotes the path loss exponent
gn,j = d

−γ
n,j denotes the path loss between device n and BS j

Commonly used for large-scale random networks

Adopt the block-fading channel model for small-scale fading

Consider a narrow-band system and adopt the flat Rayleigh
fading model

hn,j ∈ CM denotes the channel vector between device n and
BS j

hn,j , n ∈ N , j ∈ J are i.i.d. CN (0, IM)
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Massive grant-free access in a multi-cell network

Adopt a massive grant-free access scheme

Each device n is assigned a length-L pilot sn , (sn,ℓ)ℓ∈L,
where L , {1, 2, · · · , L} and L ≪ N

sn, n ∈ N are i.i.d. CN (0, IL)
Sj , (sn)n∈Nj

∈ CL×Nj denotes the pilot matrix for the devices
in cell j

In each coherence block, all active devices synchronously send
their pilots, and each BS detects the activities of its
associated devices

The receive signal over L signal dimensions and M antennas
at BS j , Yj ∈ C

L×M , is:

Yj =
∑

n∈N
snαng

1
2

n,jh
T
n,j + Zj , j ∈ J

Zj ∈ CL×M represents the AWGN, with all elements i.i.d.
CN (0, σ2)
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Two device activity detection mechanisms
Consider device activity detection at a typical BS at the origin

The typical BS is denoted as BS 0
The six neighbor BSs of BS 0 are indexed with 1, 2, · · · , 6

Non-cooperative device activity detection:
BS 0 knows the pilot matrix S0 for the devices in cell 0 and the
path losses g0 , (gn,0)i∈N0 between devices in cell 0 and BS 0
BS 0 detects the activities of the devices in cell 0 from (the
sufficient statistics of) Y0

Cooperative device activity detection:
N 0 , ∪6

j=0Nj denotes the N0 ,
∑6

j=0 Nj devices in cell 0 and
its six neighbor cells 1, · · · , 6
BS 0 knows the pilot matrices S0 , (Sj )j∈{0,1,··· ,6} for the

devices in the 7 cells and the path losses gj , (gn,j)n∈N 0
,

j ∈ {0, 1, · · · , 6} between the devices in the 7 cells and 7 BSs
Each BS j ∈ {1, 2, · · · , 6} transmits (the sufficient statistics
of) Yj to BS 0 via an error-free backhaul link
BS 0 detects the activities of the devices in the 7 cells from
(the sufficient statistics of) Y0 , [Y0,Y1, · · · ,Y6] and utilizes
the detection results for the devices in cell 0
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Non-cooperative device activity detection
The receive signal Y0 ∈ C

L×M at BS 0 can be rewritten as:

Y0 = S0A0G
1
2
0H

T
0 +

∑

n∈N\N0

snαng
1
2
n,0h

T
n,0 + Z0

A0 , diag(α0), G0 , diag(g0), H0 , (hn,0)n∈N0

Given αn, gn,0, sn, n ∈ N , all M columns of Y0 are i.i.d.

CN (0,S0A0G0S
H
0 + X̃+ δ2IL) with X̃ ,

∑
n∈N\N0

αn gn,0sns
H
n

X̃ ∈ CL×L represents the covariance matrix of inter-cell
interference and has also to be estimated
X̃ is diagonally dominant, as sn, n ∈ N are i.i.d. CN (0, IL)
[Chen & Yu (2019)]

Approximate X̃ with X , diag(x), x , (xℓ)ℓ∈L ∈ R
L
+,

xℓ ,
∑

n∈N\N0
αn gn,0|sn,ℓ|2 to reduce the estimation

complexity [Chen et al. (2019); Andrews et al. (2007);
Choi (2019)]

Diagonal elements x ∈ RL
+ of X ∈ R

L×L
+ can be interpreted as

the inter-cell interference powers over the L signal dimensions
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Non-cooperative device activity detection

Given α0 and x, all M columns of Y0 are approximated as i.i.d.
CN (0,Σα0,x) with Σα0,x , S0A0G0S

H
0 + X + δ2IL ∈ C

L×L

The likelihood function of Y0 is:

fα0,x(Y0) =
exp

(
−tr

(
Σ

−1
α0,xY0Y

H
0

))

πLM |Σα0,x|M

Consider the joint ML estimation and the joint MAP estimation of
N0 device activities α0 and L interference powers x without BS
cooperation, respectively
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Joint ML estimation without BS cooperation

Assume that α0 and x are unknown deterministic quantities

Joint ML estimation of α0 and x without BS cooperation:

min
α0,x

fML(α0, x) , log |Σα0,x|+ tr(Σ−1
α0,xΣ̂Y0

)

s.t. αn ∈ [0, 1], n ∈ N0

xℓ ≥ 0, ℓ ∈ L
where Σα0,x , S0A0G0S

H
0 + X + δ2IL ∈ C

L×L and

Σ̂Y0
, 1

M
Y0Y

H
0 ∈ C

L×L

Jointly estimate N0 + L variables, α0 and x, from L2

observations, Σ̂Y0 , in the multi-cell network with inter-cell
interference
fML(α0, x) is − 1

M
log fα0,x(Y0) (omit the constant), where

− log fα0,x(Y0) =M log |Σα0,x|+ tr(Σ−1
α0,xY0Y

H
0 )+LM log(π)

The problem is non-convex, as fML(α0, x) is a DC function
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Coordinate descent (CD) method for joint ML estimation

At each step of one iteration, optimize fML(α0, x) w.r.t. one
coordinate in {αn: n ∈ N0} ∪ {xℓ : ℓ ∈ L}
Given α0 and x obtained in the previous step, the CD
optimization w.r.t. αn equals to the optimization of the
increment d in αn:

min
d∈[−αn,1−αn]

fML(α0 + den, x) = fML(α0, x)

+ log |Σα0,x + dgn,0sns
H
n |+ tr((Σα0,x + dgn,0sns

H
n )

−1
Σ̂Y0)

and the CD optimization w.r.t. xℓ equals to the optimization
of the increment d in xℓ:

min
d∈[−xℓ,+∞)

fML(α0, x + deℓ) = fML(α0, x)

+ log |Σα0,x + deℓe
T
ℓ |+ tr((Σα0,x + deℓe

T
ℓ )

−1
Σ̂Y0)
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Coordinate descent (CD) method for joint ML estimation

Theorem (Solutions of Optimizations w.r.t. αn and xℓ)

Given α0 and x obtained in the previous step, the optimal solution
of the coordinate optimization w.r.t. αn is

d∗
ML,1,n(Σ

−1
α0,x, αn)

,min

{
max

{
sHn Σ

−1
α0,xΣ̂Y0Σ

−1
α0,xsn − sHn Σ

−1
α0,xsn

gn,0(sHn Σ
−1
α0,xsn)

2
,−αn

}
, 1− αn

}

and the optimal solution of the coordinate optimization w.r.t. xℓ is

d∗
ML,2,ℓ(Σ

−1
α0,x, xℓ) , max

{
eTℓ Σ

−1
α0,xΣ̂Y0Σ

−1
α0,xeℓ − eTℓ Σ

−1
α0,xeℓ

(eTℓ Σ
−1
α0,xeℓ)

2
,−xℓ

}
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Prior distribution of device activities

Assume that α0 is random, and its p.m.f., p0(α0), is known
to BS 0

Adopt the MVB model for p0(α0) [Ding et al. (2011)]:

p0 (α0) = exp


∑

ω∈Ψ0

(
cω
∏

n∈ω
αn

)
+ b0


 ,

Ψ0 is the set of the nonempty subsets of N0

b0 , log(
∑

α0∈{0,1}N0 exp(
∑

ω∈Ψ0
(cω
∏

n∈ω αn))) is the
normalization factor
cω is the coefficient reflecting the correlation among αn, n ∈ ω
cω, ω ∈ Ψ0 can be estimated based on the historical device
activity data using existing methods [Ding et al. (2011)]
Given p0 (α0) in any form, the coefficients cω, ω ∈ Ψ0 can be
calculated [Ding et al. (2011), Lem. 2.1]
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Prior distribution of interference powers

Assume that x is random, and its p.d.f., g(x), is known to BS
0

Assume that the locations of the active interfering devices in
N \ N0 follow a homogeneous Poisson point process (PPP)
with density λ

Approximate the p.d.f. of x with a Gaussian distribution with
the same mean and variance

g(x) ≈ 1

(
√
2πδ)L

exp

(
−
∑

ℓ∈L(xℓ − µ)2

2δ2

)

xℓ =
∑

n∈N\N0
αn gn,0|sn,ℓ|2

sn,ℓ, n ∈ N are i.i.d. CN (0, 1)
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Prior distribution of interference powers

Lemma (Mean and variance for hexagon model)

If Cell 0 is modeled as a hexagon with side length R , then we have:

µ =12λ

∫ ∞
√

3
2 R

∫ √
3

3 x

0

(x2 + y2)−
α
2 dydx

δ2 =12λ

∫ ∞
√

3
2 R

∫ √
3

3 x

0

(x2 + y2)−αdydx

Lemma (Mean and variance for disk model)

If Cell 0 is modeled as a disk with radius R , then we have:

µ =
2πλR2−α

α− 2
, δ2 =

πλR2−2α

α− 1
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Prior distribution of interference powers

The Gaussian distribution with the same mean and variance is
a good approximation of the exact p.d.f. of x

xℓ ×10
-8

2 3 4 5 6 7 8 9 10

p
d
f
o
f
x
ℓ

×10
7

0

2

4

6

8

10

Monte Carlo Simulation

Gaussian Approximation

Figure: Comparison between the histogram of xℓ (reflecting the
p.d.f. of xℓ) and its corresponding Gaussian approximation.
R = 200, λ = 0.0005, and γ = 4.
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Joint MAP estimation without BS cooperation

The conditional density of α0 and x, given Y0, is given by:

f
α0,x|Y0

(α0, x,Y0) = fα0,x(Y0)p0(α0)g(x)

=
exp
(
−tr

(
Σ

−1
α0,xY0Y

H
0

))

πLM |Σα0,x|M(
√
2πδ)L

exp

( ∑

ω∈Ψ0

(
cω
∏

n∈ω

αn

)
+ b0 −

∑

ℓ∈L

(xℓ − µ)2

2δ2

)

Joint MAP estimation of α0 and x without BS cooperation:

min
α0,x

fMAP(α0, x) , fML(α0, x)−
1

M

∑

ω∈Ψ0

(
cω
∏

n∈ω

αn

)
+

1

M

∑

ℓ∈L

(xℓ − µ)2

2δ2

s.t. αn ∈ [0, 1], n ∈ N0

xℓ ≥ 0, ℓ ∈ L

The impacts of prior distributions of α0 and x decrease with
M , as |fMAP(α0, x)− fML(α0, x)| decreases with M

The problem is non-convex
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Coordinate descent (CD) method for joint MAP estimation
At each step of one iteration, optimize fMAP(α0, x) w.r.t. one
coordinate in {αn: n ∈ N0} ∪ {xℓ : ℓ ∈ L}
Given α0 and x obtained in the previous step, the CD
optimization w.r.t. αn equals to the optimization of the
increment d in αn:

min
d∈[−αn,1−αn ]

fMAP(α0 + dei , x) = fMAP(α0, x) + fα0,n(d,α0, x)

fα0,n(d,α0, x) , log(1 + dgn,0s
H
n Σ

−1
α0,x

sn)−
dgn,0sHn Σ

−1
Σ̂Y0

Σ
−1
α0,xsn

1 + dgn,0sHn Σ
−1
α0,xsn

− d

M

∑

ω⊆N0:n∈ω

(
cω

∏

n
′∈ω,n

′ 6=n

α
n
′

)

and the CD optimization w.r.t. xℓ equals to the optimization
of the increment d in xℓ:

min
d∈[−xℓ,+∞)

fMAP(α0, x + deℓ) = fMAP(α0, x) + fx,ℓ(d,α0, x)

fx,ℓ(d,α0, x) ,
(xℓ − µ+ d)2

2Mσ2
− deT

ℓ
Σ

−1
α0,xΣ̂Y0

Σ
−1
α0,xeℓ

1 + deT
ℓ
Σ

−1
α0,xeℓ

+ log(1 + deTℓ Σ
−1
α0,x

eℓ)
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Coordinate descent (CD) method for joint MAP estimation

Theorem (Solution of Optimization w.r.t. αn)

Given α0 and x obtained in the previous step, the optimal solution
of the coordinate optimization w.r.t. α0 is:

d∗
MAP,1,n(Σ

−1
α0,x, αn)

=





min {max {sn(α0, x),−αn} , 1− αn} , Cn ≤ 0

arg min
d∈{sn(α0,x),1−αn}

fα0,n(d ,α0, x), 0 < Cn <
gn,0(s

H
n Σ

−1
α0,x

sn)
2

4sHn Σ
−1
α0,x

Σ̂Y0
Σ

−1
α0,x

sn

1− αn, Cn ≥ gn,0(s
H
n Σ

−1
α0,x

sn)
2

4sHn Σ
−1
α0,x

Σ̂Y0
Σ

−1
α0,x

sn

where

sn(α0, x) ,
1

2Cn

(
1−

√
1− 4CnsHn Σ

−1
α0,xΣ̂Y0Σ

−1
α0,xsn

gn,0(sHn Σ
−1
α0,xsn)

2

)
− 1

gn,0sHn Σ
−1
α0,xgn,0

Cn ,
1

M

∑

ω∈Ψ0:n∈ω

cω
∏

n
′∈ω,n

′ 6=n

αn
′
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Coordinate descent (CD) method for joint MAP estimation

Theorem (Solution of Optimization w.r.t. xℓ)

Given α0 and x obtained in the previous step, the optimal solution
of the coordinate optimization w.r.t. x is:

d∗
MAP,2,ℓ(Σ

−1
α0,x, xℓ) = argmin

d∈Xℓ(α0,x)∪{−xℓ}
fx ,ℓ(d ,α0, x)

where

Xℓ(α0, x) ,{d ∈ [−xℓ,+∞) : hx,ℓ(d ,α0, x) = 0}

hx,ℓ(d ,α0, x) ,
d + xℓ − µ

Mδ2
−

eTℓ Σ
−1
α0,xΣ̂Y0Σ

−1
α0,xeℓ

(1 + deTℓ Σ
−1
α0,xeℓ)

2
+

eTℓ Σ
−1
α0,xeℓ

1 + deTℓ Σ
−1
α0,xeℓ
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Algorithm for statistical device activity detection

Algorithm (Statistical device activity detection without BS
cooperation)

1: Initialization: choose Σ
−1
α0

= 1
σ2 IL, α0 = 0, x = 0.

2: repeat

3: for n ∈ N0 do

4: Calculate dn = d∗
ML,1,n

(Σ−1
α0,x, αn) (ML) or dn = d∗

MAP,1,n
(Σ−1

α0,x, αn) (MAP).

5: Update αn = αn + dn (CD update).

6: Update Σ
−1
α0,x = Σ

−1
α0,x −

dngnΣ
−1
α0,x

sns
H
n Σ

−1
α0,x

1+dngnsHn Σ
−1
α0,x

sn
(estimated covariance matrix up-

date).
7: end for

8: for ℓ ∈ L do

9: Calculate dℓ = d∗
ML,2,ℓ

(Σ−1
α0,x, xℓ) (ML) or dℓ = d∗

MAP,2,ℓ
(Σ−1

α0,x, xℓ) (MAP).

10: Update xℓ = xℓ + dℓ (CD update).

11: Update Σ
−1
α0,x = Σ

−1
α0,x−

dℓΣ
−1
α0,x

eℓe
T
ℓ Σ

−1
α0,x

1+dℓe
T
ℓ
Σ

−1
α0,x

eℓ
(estimated covariance matrix update)

12: end for

13: until α0 and x satisfy some stopping criterion.
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Algorithm for statistical device activity detection without

BS cooperation

The algorithm converges to a stationary point of the
corresponding statistical estimation problem, as the number of
iterations goes to infinity [Bertsekas (1999),Prop. 2.7.1]

Different initial points usually correspond to different
stationary points
Numerical results show that the stationary point corresponding
to the initial point α0 = 0, x = 0 usually provides good
detection performance

The computational complexities of each iteration of the joint
ML estimation and the joint MAP estimation without BS
cooperation are O(N0L

2 + L3) and O(N02
N0 + N0L

2 + L3),
respectively

The actual computational complexity for the joint MAP
estimation is much lower as α0 is a sparse vector
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Cooperative device activity detection

The receive signal at BS j , Yj ∈ C
L×M , can be rewritten as:

Yj = S0A0G
1
2
j H

T

j +
∑

n∈N\N 0

snαng
1
2
n,jh

T
n,j + Zj , j ∈ {0, 1, · · · , 6}

A0 , diag(α0), α0 , (αn)n∈N 0
, Gj , diag(gj),

Hj , (hn,j)n∈N 0

Given αn, gn,j , sn, n ∈ N , Yj , j ∈ {0, 1, · · · , 6} are
independent and for all j ∈ {0, 1, · · · , 6}, the M columns of

Yj are i.i.d. CN (0,S0A0GjS
H

0 +
∑

n∈N\N 0
αngn,j sns

H
n + σ2IL)

For all j ∈ {0, 1, · · · , 6}, approximate
∑

n∈N\N 0
αng

1
2
n,j sns

H
n

with Xj , diag(xj), xj , (xj ,ℓ)ℓ∈L, xj ,ℓ ,
∑

n∈N\N 0

αngn,j |sn,ℓ|2

xj can be interpreted as the inter-cell interference powers over
the L signal dimensions in Yj
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Cooperative device activity detection
Given α0 and xj , all M columns of Yj are approximated as

i.i.d. CN (0,Σj ,α0,xj ) with Σj ,α0,xj , S0A0GjS
H

0 + Xj + σ2IL
The likelihood function of Yj is:

f̄j ,α0,xj (Yj) =
exp

(
−tr

(
Σ

−1
j ,α0,xjYjY

H
j

))

πLM |Σj ,α0,xj |M
, j ∈ {0, 1, · · · , 6}

The likelihood function of Y0 is:

f̄α0,x0(Y0)
(a)
=

6∏

j=0

f̄j ,α0,xj (Yj) =
exp

(
−∑6

j=0 tr
(
Σ

−1
j ,α0,xj

YjY
H
j

))

π7LM
∏6

j=0 |Σj ,α0,xj |M

where x0 , [xT0 , · · · , xT6 ]T
(a) is due to that Yj , j ∈ {0, 1, · · · , 6} are independent

Consider the joint ML estimation and the joint MAP
estimation of N0 device activities a0 and 7L interference
powers x0 with BS cooperation, respectively
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Joint ML estimation with BS cooperation
Joint ML estimation of α0 and x0 with BS cooperation:

min
α0,x0

f ML(α0, x0) ,

6∑

j=0

(
log |Σj ,α0,xj |+ tr

(
Σ

−1
j ,α0,xj Σ̂Yj

)

︸ ︷︷ ︸
f ML,j (α0,xj)

)

s.t. αn ∈ [0, 1], n ∈ N 0

xj ,ℓ ≥ 0, j ∈ {0, 1, · · · , 6}, ℓ ∈ L
where Σj ,α0,xj , S0A0GjS

H

0 + Xj + σ2IL ∈ C
L×L and

Σ̂Yj
, 1

M
YjY

H
j ∈ C

L×L

Jointly estimate N0 + 7L variables, α0 and x0, from 7L2

observations, Σ̂Yj
, j ∈ {0, 1, · · · , 6}, in the multi-cell network

with inter-cell interference
f ML(α0, x0) is − 1

M
log f̄α0,x0(Y0) (omit the constant), where

− log f̄α0,x0(Y0) =

6∑

j=0

(
M log|Σj,α0,xj |+ tr

(
Σ

−1

j,α0,xjYjY
H
j

))
+7LM log(π)

The problem is non-convex, as f ML(α0, x0) is a DC function
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Coordinate descent (CD) method for joint ML estimation
At each step of one iteration, optimize f ML(α0, x0) w.r.t. one
coordinate in {αn : n ∈ N 0} ∪ {xj ,ℓ : j ∈ {0, · · · , 6}, ℓ ∈ L}
Given α0 and x0 obtained in the previous step, the coordinate
optimization w.r.t. αn equals to the optimization of the
increment of d in αn:

min
d∈[−αn,1−αn]

f ML(α0 + dei , x0) = f ML(α0, x0) + f α,n(d ,α0, x0)

f α,n(d ,α0, x0) ,
6∑

j=0

(
log(1 + dgn,js

H
n Σ

−1
j,α0,x

sn)−
dgn,js

H
n Σ

−1
j,α0,x

Σ̂Yj
Σ

−1
j,α0,x

sn

1 + dgn,jsHn Σ
−1
j,α0,x

sn

)

and coordinate optimization w.r.t. xj ,ℓ equals to the
optimization of the increment of d in xj ,ℓ:

min
d∈[−xj,ℓ,∞)

f ML,j(α0, xj + deℓ) = f ML,j(α0, xj) + f x,ℓ(d ,α0, x0)

f x,ℓ(d ,α0, x0) ,
eTℓ Σ

−1
j eℓ

1 + deTℓ Σ
−1
j eℓ

−
eTℓ Σ

−1
j Σ̂Yj

Σ−1
j eℓ

(1 + deTℓ Σ
−1
j eℓ)2
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Coordinate descent (CD) method for joint ML estimation

Theorem (Solutions of Optimizations w.r.t. αn and xj ,ℓ)

Given α0 and x0 obtained in the previous step, the optimal
solution of the coordinate optimization w.r.t. αn is

d
∗
ML,1,n(α0,Σ

−1
j,α0,x

) , argmin
d∈An(α0,x0)∪{−αn,1−αn}

f α,n(d ,α0, x0)

and the optimal solution of the coordinate optimization w.r.t. xj ,ℓ
is

d
∗
ML,2,ℓ(α0,Σ

−1
j,α0,x

) , max

{
eTℓ Σ

−1
j,α0,x

Σ̂Yj
Σ

−1
j,α0,x

eℓ − eTℓ Σ
−1
j,α0,x

eℓ

(eTℓ Σ
−1
j,α0,x

eℓ)2
,−xj,ℓ

}

where

An(α0, x0) ,{d ∈ [−αn, 1− αn] : hα,n(d ,α0, x0) = 0}

hα,n(d ,α0, x0) ,
6∑

j=0

(
gn,j s

H
n Σ

−1
j,α0,x

sn

1 + dgn,jsHn Σ
−1
j,α0,x

sn
−

gn,j s
H
n Σ

−1
j,α0,x

Σ̂Yj
Σ

−1
j,α0,x

sn

(1 + dgn,j sHn Σ
−1
j,α0,x

sn)2

)

Shanghai Jiao Tong University Ying Cui IEEE ICC Tutorial 2021 53 / 73



Prior distribution of device activities

Assume that αj , j ∈ {0, 1, · · · , 6} are random, and their
p.m.f.s pj (αj ) , j ∈ {0, 1, · · · , 6} are known to BS 0

Adopt the MVB model for pj (αj) , j ∈ {0, 1, ..., 6}
[Ding et al. (2011)]:

pj (αj ) = exp

( ∑

ω∈Ψj

(
cω
∏

n∈ω
αn

)
+ bj

)

Ψj is the set of the nonempty subsets of Nj

bj , log(
∑

αj∈{0,1}Nj exp(
∑

ω∈Ψj
(cω
∏

n∈ω αn))) is the

normalization factor
cω is the coefficient reflecting the correlation among αn, n ∈ ω
cω, ω ∈ Ψj can be estimated based on the historical device
activity data using existing methods [Ding et al. (2011)]
Given pj (αj) in any form, the coefficients cω, ω ∈ Ψj can be
calculated [Ding et al. (2011), Lem. 2.1]
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Prior distribution of interference powers
Assume that xj , j ∈ {0, 1, · · · , 6} are random, and their
p.d.f.s, g(xj ), are known to BS 0

Assume that the locations of the active interfering devices in
N \ N 0 follow a homogeneous PPP with density λ

Approximate the p.d.f. of xj with a Gaussian distribution with
the same mean and variance

gj (xj) =
1

(
√
2πδj)L

exp

(
−
∑

ℓ∈L(xj ,ℓ − µj)
2

2δ2j

)
, j ∈ {0, 1, ..., 6}

xj,ℓ =
∑

n∈N\N 0
αngn,j |sn,ℓ|2

sn,ℓ, n ∈ N are i.i.d. CN (0, 1)

Define:

U0(x) =





√
3

3
x ,

√
3

2
R ≤ x <

√
3R

−
√

3
3
x + 2R,

√
3R ≤ x ≤ 3

√
3

2
R

0, 3
√

3
2

R ≤ x

U1(x) =





√
3

3
x + R,

√
3R ≤ x < 3

√
3

2
R

−
√

3
3
x + 4R, 3

√
3

2
R ≤ x ≤ 2

√
3R

−
√

3
3
x + 3R, 2

√
3R ≤ x < 5

√
3

2
R
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Prior distribution of interference powers

Lemma (Mean and variance for hexagon model)

If cell j ∈ {0, 1, · · · , 6} is modeled as a hexagon with side length
R , then we have:

µ0 = 12λ

∫ ∞
√

3
2

R

∫ √
3

3
x

0
(x2 + y2)−

α
2 dydx − 12λ

∫ 3
√

3R
2

√
3R
2

∫ U0(x)

0
(x2 + y2)−

α
2 dydx

µj =
µ0

2
+ 6λ

∫ ∞
√

3
2

R

∫ √
3

3
x

0
(x2 + y2)−

α
2 dydx − 2λ

∫ 5
√

3R
2

√
3R

∫ U1(x)

U0(x)
(x2 + y2)−

α
2 dydx

j ∈ {1, · · · , 6}

δ20 = 12λ

∫ ∞
√

3
2

R

∫ √
3

3
x

0
(x2 + y2)−α

dydx − 12λ

∫ 3
√

3R
2

√
3R
2

∫ U0(x)

0
(x2 + y2)−α

dydx

δ2j =
σ2
0

2
+ 6λ

∫ ∞
√

3
2

R

∫ √
3

3
x

0
(x2 + y2)−α

dydx − 2λ

∫ 5
√

3R
2

√
3R

∫ U1(x)

U0(x)
(x2 + y2)−α

dydx

j ∈ {1, · · · , 6}
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Prior distribution of interference powers

The Gaussian distribution with the same mean and variance is
a good approximation of the exact p.d.f. of xj
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-9

5 6 7 8 9 10 11 12

p
d
f
o
f
x
0
,ℓ
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Gaussian Approximation

(a) BS 0
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Gaussian Approximation

(b) BS 1

Figure: Comparison between the histogram of xj,ℓ (reflecting the p.d.f. of
xj,ℓ) and its corresponding Gaussian approximation. R = 200, λ = 0.0005
and α = 4.
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Joint MAP estimation for cooperative activity detection
The conditional density of α0 and x0, given Y0, is given by:

f
α0,x0|Y0

(
α0, x0,Y0

)
= f̄α0,x0 (Y0)

( 6∏

j=0

pj (αj )

)( 6∏

j=0

gj (xj )

)

=
exp

(
−∑6

j=0 tr

(
Σ

−1
j,α0,xj

YjY
H
j

))

π7LM
∏6

j=0 |Σj,α0,xj |M(
√
2πδj )L

exp

( 6∑

j=0

∑

ω∈Ψj

(
cω
∏

i∈ω

ai

)
+ bj

)
exp

(
−

6∑

j=0

L∑

ℓ=1

(xj,ℓ − µj )
2

2δ2
j

)

Joint MAP estimation of α0 and x0 with BS cooperation:

min
α0,x0

f MAP(α0, x0) , f ML(α0, x0)−
1

M

6∑

j=0

∑

ω∈Ψj

(
cω
∏

n∈ω

αn

)
+

1

M

6∑

j=0

L∑

ℓ=1

(xj,ℓ − µj )
2

2δ2
j

s.t. αn ∈ [0, 1], n ∈ N 0

xj,ℓ ≥ 0, j ∈ {0, 1, · · · , 6}, ℓ ∈ L

f MAP(α0, x0) is − 1
M
f
α0,x0|Y0

(
α0, x0,Y0

)
(omit the constant)

The impacts of the prior distributions of α0 and x0 decrease
with M , as |f MAP(α0, x0)− f ML(α0, x0)| decreases with M

The problem is non-convex
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Coordinate descent (CD) method for joint MAP estimation
At each step of an iteration, optimize fMAP(α0, x0) w.r.t. one
coordinate in {αn : n ∈ N 0} ∪ {xj ,ℓ : j ∈ {0, · · · , 6}, ℓ ∈ L}
Given α0 and x0 obtained in the previous step, the coordinate
optimization w.r.t. αn equals to the optimization of the
increment d in αn:

min
d∈[−αn,1−αn ]

fMAP(α0 + dei , x0) = fMAP(α0, x0) + f̃α,n(d,α0, x0)

f̃α,n(d,α0, x0) , f α,n(d,α0, x0)−
d

M

6∑

j=0

∑

ω∈Ψj :n∈ω

(
cω

∏

n
′∈ω,n

′ 6=n

α
n
′

)

and the coordinate optimization w.r.t. xj ,ℓ equals to the
optimization of the increment d in xj ,ℓ:

min
d∈[−xj,ℓ,+∞)

f ML,j(α0, xj + deℓ) +
(xj,ℓ − µj + d)2

2Mσ2
j

= f ML,j(α0, xj) + f̃x,j,ℓ(d,α0, x0)

f̃x,j,ℓ(d,α0, x0) , log(1 + deTℓ Σ
−1
j,α,xeℓ)−

deT
ℓ
Σ

−1
j,α,xΣ̂Yj

Σ
−1
j,α,xeℓ

1 + deT
ℓ
Σ

−1
j,α,xeℓ

+
(xj,ℓ − µj + d)2

2Mσ2
j
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Coordinate descent (CD) method for joint MAP estimation

Theorem (Solution of Optimization w.r.t. αn)

Given α0 and x0 obtained in the previous step, the optimal
solution of the coordinate optimization w.r.t. αn is:

d
∗
MAP,1,n(α0,Σ

−1
j,α0,x

) = argmin
d∈Ãn(α0,x0)∪{−αn,1−αn}

f̃α,n(d ,α0, x0)

where

Ãn(α0, x0) ,{d ∈ [−αn, 1− αn] : h̃α,n(d ,α0, x0) = 0}

h̃α,n(d ,α0, x0) ,hα,n(d ,α0, x0)−
1

M

6∑

j=0

∑

ω∈Ψj :n∈ω


cω

∏

n
′∈ω,n

′ 6=n

αn
′
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Coordinate descent (CD) method for joint MAP estimation

Theorem (Optimal Solution of Optimization w.r.t. xj ,ℓ)

Given α0 and x0 obtained in the previous step, the optimal
solution of the coordinate optimization w.r.t. xj ,ℓ is:

d
∗
MAP,2,ℓ(α0,Σ

−1
j,α0,x

) = argmin
d∈X̃j,ℓ(α0,x0)∪{−xj,ℓ}

f̃x,j,ℓ(d ,α0, x0)

where

X̃j,ℓ(α0, x0) ,{d ≥ −xj,ℓ : h̃x,j,ℓ(d ,α0, x0) = 0}

h̃x,j,ℓ(d ,α0, x0) ,
eTℓ Σ

−1
j,α,xeℓ

1 + deTℓ Σ
−1
j,α,xeℓ

−
eTℓ Σ

−1
j,α,xΣ̂Yj

Σ
−1
j,α,xeℓ

(1 + deTℓ Σ
−1
j,α,xeℓ)

2
+

d + xj,ℓ − µj

Mδ2j
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Algorithm for statistical device activity detection
Algorithm 4 (Statistical device activity detection with BS cooperation)

1: Initialization: choose Σ
−1
α0

= 1
σ2 IL, α0 = 0, x = 0.

2: repeat

3: for n ∈ N 0 do

4: Calculate dn = d
∗
ML,1,n(α0,Σ

−1
j,α0,x

) (ML) or dn = d
∗
MAP,1,n(α0,Σ

−1
j,α0,x

)

(MAP).
5: Update αn = αn + dn (CD update).

6: Update Σ
−1
j,α0,x

= Σ
−1
j,α0,x

−
dngnΣ

−1
j,α0,x

sns
H
n Σ

−1
j,α0,x

1+dngnsHn Σ
−1
j,α0,x

sn
, j ∈ {0, 1, · · · , 6} (estimated

covariance matrix update).
7: end for

8: for j = 0 to 6 do

9: for ℓ ∈ L do

10: Calculate dℓ = d
∗
ML,2,ℓ(α0,Σ

−1
j,α0,x

) (ML) or dℓ = d
∗
MAP,2,ℓ(α0,Σ

−1
j,α0,x

)

(MAP).
11: Update xℓ = xℓ + dℓ (CD update).

12: Update Σ
−1
j,α0,x

= Σ
−1
j,α0,x

−
dℓΣ

−1
j,α0,x

eℓe
T
ℓ Σ

−1
j,α0,x

1+dℓe
T
ℓ
Σ

−1
j,α0,x

eℓ
(estimated covariance matrix

update).
13: end for

14: end for

15: until α0 and x satisfy some stopping criterion.

Shanghai Jiao Tong University Ying Cui IEEE ICC Tutorial 2021 62 / 73



Algorithm for statistical device activity detection with BS

cooperation
Under the mild condition that each coordinate optimization
has a unique optimal solution, the algorithm converges to a
stationary point of the corresponding statistical estimation
problem, as the number of iterations goes to infinity
[Bertsekas (1999), Prop. 2.7.1]

Different initial points usually correspond to different
stationary points
Numerical results show that the stationary point corresponding
to the initial point α0 = 0, x = 0 usually provides good
detection performance

The computational complexities of each iteration of the joint
ML estimation and the joint MAP estimation with BS
cooperation are O(N0L

2 + L3) and

O(
∑6

j=0 Nj2
Nj + N0L

2 + L3), respectively

The actual computational complexity for the joint MAP
estimation is much lower as α0 is a sparse vector
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Simulation setup
N0 devices are uniformly distributed in cell 0, and each device
in cell 0 is active with probability pa (marginal p.m.f.)
The locations of the devices out of cell 0 are distributed
according to a homogeneous PPP with λ

The number of active devices in any other cell is random and

has average 3
√
3

2 R2λ

Treat the devices in cell 0 and the other cells differently to
separate the impacts of N0 and inter-cell interference intensity
for non-cooperative detection
Independently generate 2000 realizations for the locations of
devices, sn, αn, n ∈ N and hn,j , n ∈ N , j ∈ {0, 1, · · · , 6}, and
evaluate the average error probability over all 2000 realizations
Choose R = 200, λ = 0.005, pa = 0.05, N0 = 500, γ = 3,
L = 40, M = 60, and σ2 = R−γ

10 , unless otherwise stated
Consider three baseline schemes: AMP (non-cooperative)
[Liu & Yu (2018)], AMP (cooperative) [Chen et al. (2020)],
ML [Fengler et al. (2021)] with numerically optimized
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i.i.d. device activities
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(c) λ
Figure: Error probability versus pilot length L, number of antennas M ,
and density of active interfering devices λ.

Proposed ML (non-cooperative) significantly outperforms ML,
especially in the high interference regime

The gain comes from the explicit consideration of interference

Proposed MAP (non-cooperative) significantly outperforms
proposed ML (non-cooperative), and the gain decreases with L and
M and increases with λ

The gain derives from the incorporation of the prior
distributions of the device activities and interference powers
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i.i.d. device activities
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(c) λ
Figure: Error probability versus pilot length L, number of antennas M ,
and density of active interfering devices λ.

Each proposed cooperative scheme significantly outperforms its
non-cooperative counterpart

The gain is due to the exploitation of more observations from
neighbor BSs and the utilization of more network parameters

Performance of proposed MAP (cooperative) is similar to that of
proposed ML (cooperative)

Prior knowledge of the device activities and interference
powers brings a relatively smaller gain under BS cooperation
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i.i.d. device activities
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Figure: Error probability versus pilot length L, number of antennas M ,
and density of active interfering devices λ.

The statistical estimation schemes (i.e., proposed joint MLs,
proposed joint MAPs, and ML) significantly outperform AMPs

The error probability of each scheme decreases with L and M and
increases with λ
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Group device activities in first instance
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Figure: Error probability versus correlation coefficient η.

The error probabilities of proposed MAP (non-cooperative) and the
proposed MAP (cooperative) significantly decrease with η, while the
error probabilities of the other schemes nearly do not change with η

Demonstrate the value of exploiting the correlation among
device activities
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Group device activities in second instance
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Figure: Error probability versus group size N0

K
. L = 30.

When N/K increases, the variance of the number of active devices
increases and the sample space of device activities reduces

The error probabilities of proposed ML (non-cooperative), proposed
ML (cooperative), and ML increase with N0

K

The error probability significantly increases when the number
of active devices is large if correlation is not utilized

The error probabilities of proposed MAP (non-cooperative) and
proposed MAP (cooperative) decrease with N0

K

The exploitation of correlation narrows down the set of
possible activity states
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Conclusion
We consider non-cooperative device activity detection and
cooperative device activity detection in a multi-cell network

Under each detection mechanism, we formulate the problems
for the joint ML estimation and the joint MAP estimation of
both device activities and interference powers

We propose an iterative algorithm to obtain a stationary point
of each problem using the coordinate descent method

Each proposed joint ML estimation extends the existing ML
estimation by additionally estimating interference powers

Each proposed joint MAP estimation further enhances the
corresponding joint ML estimation by exploiting prior
distributions of device activities and interference powers

The proposed cooperative joint ML and MAP estimations
outperform their non-cooperative counterparts, at the costs of
increasing backhaul burden, knowledge of network parameters
and computational complexities
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