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Abstract—Transduction is a powerful method for high-effort
logic optimization. Unlike many local heuristics that focus on
area-decreasing steps, transduction incorporates area-increasing
transformations to restructure circuits, thereby uncovering
unique opportunities for subsequent area reductions. Despite its
potential in area optimization, transduction is computationally
expensive, primarily due to the high runtime cost of computing
don’t-cares. To reduce its runtime and make it more practical,
we present a GPU-accelerated fast transduction algorithm. We
first explore how to maximize the parallelism of transduc-
tion, followed by GPU-friendly kernel optimization techniques
for reduced memory consumption and improved performance.
Compared to the state-of-the-art transduction implementation
in ABC, our method achieves an average speedup of 130X
while delivering superior and-inverter graph (AIG) results on
the large benchmarks from the IWLS2022 Programming Contest.
The source code of this work is available at https://github.com/
Lin-HKUST-Guangzhou/gpu-transduction.

I. INTRODUCTION

In the design flow of integrated circuits, logic synthesis
is a pivotal process that transforms register-transfer level
(RTL) descriptions into optimized gate-level netlists. A key
component of this process is logic optimization, which refines
the design based on a generic intermediate representation, such
as And-Inverter Graph (AIG). One primary goal during logic
optimization is to minimize the number of AIG nodes, thereby
reducing the design area. This reduction is useful not only for
area-constrained designs, but also for timing-critical designs,
as a smaller area can facilitate further timing optimization,
even if it results in an area increase.

To tackle increasingly large and complex designs, the
focus of logic optimization has shifted towards fast, local-
transformation-based algorithms, including rewriting [1]-[4],
resubstitution [5]-[7], and refactoring [8]. While each al-
gorithm individually may be suboptimal, interleaving these
heuristics can lead to significant area reductions, as demon-
strated by the resyn2 process in ABC [9]. However, even
such an iterative approach can still become trapped at local
minima easily, because all these algorithms focus only on area-
reducing transformations.

To overcome this limitation, the concept of transduction,
originally introduced in the 1980s [10], has been revisited and
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Fig. 1: Our GPU-accelerated transduction achieves 130x
speedup over the state-of-the-art transduction [11], enhancing
the capabilities of open-source GPU-based logic synthesis.

modernized (¢t ransduction in ABC) [11]. This new ver-
sion leverages observability don’t cares (ODCs) to introduce
additional wires without altering the functionality, a process
known as transformation. This is followed by reduction, which
removes constant edges and nodes based on ODCs. Since each
AIG node can have a maximum of two fanins, the transforma-
tion phase, which involves adding wires, effectively increases
the number of nodes. This unconventional AIG restructuring
presents a unique optimization opportunity for the reduction
phase. Although transformation initially increases the area,
the subsequent reduction may lead to a substantial decrease,
resulting in an enhanced overall solution.

Despite its potential for area optimization, transduction
faces challenges due to its extremely high runtime, which
limits its practicality and scalability. For instance, processing
an 18-input AIG with 10,000 nodes can take over three
days using current methods. Recent advancements in GPU
computing for various EDA tasks [12]-[33] have motivated
us to investigate GPU acceleration for transduction. However,
developing an efficient, GPU-parallel transduction algorithm
presents two main challenges.

Challenge 1: The current CPU transduction framework
is unsuitable for GPU implementation. The state-of-the-
art CPU transduction framework [11] utilizes both multi-
input AIG (MIAIG) and Binary Decision Diagram (BDD),
with BDDs used for functional manipulation involving ODC.
Managing these dual logic representations on a GPU would
require substantial precise GPU memory and more sequential,
difficult-to-parallelize control-flow operations to synchronize
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Fig. 2: Our transduction flow

between the AIG and BDD. This creates significant challenges
in memory management and efficiency if the GPU-parallel
approach directly adapts the existing CPU version.

Challenge 2: Transduction has unique computational
patterns that have not been optimized for GPU accelera-
tion. Current GPU-accelerated logic optimization algorithms,
such as rewriting [22] and resubstitution [23], focus on local
transformations, with computational demands roughly propor-
tional to the number of AIG nodes. In contrast, transduc-
tion relies on ODCs and involves computations that scale
exponentially with the number of primary inputs. This sub-
stantial computational workload, combined with unexplored
computational patterns, requires novel parallelization methods
that are fundamentally different from existing GPU-parallel
approaches [22], [23], [34].

To tackle these challenges, we propose a GPU-based trans-
duction method with the following key contributions:

e We introduce an MIAIG-based, parallel transduction
framework, as shown in Figure 2. This framework mod-
ularizes the transduction process, enabling most modules
to run on the GPU and allowing for module reuse
(e.g., ODC Analysis) to maximize the efficiency with
minimized development efforts.

e We develop customized, fine-grained parallelization
strategies for individual modules within the transduction
flow to maximize parallelism. Additionally, we propose a
depth-aware heuristic to minimize increase of AIG depth.

o We implement a bit-packing technique to reduce GPU
memory consumption and propose two optimizations to
address efficiency challenges associated with bit packing.

Experimental results demonstrate that our method achieves a
130x speedup over the state-of-the-art CPU-based implemen-
tation [11], while also improving size and depth. Furthermore,
a new flow that integrates our method with existing GPU-based
logic optimization algorithms is 87 faster than a high-effort,
transduction-based flow in ABC. This work will be open-
sourced.

II. PRELIMINARIES

A. (Multi-Input) And-Inverter Graphs

An and-inverter graph (AIG) is a type of directed acyclic
graph (DAG) that is used to represent Boolean logic networks.
In an AIG, the nodes are categorized into two-input nodes,
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Fig. 3: Mlustration of different stages in Figure 2

TABLE I: Explanation of Variables Used in This Paper

Variable Explanation

N number of primary inputs

P an input pattern

PI/PO set of all primary inputs/outputs
fanins(z) set of all fanins of node x
val(n,p) logic value of node n under p
isopc(m,p) whether node n is ODC under p

isEdgeODC(n, fi,p)
isEdgeConst(n, fi,v)

whether edge(n, f7) is ODC under p
whether edge(n, f1) is constant v

performing logical conjunctions (AND operations), and zero-
input nodes, known as primary inputs (PIs). The edges of
the graph may include inverters to denote logical negation.
Some nodes are connected to primary outputs (POs), which
correspond to the outputs of the logic network. The size of
an AIG is the number of nodes. The level of a node is the
maximum number of nodes in a path from a PI to the node.
The depth of an AIG is the largest level of its POs.

A multi-input and-inverter graph (MIAIG) [11], on the other
hand, extends the traditional AIG by allowing each AND node
to accept multiple inputs. This enhancement provides greater
flexibility, which is essential for the transduction method.

B. Observability Don’t-Cares

Under a specific combination of PIs’ values (referred to as
an input pattern p), the value of a node n may be unobservable
by any POs, i.e., changes in the logic value of node n do not
change the value of any POs. The input pattern p is called
an observability don’t care (ODC) for node n. ODCs allow
us to modify the Boolean functions of internal nodes while
preserving the AIG’s functionality, providing great flexibility
and potential for optimization. We compute compatible sets of
ODCs instead of maximum sets, which are used in previous
work [11] most of the time.

III. MASSIVELY PARALLEL TRANSDUCTION

Table I explains the notations used in this paper.

A. Overview

Figure 2 illustrates our iterative transduction process. Each
iteration begins by selecting a node for the Transform oper-
ation, followed by executing Reduce and Decompose on the
entire AIG. This iterative process ensures that each node is
selected exactly once, following a topological order. Below,
we detail an iteration using the example provided in Figure 3.



Algorithm 1: Parallel ODC Analysis

Data: MIAIG, input patterns P = {0, 1}"
Result: i sODC, isEdgeODC
1 @ Levelization
// Exhaustive Simulation (lines 2-4)
2 for [ < 0 to maxLevel do
3 L for each node n of level [ and each p € P in parallel do
4

L calculate val(n,p)
// (© ODC Calculation (lines 5-17)
5 Initialize all 1sODC and isEdgeODC to true
6 Initialize 1sODC(po, *) to false for all po € PO
7 for | <— maxLevel to 0 do

8 for each node n of level [ and each p € P in parallel do
9 if isoDC(n,p) = false then

10 select care € {z €fanins(n)|val(z,p) = 0}
11 if care #none then

12 L isEdgesODC(n,care,p) « false

13 else

14 L isEdgesODC(n, *,p) < false

15 for each fi € fanins(n) do

16 if isEdge0ODC(n, fi,p) =false then

17 L L isODC(fi,p) «false

(D Transform: This initial step identifies potential addi-
tional connections that can be established without altering
the Boolean functions of the POs. In the example from
Figure 3, node H is selected for transformation during this
iteration. Using results from ODC Analysis, we determine
that connecting node D to node H (green arrow) is a valid
transformation that preserves the functionality of the AIG.

@ Reduce: The subsequent step performs ODC-based re-
duction to eliminate redundant edges and nodes. In Figure 3,
we identify two redundant edges, between node D and node
F, and node B and node G, highlighted in red. Once these
edges are removed, nodes F' and G are left with only one fan-
in each, making them redundant. Consequently, these nodes
are also removed from the graph.

(@ Decompose: Finally, we decompose the MIAIG into
a standard AIG by breaking multi-fanin AND nodes into
cascaded two-fanin AND nodes. This decomposition facilitates
precise AIG size calculation, enabling us to discard changes
from less promising iterations. For instance, in Figure 3, the
3-fanin node H is decomposed into two 2-fanin nodes, H and
H’, resulting in an overall reduction of one node. If H' already
exists in the original AIG, the node reduction increases to two.

B. ODC Analysis

The ODC analysis module computes simulated logic values
and Observability Don’t Care (ODC) results, serving as a
crucial prerequisite for both transformation and reduction
processes. As outlined in Algorithm 1, ODC analysis com-
prises three key steps: @) levelization (line 1), B exhaustive
simulation (lines 2—4), and (©) ODC calculation (lines 5-17).

Levelization involves sorting nodes into levels using the
recursive relationship defined as follows:

if x € PI
otherwise

level(x) = {O’

1 + maxy e fanins(2) leVEl(Y),

Nodes at the same level have no dependencies among
each other, allowing for concurrent processing. This level-
based parallelism is used in both subsequent steps: exhaustive
simulation and ODC calculation.

Exhaustive Simulation (lines 2-4) computes the logic
values of each node for all possible 2" input patterns. The
logic value of a PI is determined by the input pattern, while
the logic value of an AND node is determined by the logical
conjunction of its fanins’ logic values. As shown in line 2, we
iterate over levels from 0 to the maximum level, calculating
the logic values for each node and pattern in parallel (line 3).
Figure 4 illustrates this parallelization. For instance, if there
are 100 nodes at a level, we allocate 100 x 2 GPU threads
for simultaneous simulation.

ODC Calculation (lines 5-17) identifies the ODCs of each
node and edge in reverse topological order. Initially, every
node and edge is considered ODC (line 5), except for POs
that can never be ODC (line 6). For each level [ in reverse
order (line 7), we process each node at level [ with each input
pattern in parallel. Processing a node n involves analyzing the
ODC of its fanin nodes and edges, as follows:

e Case 1: If node n is ODC under pattern p, all its fanin
nodes and edges are also ODC. Since isEdgeODC and
i1s0ODC are initialized to true, no modification is needed.

o Case 2: If n is not ODC under pattern p (lines 9—-17), let
S be the set of n’s fanins with a value of 0 for pattern p.

— Case 2.1: If S is not empty, select a care fanin
from S (line 10), making the other fanins ODC
(line 12) since the logic value of AND node n is
always 0, determined by the O-value care fanin and
independent of other fanin values.

— Case 2.2: If S is empty, no fanin edges of n are
ODC. Set all 1sEdgeODC for node n and pattern p
to false (line 14).

— Final Step: For non-ODC fanin edges of n, set their
corresponding nodes to be non-ODC (lines 15-17).

There are multiple methods for selecting the care fanin in
Case 2.1. We employ two strategies from previous work [11]:
selecting the fanin with the smallest index or randomly.

C. Transformation

The transformation step involves adding new edges between
nodes. Although this operation does not change the size of the
MIAIG itself, it increases the size of the AIG derived from
the MIAIG, enabling unconventional structural changes that
may uncover new optimization opportunities. To add a new
edge from node a to node b (i.e., making a a fanin of b), the
following two conditions must be satisfied:

1) Node a must not be a transitive fanout of node b,

meaning there should be no paths from b to a. If this
condition is not met, a loop would be created, resulting
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in incorrect logic. To efficiently verify this condition,
we utilize a level-based parallelization scheme. For each
level | € [0, maxLevel], we examine each node at this
level in parallel to determine if it is a transitive fanout
of node b by checking whether any of its fanins is a
transitive fanout of b.

2) For every input pattern p, the condition val(a,p) = 0
and val(b,p) = 1 must not occur simultaneously. To
expedite this check, we allocate 2V GPU threads, with
each thread responsible for checking a different p.

Depth-Aware Heuristic. To prevent a significant increase

in the depth of the final AIG when adding edges from higher-
level nodes to lower-level nodes, we propose a depth-aware
heuristic for the transformation process. For a node n, we
consider only the half of the nodes in the MIAIG that are
closest to n in topological order as candidates for fanins
during transformation. This strategy prioritizes selecting fanins
with comparable depths to minimize depth increases, while
ensuring a sufficient number of candidates for transformation.

D. Reduction

The reduction step aims to identify and remove edges
that can be considered constant. For instance, if an edge
consistently holds a logic value of 1 across all input patterns,
excluding those that are ODCs, it is deemed a constant 1 and
can be removed. This requires examining all 2V i sEdgeODC
results for each edge. When these 2V results are checked
sequentially, the process can terminate as soon as both logic
values 0 and 1 are found, indicating that the edge cannot
be constant. Since most edges are not constant and will
trigger early termination, this mechanism effectively reduces
redundant computations and enhances efficiency.

To leverage both parallelism and the early-termination
mechanism concurrently, we have designed a parallel constant
check kernel, as illustrated in Algorithm 2. For each edge, a
block of 1024 threads is allocated, with each thread respon-
sible for examining 27/1024 input patterns. This workload
distribution offers the following benefits:

o Parallelism: A block of 1024 threads is allocated per

edge, allowing for full utilization of GPU resources. As

Algorithm 2: Parallel Constant Check

Data: MIAIG G, input patterns P = {0, 1}V, i sEdgeODC
Result: isEdgeConst
// This thread block checks edge (n, fi)

1 Initialize all isEdgeConst to true

2 for subset P’ C P in parallel do

3 for pattern p € P’ do

4 if isEdgeoDC(n,i,p) = false then

5 v <+ val(n, fi,p) ® 1

6 isEdgeConst(n, fi,v) < false

7 if both isEdgeConst(n, f4,0/1) = false then
8 L Terminate

long as the AIG has more than 10 edges, all GPU cores
are actively engaged (assuming a typical GPU has around
10k cores), maximizing resource utilization.

o Early Termination: Each thread sequentially checks
2%/1024 input patterns. This workload is substantial
enough to ensure that when early termination occurs,
a significant portion of the uncompleted work can be
discarded, further enhancing efficiency.

IV. BIT PACKING AND OPTIMIZATION

The previous section introduced our maximally parallel
transduction framework. However, maximizing theoretical par-
allelism in transduction does not always translate into optimal
performance in practice, primarily due to the unique char-
acteristics of GPU architecture. In this section, we enhance
the transduction framework to improve memory and runtime
efficiency using a technique called bit packing.

A. Bit Packing

Bit packing involves compressing multiple Boolean vari-
ables into a single multi-bit integer. In this work, we represent
32 Boolean values using a 32-bit integer. For example, we
encode the Boolean simulation results, val, of a node n for
input patterns p = 0,...,31 using a 32-bit integer v. In this
representation, val(n,p) corresponds to the p-th bit of v. This
compact representation provides several advantages:

o Reduced Memory Consumption. Although a Boolean
type conceptually requires only one bit, a bool type in
CUDA/C++ occupies 1 byte (8 bits). Consequently, bit
packing can significantly reduce memory usage, which is
crucial given the limited GPU memory compared to CPU
memory. Additionally, bit packing minimizes unnecessary
data movement (since 7 out of 8 bits in a bool variable
are redundant), thereby enhancing the GPU performance.

« Efficient Bitwise Operations. 32-bit integers are native
data types in CUDA and support efficient bitwise opera-
tions. For instance, with 32 input patterns, simulating the
logic value of an AIG node can be efficiently executed
with a single bitwise AND operation instead of 32
separate Boolean AND operations.

While bit packing offers several advantages, it also presents

challenges that must be addressed for effective utilization.



B. Challenge #1: Serialized Modifications for Packed Bits

When 32 Boolean variables are stored in a single 32-bit
integer, updating any of these Boolean values requires a write
operation to the memory address of the integer in CUDA.
Simultaneous write operations can lead to race conditions, ne-
cessitating serialized operations (using atomic functions) to
maintain correctness. Such serialization significantly reduces
parallelism and negatively affects performance. For example,
in an AIG with 18 PIs and 4266 nodes, bit packing slows
down ODC calculation by over 8.

Optimization #1. We implement two changes to address
this challenge. First, we use a single thread to compute
32 Boolean results represented by a single 32-bit integer.
Since serialized modifications are unavoidable, consolidating
these operations into a single thread better utilizes GPU
resources. Second, we allocate thread-local copies for 1 sODC
and isEdgeODC, compute their results locally, and update
the global results once at the end of the thread. This approach
reduces the need for slow global memory access by leveraging
the faster thread-level local memory.

C. Challenge #2: Leveraging Bitwise Operations in Complex
Computations with Branching

To fully capitalize on bit packing, computations should
be expressed using bitwise operations whenever possible.
However, many steps in transduction involve not only complex
computations but also branching conditions, complicating the
effective use of bitwise operations. For example, in lines 4-6
of Algorithm 2, an if condition in line 4 prevents us from
utilizing bitwise operations for the computation in line 6.
Moreover, the computed values v in line 5 are used as an
index for isEdgeConst in line 6.

Optimization #2. To address the if condition, we use
bitwise AND operations to filter out scenarios that do not
meet our criteria (false for the if condition). To manage
computed values used as indices, we separately handle cases
when the value is 0 or 1.

Our approach to the above example is shown in Algo-
rithm 3. First, we perform a bitwise XOR operation between
isEdgeODC(n, 4, p) and 2 — 1 (whose binary representation
consists of all 1s) to extract bits of interest stored in care.
Next, we perform a bitwise AND between care and val to
find all the bits with a value of 1 and update i sEdgeConst
accordingly. These bits correspond to all input patterns p in
the original Algorithm 2 where the if condition in line 4 is
satisfied and v in line 5 equals 0. Similarly, for the other case,
we find all relevant bits with a value of 0 using a bitwise AND
and update isEdgeConst accordingly.

V. EXPERIMENTAL RESULTS

A. Setup

The proposed GPU-accelerated transduction method is im-
plemented in CUDA and was evaluated on an Ubuntu 22.04
server equipped with AMD EPYC 7542 CPUs and an NVIDIA
GeForce RTX 4090 GPU with 48G DRAM.

Algorithm 3: Bitiwse Operations for Constant Check

1 care + isEdgeODC(n,i,p) ® (2¥ — 1)
2 if care & val(n, fi,p) then
3 L isEdgeConst(n, fi,0) < false

4 if care & (val(n, fi,p) ® (2¥ — 1)) then
5 L isEdgeConst(n, fi,1) + false

For evaluation, we used the truth-table benchmarks from the
IWLS 2022 Programming Contest!, which were also employed
by the previous transduction research [11]. These benchmarks
were converted into AIGs using ABC strash [9]. We
selected AIGs with at least 16 PIs and a minimum of 3000
nodes, as these sizes present a significant challenge to the
efficiency of transduction methods. We iteratively applied all
existing GPU-based logic optimization algorithms [22], [23],
[34] to these large AIGs until convergence. Specifically, we in-
terleaved the resyn2 and resyn2rs optimization sequences
from the GPU-based logic synthesis tool CULS? until no
further improvements could be made. This process generates
local minima results where state-of-the-art GPU-based logic
optimization tool reaches its limit, highlighting a potential
application of our GPU-accelerated transduction method as
part of a more comprehensive GPU-based synthesis tool.
Details of the resulting AIGs are provided in the ‘“Statistics”
column of Table II.

B. Transduction Results

First, we conducted experiments to compare the state-of-the-
art transduction [11] (&transduction in ABC) with our
GPU-accelerated transduction method. The results, presented
in the “Single Transduction” column of Table II, demon-
strate that our parallel approach significantly outperforms the
CPU implementation. Specifically, our method produces better
AIGs in terms of both size and depth, achieving an average
speedup of 129.88x. Notably, our average depth is 6.75X
smaller than that of &transduction, highlighting the ef-
fectiveness of our depth-aware heuristic during transduction.

C. Results of Transduction-Based Optimization Sequences

In this subsection, we compare transduction methods in
a practical setting, where multiple optimization algorithms
are iteratively applied as part of an optimization sequence to
achieve optimal results. In the experiment, our optimization
sequence interleaves our GPU-based transduction with exist-
ing GPU-based optimization sequences resyn2/resyn2rs
from CULS. For comparison, we used the optimization se-
quence &transtoch as the baseline, as developed by the
authors of [11]. This sequence interleaves mfs2, if, dc2,
strash and &transduction in ABC with randomized
parameters. Note that st ranstoch and our sequence are not
identical due to certain constraints. Specifically, the algorithms
used by &stranstoch do not have GPU versions, preventing

Uhttps://www.iwls.org/iwls2022/
Zhttps://github.com/cuhk-eda/CULS



TABLE II: Experimental Results (Running Time in Seconds)

Single Transduction

Integrated Transduction

Statistics
stransduction [11] Ours stranstoch [11] Ours + CULS
Case  #PIs Size  Depth Size  Depth Time Size  Depth  Time Size  Depth Time Size  Depth  Time
ex48 16 1884 18 1507 265 437 1616 35 25 1385 168 606 1385 89 188
ex39 16 1944 19 954 101 144 1079 44 13 678 132 328 681 56 184
ex25 16 1949 20 922 117 184 1060 40 13 544 119 1392 549 46 186
ex30 16 2299 19 1242 197 786 1065 31 12 675 161 5451 675 41 184
ex26 17 3036 22 1166 175 302 1283 40 30 529 136 5530 546 40 186
ex27 18 4266 24 2275 247 2442 1480 39 64 432 128 45422 432 43 187
ex63 18 5512 22 5251 210 47144 5353 40 630 5311 87 17402 5311 27 632
ex65 18 10731 24 8936 793 285886 9036 43 1811 8885 130 231777 8887 35 1812
Average (Normalized) 1.01 6.75 129.88 1.00 1.00 1.00
1.00 2.81 86.54 1.00 1.00 1.00

us from using them. Additionally, while all GPU-based algo-
rithms in our sequence have CPU implementations in ABC,
they were not selected by the authors of stranstoch [11].
In this experiment, we ran and terminated our optimization
sequence after approximately 3 minutes or after completing
at least one full iteration of applying different algorithms.
The stranstoch sequence was executed until it reached an
AIG size comparable to ours. The results are presented in the
“Integrated Transduction” column of Table II. As designed,
both sequences yield similar size results. However, in terms
of efficiency, our fully GPU-accelerated optimization sequence
achieves an impressive speedup of over 86x compared to the
CPU sequence. Additionally, our results demonstrate a 2.81x
reduction in depth on average compared to the baseline.

[ Exhaustive Simulation
[ ODC Calculation

[ Constant Analysis
3 Others

with [ ]]

w/o | | |

0% 14.24%

100%
Normalized GPU Runtime

Fig. 5: GPU runtime with/without bit packing and related
optimizations

TABLE III: Effectiveness of Individual Optimization

Configuration Normalized Runtime

Bit Packing Optimization ODC Calculation Constant Analysis

X 1.00 1.00
v 8.65 0.88
v #1 0.28

v #2 0.13

D. Effectiveness of Bit Packing and Related Optimizations

This subsection will present the profiling results of our
GPU-based transduction method (executed for one iteration
only) using NVIDIA Nsight Systems on the benchmark ex27.

Overall Effectiveness. Figure 5 illustrates the distribution
of runtime across our GPU kernels before and after the
application of bit packing and two dedicated optimizations.
The results show significant improvements in efficiency, with
the total GPU runtime reduced by over 85%. The reductions
are particularly noticeable in key processes such as exhaus-
tive simulation and constant analysis, highlighting the overall
effectiveness of our bit packing solution.

Effectiveness of Optimization #1. As discussed in Sec-
tion IV-B, bit packing necessitates serialized modifications for
bits packed in a 32-bit integer, which negatively affects GPU
performance. Consequently, ODC Calculation experiences an
8.65x slowdown after bit packing, as depicted in Table III.
By incorporating our optimization #1 to enhance thread uti-
lization, the runtime is dramatically reduced by more than 30x
(from 8.65 to 0.28), leading to an overall runtime reduction
of 72% compared to the original version without bit packing.

Effectiveness of Optimization #2. As shown in Table III,
the application of bit packing resulted in a 12% reduction in
runtime for Constant Analysis. By implementing Optimization
#2, as discussed in Section IV-C, we achieved further runtime
reductions, showcasing the additional benefits of leveraging
bitwise operations.

VI. CONCLUSION

In this paper, we present a parallel, GPU-accelerated trans-
duction method. We begin by outlining our transduction work-
flow and introducing tailored and optimized parallelization
strategies for each stage. Additionally, we propose a bit pack-
ing technique aimed at reducing GPU memory consumption.
To tackle two efficiency challenges associated with bit pack-
ing, we developed two specific optimizations that significantly
enhance performance. Extensive experimental results demon-
strate a remarkable 130x speedup of our parallel transduction
method compared to the state-of-the-art CPU-based approach.
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