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DeepFunction: Deep Metric Learning-based Imbalanced Classification for 

Diagnosing Threaded Pipe Connection Defects using Functional Data 

Abstract 

In modern manufacturing, most of the product lines are conforming. Few products are 

nonconforming but with different defect types. The identification of defect types can help 

further root cause diagnosis of production lines. With the sensing development, signals of 

process variables can be collected in high resolution, which can be regarded as 

multichannel functional data. They have abundant information to characterize the process 

and help identify the defect types. Motivated by a real example from the pipe tightening 

process, we focus on defect classification where each sample is a multichannel functional 

data. However, the available samples for each defect type are limited and imbalanced. 

Moreover, the functions are incomplete since the pre-tightening process before the pipe 

tightening process is unobserved. To classify the defect samples based on imbalanced, 

multichannel, and incomplete functional data is very important but challenging. Thus, we 

propose an innovative classification framework based on deep metric learning using 

functional data (DeepFunction). The framework leverages the power of deep metric 

learning to train on imbalanced datasets. A neural network specially crafted for processing 

functional data is also proposed to handle multichannel and incomplete functional data. 

The results from a real-world case study demonstrate the superior accuracy of our 

framework when compared to existing benchmarks. 

Keywords: imbalanced classification, incomplete functional data, functional neural network, pipe 

tightening process. 

1. Introduction 

Threaded pipe connections have extensive applications in various industries, particularly in 

petroleum drilling and transportation. The paramount importance of high-quality threaded pipe 

connections (VAM book, 2023) in ensuring safety during petroleum transportation is underscored by 

the fact that defective threaded pipe connections incur an annual cost of approximately half a billion 

USD (Guangjie et al., 2006). Notably, a significant portion of the quality issues in threaded pipes arise 

from nonconforming connections. Thus, meticulous examination of the connection quality is a critical 

factor in determining the overall quality of threaded pipes. 

The manufacturing process for threaded pipe connections depicted in Figure 1 (a) encompasses a 

pre-tightening process followed by a pipe tightening process (Honglin et al., 2014). During the pre- 
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Figure 1. (a) Manufacturing process and structure of threaded pipe connections (Du et al., 2017); (b) 

Sensor signals acquired in the pipe tightening process. 

 

 

Figure 2. (a) Physical pattern of torque-turn function; (b) Torque-turn function from real sensor signals; 

(c) Torque-turn functions from one normal connection and one nonconforming connection with defect. 

 

tightening process, most threads are initially screwed, with the final connection achieved in the 

subsequent pipe tightening process. As depicted in Figure 1 (b), sensors are positioned on pipe 

tightening machines to record process variables, including turns, torque, and tightening speed. These 

sensor signals provide a wealth of process-related information and reveal distinct phases, such as thread 

engagement, sealing, and shoulder contact, within the pipe tightening process. Consequently, the 

connection quality examination can be based on these functional data from sensors. 

Currently, practitioners within the petroleum industry rely on torque-turn functions derived from 

sensor signals to manually detect nonconforming pipe connections (VAM book, 2023). Assuming that 

the torque-turn functions are piecewise linear, based on physical analysis (Mayne and Margolis, 1982), 

practitioners manually identify the change points between different phases of the pipe tightening 

process, as illustrated in Figure 2 (a). The torque values at these identified change points are then 

checked against the specifications of the VAM connections (VAM book, 2023). However, it is essential 

to note that oscillations in real sensor signals, as depicted in Figure 2 (b), will introduce bias to the 
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manually identified change points. In addition, manual labeling can only determine whether a 

connection is nonconforming. It is necessary for expert intervention to further diagnose the defects and 

implement appropriate remedial measures, such as the diagnosis of the nonconforming connection in 

Figure 2 (c). Therefore, establishing a classification method based on the functional data from sensors 

is warranted to automatically detect nonconforming connections and diagnose the connection defects, 

thereby enhancing manufacturing process efficiency and quality. 

To construct the classification method, the characteristics of the manufacturing process pose the 

following challenges: 

1. Imbalanced Classification: The ratio between conforming and nonconforming connections is 

highly skewed. Owing to the stability of the manufacturing process, there are scarce samples for 

each defect category. Both label imbalance and data scarcity pose significant challenges, such as 

overfitting, for the classification problem. As illustrated in Figure 3, the random samples from a 

threaded pipe connection assembly line exemplify the class imbalances in our case. 

 

Figure 3. 20 samples of torque-time function in our case. 

2. Multichannel Functional Data: Each sample is a multichannel function due to multiple process 

variables collected by sensors. As illustrated in Figure 1 (b), each channel exhibits a distinct range 

of values, with some ranging in tens and others in thousands.  

3. Incomplete Observation of Processes: The incomplete observation of each process, particularly the 

unobserved pre-tightening process depicted in Figure 1 (a), results in incomplete functional data 

for each process. Traditional imputation or interpolation methods cannot effectively handle 

substantial and variable missing data segments within each function. Additionally, the 

inconsistency of the pre-tightening process results in varying-length observations for each pipe 
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tightening process, as shown in Figure 3. Thus, our method should accurately classify each sample 

despite the incomplete functional data. 

The practical challenges described above are common in production lines, and the classification 

problem becomes even more challenging when the challenges are present simultaneously. Learning 

from multichannel functional data is a novel topic in the context of imbalanced classification. Although 

there have been numerous studies on imbalanced classification in recent years, the applicability of these 

methods to functional data remains uncertain. Moreover, the imbalanced classification problem needs 

to take into account the influence of learning from incomplete samples due to partial observability of 

the process. In the area of functional data analysis, there has been a functional neural network (Yao et 

al., 2021) to learn from multichannel functions with varying-length observations. Prior research has 

also addressed challenges associated with incomplete functional data (Delaigle and Hall, 2013; James 

and Hastie, 2001; Kneip and Liebl, 2020; Kraus, 2015). However, the methods assume that the domain 

range for each sample is known and the pre-specification of domain ranges is required, which may not 

be practical for data from real production lines, such as the pipe tightening process in our case. 

Consequently, our method endeavors to tackle the practical challenges while leveraging existing 

research, including imbalanced classification and functional data analysis. 

To overcome the challenges of classifying the imbalanced, multichannel, and incomplete 

functional data, we propose a novel framework combining a functional neural network with deep metric 

learning (DeepFunction). Specifically, a functional neural network is designed to directly learn fixed-

length representations from multichannel functional data of varying lengths. To account for unobserved 

manufacturing processes, we employ a functional basis to pad the functional data before network 

encoding. In addition, we introduce a contrastive loss function tailored for deep metric learning on 

highly imbalanced functional datasets, thus facilitating efficient network training. 

The contributions of our framework can be summarized as follows: 

1. We propose a classification method for highly imbalanced functional data from manufacturing. By 

employing contrastive learning to address the imbalanced multi-class classification challenge, our 

framework realizes the identification of nonconforming pipe connections and the diagnosis of 

defect types. 
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2. With the application of functional neural networks, our framework can directly learn from the 

multichannel functional data. Our functional neural network surpasses traditional learning methods 

for functional data by enabling learnable and intricate transformations of functional data.  

3. To handle the incomplete functional data, domain knowledge is incorporated into the padding 

mechanism of functional neural networks, thereby alleviating the influence of the unobserved parts 

of pipe tightening process. Moreover, the convolution-based functional basis can directly encode 

functional inputs without requiring pre-specification of domain ranges. 

The remainder of the paper is organized as follows. In Section 2, we discuss related works in 

imbalanced classification and classification of multichannel and incomplete functional data. Section 3 

provides a preliminary discussion of deep metric learning and functional neural networks. Section 4 

presents a detailed illustration of our proposed framework, and Section 5 offers an analysis of the 

evaluation results obtained from a real dataset of threaded pipe connections. Finally, Section 6 

concludes the paper. 

2. Related Works 

2.1 Imbalanced Classification 

Considerable research has been dedicated to addressing the challenge of imbalanced classification. 

Traditional strategies for dealing with class imbalance can be broadly categorized into two groups: class 

rebalancing and data augmentation. Class rebalancing methods aim to balance the influence of different 

labels on the decision boundary. One representative is cost-sensitive learning (Elkan, 2001), which 

assigns larger weights to the minority labels in the loss functions. Data augmentation methods generate 

synthetic samples for minority labels to alleviate the imbalance problem. Examples of data generation 

methods include random oversampling, synthetic minority oversampling technique (SMOTE) (Chawla 

et al., 2002), and deep learning methods such as generative adversarial networks (GAN) (Radford et 

al., 2015). However, both class rebalancing and data augmentation methods lead to overfitting when 

defect samples are scarce. Although there have been cases where pre-trained models were used for the 

data scarcity issue, a massive amount of industrial data for model pre-training is not available in our 

case.  
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In recent years, the representation learning methods have shown great success in imbalanced 

classification given limited training samples. One branch of representation learning methods first learns 

the unsupervised representations of normal samples, and the model is then transferred to defect samples  

(Mou et al., 2023). However, unsupervised learning can be challenging in cases where samples have 

varying lengths and are incomplete, as in our manufacturing dataset.  

Another promising branch is to learn the supervised representations of each label based on deep 

metric learning. A neural network encoder first maps input data into the feature space, and the 

contrastive loss is then used to train the encoder and guarantee that the features are discriminative. 

Although existing studies have proposed losses based on contrastive learning to address imbalanced 

datasets (Khosla et al., 2020; Wang et al., 2021; Zhu et al., 2022), these losses are primarily designed 

for image or speech data, and limited research focuses on classification using functional data in the 

literature. Therefore, both the contrastive loss and the neural network encoder need to adapt to the 

functional data in our case. 

 

Figure 4. Methodology tree of imbalanced classification. 

The methodology tree of imbalanced classification is in Figure 4, and our focus of research is the 

branch in red color. The theoretical knowledge of deep metric learning is given in Section 3.1. 

2.2 Classification of Multichannel and Incomplete Functional Data 

In modern manufacturing, sensors are placed throughout the manufacturing process and the data 

collected with sensors can be viewed as functional data. The functional data is one type of high-

dimensional data, where a process variable is characterized by a functional relationship with other 

process variables. We use 𝒙(𝑡), 𝑡 ∈ [𝑎, 𝑏]  to denote one sample of functional data defined on a 



 

8 

compact interval. Since only a limited number of observations can be observed from 𝒙(𝑡), we use 𝑿 ∈

ℝ𝑇×𝐶 to denote the 𝑇 observations from multichannel function 𝒙(𝑡) with 𝐶 channels. 

Due to the production environment and sensor locations, the manufacturing process cannot be 

observed completely, such as our threaded pipe connection case and clinical data (Elías et al., 2022; 

Kraus, 2015). Therefore, the observations from the function 𝒙(𝑡) are available only within a subset of 

[𝑎, 𝑏]. Such datasets, known as incomplete functional data or partially observed functional data, are 

complete only within a specific interval [𝑎∗, 𝑏∗], where 𝑎 ≤ 𝑎∗ < 𝑏∗ ≤ 𝑏. 

To model and further classify the multichannel and incomplete functional data, current methods 

can be classified into three major categories: distance measure-based, reconstruction-based, and low-

dimensional representation-based methods.  

Distance measure-based methods quantify the dissimilarity between samples by defining distance 

measures. The representative distance measures that can be applied to functional data include dynamic 

time warping (DTW) and integrated depth for partially observed functional data (POIFD) (Elías et al., 

2022). However, it is important to note that DTW was originally designed for sequence alignment, and 

its ability to represent differences between different labels in a multi-class classification problem may 

be affected. POIFD (Elías et al., 2022) assesses the centrality of functional data within a set of labeled 

functions. Nevertheless, POIFD (Elías et al., 2022) is unsuitable for our case because it requires a pre-

specified domain range for each sample. Furthermore, POIFD only treats multichannel functional data 

as a weighted sum of univariate functions, with the weights also requiring pre-specification.  

Reconstruction-based methods aim to reconstruct the missing portions of a function and 

subsequently apply conventional classification techniques. Reconstruction is typically data-driven and 

can be based on fragments from other samples (Delaigle and Hall, 2013) or methods such as functional 

principal component analysis (FPCA) (Kneip and Liebl, 2020; Kraus, 2015). However, reconstruction 

is impractical when the domain range is unknown for each function. Moreover, data-driven 

reconstruction cannot leverage the physical mechanisms of the manufacturing process.  

Low-dimensional representation-based methods directly transform functional data into low-

dimensional representations with fixed lengths. Beginning with pioneering work (James and Hastie, 

2001), various linear classifiers (Kraus and Stefanucci, 2019; Park et al., 2022) have been proposed. 
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However, linear classifiers are not applicable because the assumptions of equal covariance for each 

label may not align with our dataset from the manufacturing process.  

Apart from the limitations of each category of methods, most existing classification methods 

mentioned above focus primarily on binary classification, with limited exploration of imbalanced multi-

class classification problems. 

More recently, functional neural networks have shown great success in learning low-dimensional 

representations from functional data (Perdices et al., 2021; Wang et al., 2019; Yao et al., 2021). With 

the power of neural networks, these approaches can directly encode multichannel functional data with 

varying-length observations and perform more intricate transformations of functional data, leading to 

improved discrimination results. Another benefit of a functional neural network is that we can account 

for the label imbalance during training, which has not been explored by current classification methods 

in functional data analysis. Details of the functional neural networks are introduced in Section 3.2. 

3. Preliminary 

3.1 Deep Metric Learning 

The process of imbalanced classification based on deep metric learning can be decoupled into two 

stages: supervised representation learning and classifier training. During supervised representation 

learning, an encoder maps input data into a discriminative feature space. In the subsequent classifier 

training stage, the classifier is trained based on the learned representations.  

 When learning the representations, contrastive loss is utilized to minimize the distance between 

data representations from the same labels while maximizing the distance between data from different 

labels in the feature space. Suppose we have one sample 𝑖, and its representation is denoted as 𝒛𝑖. The 

representation from samples having the same label as sample 𝑖 is denoted as 𝒛𝑝, and the representation 

from the other samples is denoted as 𝒛𝑘. The basic contrastive loss for sample 𝑖 is formulated as the 

following triplet contrast: 

ℒ(𝑖) = −𝑙𝑜𝑔
exp(𝒛𝑖 ∙ 𝒛𝑝)

exp(𝒛𝑖 ∙ 𝒛𝑘)
. (1) 
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In the settings of supervised learning, multiple samples are known to have the same label.  

(Khosla et al., 2020) proposed the supervised contrastive loss when multiple positive samples and 

negative samples presents: 

ℒ(𝑖) =
1

|𝐵𝑖| − 1
∑ −𝑙𝑜𝑔

exp(𝒛𝑖 ∙ 𝒛𝑝)

∑ exp(𝒛𝑖 ∙ 𝒛𝑘)𝑘∈𝐵\{𝑖}
𝑝∈𝐵𝑖\{𝑖}

, (2) 

where 𝐵 denotes the set of all training samples and 𝐵𝑖 denotes the set of training samples having the 

same label as sample 𝑖. 

To further alleviate the influence of imbalance samples, modified versions of Equation (2) have 

been proposed. (Wang et al., 2021) first learned the prototype of each label and then forced the 

representations of each label to be close to the prototype. (Zhu et al., 2022) balanced the contribution 

of each label to the loss function by adding the weights for the contrast between sample 𝑖 and negative 

samples: 

ℒ(𝑖) =
1

|𝐵𝑖| − 1
∑ −𝑙𝑜𝑔

exp(𝒛𝑖 ∙ 𝒛𝑝)

∑
1

|𝐵𝑗|
𝐽
𝑗=1

∑ exp(𝒛𝑖 ∙ 𝒛𝑘)𝑘∈𝐵𝑗𝑝∈𝐵𝑖\{𝑖}

, (3)
 

where we suppose the training set 𝐵 has 𝐽 labels and the set of training samples under label 𝑗 is 

denoted as 𝐵𝑗 .  

3.2 Functional Neural Network 

The purpose of the functional neural network is to use a set of functional bases to project the 

functional input 𝒙(𝑡)  and extract representations. Denote the 𝑐 th basis function as 𝜷(𝑐)(𝑡), 𝑐 =

1,… , 𝐶1, the score of 𝒙(𝑡) regarding to the basis 𝜷(𝑐)(𝑡) is as follows: 

〈𝜷(𝑐)(𝑡), 𝒙(𝑡)〉 = ∫𝜷(𝑐)(𝑡) 𝒙(𝑡)𝑑𝑡, (4) 

where both 𝜷(𝑐)(𝑡) and 𝒙(𝑡) have infinite dimensions. Notably, we use the case when dealing with 

single-channel functions as an illustration, and we only need to perform the same operation for each 

channel when dealing with multichannel functions. 

There are two kinds of functional neural networks that incorporate Equation (4) into the neural 

networks. The first way is to use FPCA or pre-specified basis functions to model 𝒙(𝑡) and use the 

result 〈𝜷(𝑐)(𝑡), 𝒙(𝑡)〉 as the input of neural networks (Perdices et al., 2021). The second way is to 

directly use neural networks to approximate the functional basis (Wang et al., 2019; Yao et al., 2021). 
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The data encoded by the neural network is actually the observations of 𝒙(𝑡) , denoted as 𝑿 =

[𝒙(𝑡1), … , 𝒙(𝑡𝑇)]
𝑇 . The discrete version of Equation (4) is then as follows: 

〈𝜷(𝑐)(𝑡), 𝒙(𝑡)〉 = 𝑿𝑇𝜷(𝑐), (5) 

where the basis vector 𝜷(𝑐) ∈ ℝ𝑇×1 is expected to have equal length as 𝑿. The basis function is 

learned through a multilayer perceptron (MLP), denoted as nn(𝑡), 𝑡 ∈ [𝑎, 𝑏]. Given input 𝑿 with any 

length 𝑇 , the basis vector is adaptively derived from nn(𝑡)  as 𝜷(𝑐) = [nn(𝑡1), … , nn(𝑡𝑇)]
𝑇 . 

Compared to the first kind of functional neural network, the selection of functional bases or a prior is 

not required, and the information contained in response data can be used during learning.  

One drawback of current functional neural networks is that the MLP-based functional basis lacks 

shift-invariance to the input and necessitates pre-specification of the domain range [𝑎, 𝑏] for each 

function. Although there has been practice developing functional neural networks shift-invariant to the 

input (Heinrichs et al., 2023), the domain range for each function and the pre-specified basis functions 

are still required in (Heinrichs et al., 2023). It is common for the functional data acquired in 

manufacturing cases to have varying-length observations and unknown domain ranges. Therefore, 

current functional neural networks can be further improved to apply in manufacturing cases, such as 

our pipe tightening process. 

4. Methodology 

In our pipe tightening process, certain characteristics necessitate the direct learning of 

multichannel and incomplete functional data without relying on model assumptions or requiring pre-

specification of domain ranges. Additionally, the challenge posed by the imbalanced nature of the 

dataset should be addressed effectively. Therefore, there is a compelling need for a learning method 

tailored to incomplete and imbalanced functional data derived from manufacturing processes. 

Our framework considers the underlying physical mechanisms of the manufacturing process and 

presents a neural network designed to encode multichannel and incomplete functional data directly. The 

core of the framework is a functional neural network-based encoder capable of transforming sensor-

derived functional data into low-dimensional features. Notably, the encoder can be trained to ensure 

that the resulting features are discriminative across different labels. To address the challenges associated 

with the imbalanced nature of the dataset, we introduced a contrastive learning-based deep metric 
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learning framework. The framework facilitates the training of the encoder using a highly imbalanced 

dataset, ultimately leading to a feature space in which defect classification can be performed effectively. 

Section 4.1 introduces the general framework. The functional neural network used to encode 

multichannel and incomplete functional data is elaborated in Section 4.2, and the contrastive loss 

designed for the imbalanced functional dataset is presented in Section 4.3. In Section 4.4, we provide 

guidelines for tuning the hyperparameters. 

 

Figure 5. Flowchart of the framework. 

4.1 General Framework 

This section introduces the proposed framework for the classification of imbalanced and 

incomplete functional data. The general framework follows the paradigm of deep metric learning: each 

functional datum 𝒙(𝑡) is first encoded into a low-dimensional representation and then classified based 

on discriminative representation. As shown in Figure 5, 𝒙(𝑡)  first undergoes knowledge-infused 

padding, which reconstructs the padded area required for the neural network. The proposed functional 

neural network encoder 𝑓(·) then derives a fixed-dimensional representation 𝑓(𝒙(𝑡)). The initial 

representations of the samples from the different labels are mixed in the feature space. Therefore, a 

contrastive loss ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  is proposed, and the encoder 𝑓(·)  is trained through backpropagation. 

After the representation learning stage, the learned representations under the same label are pulled 

together and the learned representations between different labels are pushed away. Finally, a classifier 

ℒ𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 , such as a support vector machine (SVM), is trained on the learned representations. The 

functional neural network encoder 𝑓(·) and the classifier ℒ𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 after training are then used to 

predict the unlabeled samples. 

It should be noted that the proposed functional neural network and contrastive loss can work 

collaboratively and enhance the performance of each other. The padding mechanism of a functional 
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neural network considers the physical mechanism of the manufacturing process, which guarantees that 

the padded values do not introduce bias to the functional input or subsequent contrastive loss. In return, 

contrastive loss enables the update of the functional neural network and improves the ability of the 

network to transform functional data after each iteration. 

4.2 Functional Neural Network Encoder 

As mentioned in Section 3.2, existing MLP-based functional neural networks (Wang et al., 2019; 

Yao et al., 2021) are not applicable in our case because the domain range for each function is unknown 

owing to partial observability. The neural network encoder should be shift-invariant and able to accept 

observations of functions with different ranges and lengths as inputs. Therefore, we developed a 

functional neural network based on dilated convolution (Oord et al., 2016) and knowledge-infused 

padding. 

The benefits of dilated convolution include shift-invariant features guaranteed by the convolution 

mechanism and the ability to accept varying-length inputs through dilated convolution. Assuming a 

dilation convolution layer with kernel size 𝑘𝑤 and dilation size 𝑑 and that the dilation is doubled for 

each layer, a convolution filter is applied over the input and skip input values with step 2𝑑 . The 

receptive field grows exponentially with 𝑑, and the output length of the dilated convolution is still the 

input length 𝑇 . Thus, the dilated convolution can use functional data 𝒙(𝑡)  with varying-length 

observations as the input.  

Although dilated convolution has shown promise for handling functional data of varying lengths, 

the padding mechanism remains a challenge. Traditional padding methods can introduce bias into the 

distribution of functions, which can negatively affect the performance of the neural networks. Another 

challenge is designing a functional neural network with dilated convolution as the basic module. We 

illustrate the proposed solution for the two challenges in Section 4.2.1 and 4.2.2. 

4.2.1 Knowledge-infused Padding 

In our case, the potential bias introduced by padding is a significant concern because the padding 

length increases exponentially with the dilation size in the dilated convolution. For example, the 

padding length is (𝑘𝑤 − 1)2𝑑  for dilation size 𝑑 when dilation is doubled for each layer. Therefore, 
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the padded values will significantly influence the original distribution of the functional data. To address 

the problem, we propose a novel approach called knowledge-infused padding. Similar to the 

reconstruction-based methods introduced in Section 2.2, our knowledge-infused padding attempts to 

reconstruct functions with a functional basis to generate the padded data. The selection of bases is a 

critical factor that directly affects the padding quality. Therefore, in this study, the selection of the 

functional basis is based on the physical mechanisms of the manufacturing process. Specifically, if the 

process exhibits a periodic pattern, the Fourier basis will be chosen to reconstruct the functional data 

collected from the process. 

 

Algorithm 1. Knowledge-infused Padding 

Input: Functional data 𝒙(𝑡), 𝑡 = 1,… , 𝑇; Convolution layer with kernel size 𝑘𝑤 and 

dilation size 𝑑; Average pooling layer with kernel size 𝑘𝑤; Basis functions 

{𝝓(𝑔)(𝑡)}, 𝑔 = 1,… , 𝐺; 

Output: Padded data 𝒙(𝑡), 𝑡 = 1, … , 𝑇′ 

1: Obtain smoothed function �̅�(𝑡) =
1

𝑘𝑤
∑ 𝒙(𝑡)

𝑡+𝑘𝑤
𝑠=𝑡 , 𝑡 = 1,… , 𝑇 − 𝑘𝑤 

2: Fit �̅�(𝑡) with functional basis �̅�(𝑡) = ∑ 𝑐𝑔𝝓(𝑔)(𝑡)
𝐺
𝑔=1  

3: Interpolate �̅�(𝑡) to length 𝑇′ = 𝑇 + 2(𝑘𝑤 − 1)2𝑑  

4: Obtain the padded data 𝒙(𝑡): 

5:   Set 𝒙(𝑡) = �̅�(𝑡), 𝑡 = 1 − (𝑘𝑤 − 1)2𝑑 , … ,0 

6:   Set 𝒙(𝑡) = 𝒙(𝑡), 𝑡 = 1,… , 𝑇 

7:   Set 𝒙(𝑡) = �̅�(𝑡), 𝑡 = 𝑇 + 1,… , 𝑇 + (𝑘𝑤 − 1)2𝑑 

 

Compared with the reconstruction-based method, the reconstruction area in our framework is only 

the padded part in the convolution, rather than the entire missing part. The reason is that we assume the 

most discriminative patterns exist in the common domain, which is complete for every sample. After 

specifying the functional basis {𝝓(𝑔)(𝑡)}, 𝑔 = 1,… , 𝐺, the knowledge-infused padding module is given 

in Algorithm 1 for any convolution layer with kernel size 𝑘𝑤 and dilation size 𝑑. 

4.2.2 Network Structure 

To encode the functional data 𝒙(𝑡)  for downstream classification tasks, the encoder should 

consider the functional data structures while ensuring that the entire encoder is trained to extract the 
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discriminative features. Our proposed functional neural network 𝑓(·) achieves this by utilizing dilated 

convolution as the foundational structure. The details of the network structure are shown in Figure 6. 

 

Figure 6. Structure of the functional neural network 𝑓(·). 

Given the final representation size 𝐶3, the network shown in Figure 6 directly encodes the function 

𝒙(𝑡)  to obtain the representation 𝒛 ∈ ℝ1×𝐶3  after knowledge-infused padding. Specifically, the 

network is composed of two parts: a linear transform with a basis layer 𝜷(·) and a nonlinear transform 

with a traditional neural network 𝑔(·). The output for 𝒙(𝑡) encoded by 𝑓(·) can be formulated as 

𝑓(𝒙(𝑡)) = 𝑔 (𝜷(𝒙(𝑡))). 

 

Algorithm 2. Basis layer 𝜷(·) based on dilated convolution 

Input: Functional data 𝒙(𝑡) and its observations 𝑿 ∈ ℝ𝑇×1; 𝐷 layers of dilated 

convolution {𝒃(𝑐)
(𝑙) (𝑡), 𝒉(𝑐)

(𝑙) (𝑡)} , 𝑐 = 1,… , 𝐶1 , 𝑙 = 0,… , 𝐷 − 1; 

Output: 𝜷(𝒙(𝑡)) ∈ ℝ𝑇×𝐶1 

1. for 𝑐 = 1,… , 𝐶1: 

2.   Obtain 𝑩(𝑐)
(0)

∈ ℝ𝑇×1 and 𝑯(𝑐)
(0)

∈ ℝ𝑇×𝑇 from convolution {𝒃(𝑐)
(0)(𝑡), 𝒉(𝑐)

(0)(𝑡)} 

3.   Calculate 𝒖(𝑐)
(0)

= 𝑩(𝑐)
(0)

+ 𝑯(𝑐)
(0)

𝑿 

4.   for 𝑙 = 1,… , 𝐷 − 1: 

5.     Obtain 𝑩(𝑐)
(𝑙) ∈ ℝ𝑇×1 and 𝑯(𝑐)

(𝑙) ∈ ℝ𝑇×𝑇 from convolution {𝒃(𝑐)
(𝑙) (𝑡), 𝒉(𝑐)

(𝑙) (𝑡)} 

6.     Calculate 𝒖(𝑐)
(𝑙) = 𝑩(𝑐)

(𝑙) (𝑡) + 𝑯(𝑐)
(𝑙) 𝒖(𝑐)

(𝑙−1)
  

7.   end for 

8.   Set 〈𝜷(𝑐)(𝑡), 𝒙(𝑡)〉 = 𝒖(𝑐)
(𝐷−1)

 

9. end for 

10. Set 𝜷(𝒙(𝑡)) = [〈𝜷(1)(𝑡), 𝒙(𝑡)〉,… , 〈𝜷(𝐶1)(𝑡), 𝒙(𝑡)〉] 

 



 

16 

The basis layer 𝜷(·) is implemented by stacking 𝐷 dilated convolution layers without activation 

and performs similarly to the basis layer in (Yao et al., 2021). We denote the dilated convolution layers 

as {𝒃(𝑐)
(𝑙) (𝑡), 𝒉(𝑐)

(𝑙) (𝑡)} , 𝑐 = 1, … , 𝐶1, 𝑙 = 0, … , 𝐷 − 1  with bias 𝒃(𝑐)
(𝑙) (𝑡)  and weight 𝒉(𝑐)

(𝑙) (𝑡) . The 

procedures in 𝜷(·) for the input of single-channel functions are shown in Algorithm 2. When dealing 

with multichannel functions with 𝐶 channels, we need to perform Algorithm 2 on each channel of the 

multichannel function. 

The essence of the functional structure lies in the functional basis implemented by convolution 

operation. As shown in Algorithm 2, we do not add activation functions for the 𝐷 layers of the dilated 

convolution {𝒃(𝑐)
(𝑙) (𝑡), 𝒉(𝑐)

(𝑙) (𝑡)} , which means that the entire basis layer 𝜷(·)  does not contain 

nonlinearity. By transforming the convolution weights 𝒉(𝑐)
(𝑙) (𝑡) into a Toeplitz matrix 𝑯(𝑐)

(𝑙)
∈ ℝ𝑇×𝑇 

and bias 𝒃(𝑐)
(𝑙) (𝑡) as a vector 𝑩(𝑐)

(𝑙)
∈ ℝ𝑇×1, we can derive 〈𝜷(𝑐)(𝑡), 𝒙(𝑡)〉 = 𝑩(𝑐) + 𝑯(𝑐)𝑿. 𝑩(𝑐) and 

𝑯(𝑐) are derived as follows: 

𝑩(𝑐) = 𝑩(𝑐)
(𝐷−1)

+ 𝑯(𝑐)
(𝐷−1)

𝑩(𝑐)
(𝐷−2)

+ ⋯+ (∏ 𝑯(𝑐)
(𝑙)

𝐷−1

𝑙=1
)𝑩(𝑐)

(0)
, (6) 

𝑯(𝑐) = ∏ 𝑯(𝑐)
(𝑙)

𝐷−1

𝑙=0
, (7) 

where matrix 𝑯(𝑐) is the Toeplitz matrix for all 𝐷 convolution layers and can be viewed as a matrix 

basis. Therefore, the output of the basis layer 𝜷(·) is still functional data. Compared with the MLP-

based functional neural network (Wang et al., 2019; Yao et al., 2021), 𝜷(·) based on convolution 

makes the network shift-invariant to the input functions; Compared with current convolution-based 

functional neural network (Heinrichs et al., 2023), 𝜷(·) is adaptive and can accept the functional input 

without specifying the domain range and basis functions. 

Moreover, we can interpret the 𝐶1 channels of 𝜷(𝑐)(𝑡) in 𝜷(·) as 𝐶1 functional bases. Similar 

to traditional functional modeling with a set of bases (Ramsay et al., 2005), 𝐶1  functional bases 

𝜷(𝑐)(𝑡) can be interpreted well through visualization and identification of the most important bases.  

After transforming 𝒙(𝑡)  into 𝜷(𝒙(𝑡))  with basis layers, the neural network 𝑔(·)  further 

transforms 𝜷(𝒙(𝑡))  into representation 𝒛  through a convolution layer with 𝐶2  channels and a 

𝐶2 × 𝐶3 MLP structure. The bias and weight for the convolution layer are denoted as 𝑩′ and 𝑯′, and 

the bias and weight for the MLP layer are denoted as 𝑬  and 𝑹 . The procedure for nonlinear 
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transformation 𝑔(·) is shown in Algorithm 3. The representation 𝒛 is then used to calculate the loss 

functions in Section 4.3. 

 

Algorithm 3. Nonlinear transformation 𝑔(·) 

Input: Output of basis layer 𝜷(𝒙(𝑡)) ∈ ℝ𝑇×𝐶1 ; Dilated convolution with bias 𝑩′ ∈

ℝ𝑇×𝐶2, weights 𝑯′ ∈ ℝ𝐶1×𝐶2 , and LeakyReLU activation; AdaptiveMaxPooling layer; 

MLP layer with bias 𝑬 ∈ ℝ1×𝐶3 and weights 𝑹 ∈ ℝ𝐶2×𝐶3 ; 

Output: 𝒛 ∈ ℝ1×𝐶3  

1: Calculate 𝒗1 ∈ ℝ𝑇×𝐶2 = 𝑩′ + 𝜷(𝒙(𝑡))𝑯′ 

2: Calculate 𝒗2 ∈ ℝ𝑇×𝐶2 = LeakyReLU(𝒗1) 

3: Calculate 𝒗3 ∈ ℝ1×𝐶2 = AdaptiveMaxPool(𝒗2) 

4: Calculate 𝒛 ∈ ℝ1×𝐶3 = 𝑬 + 𝒗3𝑹 

 

The details and proofs for constructing the Toeplitz matrix form of 𝑩(𝑐) and 𝑯(𝑐) in functional 

neural network 𝜷(·) are provided in Appendix A.1. We also illustrate how to visualize the functional 

bases learned from 𝜷(·) in Appendix A.2. Guidelines for setting hyperparameters 𝐷, 𝐶1 , 𝐶2, 𝐶3  are 

also provided in Section 4.4. 

4.3 Contrastive Loss 

To train the functional neural network 𝑓(·) in Section 4.2, a loss function should be proposed for 

tackling label imbalance and data scarcity issues when learning from the highly imbalanced functional 

dataset. We employ deep metric learning to train 𝑓(·), and the contrastive loss ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  is used.  

Suppose that a dataset has 𝐽 labels and 𝑁𝑗 samples for label 𝑗. We first generate a mini-batch 𝐵 

in each epoch through stratified sampling, and sample size 𝑀𝑗  for each label satisfies 𝑀1/𝑁1 =···=

𝑀𝑗/𝑁𝑗 =···= 𝑀𝐽/𝑁𝐽. Similar to Section 3.1, one sample 𝑖 is selected as the anchor sample and its 

representation is 𝒛𝑖 = 𝑓 (𝒙(𝑖)(𝑡)). The representations of positive samples and negative samples are 

denoted as 𝒛𝑝 = 𝑓 (𝒙(𝑝)(𝑡))  and 𝒛𝑘 = 𝑓 (𝒙(𝑘)(𝑡)) , respectively. 𝐵𝑖  denotes the set of samples 

having the same label as sample 𝑖 and 𝐵𝑗  denotes the set of samples under label 𝑗. ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  is then 

calculated after all samples in the mini-batch 𝐵 are encoded by 𝑓(·). The formula for ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  is 

given in Equation (8-10): 

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑖, 𝑄) = ℒ𝑖𝑛𝑡𝑒𝑟(𝑖) + ℒ𝑖𝑛𝑡𝑟𝑎(𝑖, 𝑄), (8) 
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ℒ𝑖𝑛𝑡𝑒𝑟(𝑖) =
1

|𝐵𝑖| − 1
∑ −𝑙𝑜𝑔

𝑒𝑥𝑝(𝒛𝑖 ∙ 𝒛𝑝)

∑
1

|𝐵𝑗|
𝐽
𝑗=1

∑ 𝑒𝑥𝑝(𝒛𝑖 ∙ 𝒛𝑘)𝑘∈𝐵𝑗𝑝∈𝐵𝑖\{𝑖}

, (9)
 

ℒ𝑖𝑛𝑡𝑟𝑎(𝑖, 𝑄) =
1

|𝐵𝑖| − 1
∑ −𝑙𝑜𝑔

1
|𝑄|

∑ 𝑒𝑥𝑝 (𝑓(𝑞(𝒙(𝑖)(𝑡))) ∙ 𝑓(𝑞(𝒙(𝑝)(𝑡))))𝑞∈𝑄

𝑒𝑥𝑝(𝒛𝑖 ∙ 𝒛𝑘)
𝑝∈𝐵𝑖\{𝑖}

. (10) 

As shown in Equation (8), ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  is composed of an inter-class loss ℒ𝑖𝑛𝑡𝑒𝑟  and an intra-class 

ℒ𝑖𝑛𝑡𝑟𝑎 . Considering the imbalanced distribution of labels, ℒ𝑖𝑛𝑡𝑒𝑟  in Equation (9) is the same as (Zhu 

et al., 2022) which distinguishes the representations between imbalanced labels. For the contrast 

between the representations of anchor samples and negative samples exp(𝑧𝑖 ∙ 𝑧𝑘), the weights 1/|𝐵𝑗| 

balance the influence of different sample size for each label. 

Regarding the data scarcity issue, we propose an intra-class loss ℒ𝑖𝑛𝑡𝑟𝑎  in Equation (10) to avoid 

overfitting. To obtain more samples under one label, we augment the anchor sample 𝒙(𝑖)(𝑡) and 

positive sample 𝒙(𝑝)(𝑡). Notably, traditional augmentation methods used for images or time series may 

introduce bias into the distribution of functional data. We modify the augmentation method during the 

generation of the training samples to be suitable for functional data, aligning it with the characteristics 

of the manufacturing dataset. The augmentation is achieved by applying a set of smoothing kernels, 

denoted as set 𝑄. Each smoothing kernel 𝑞 ∈ 𝑄 is implemented through the average pooling layers 

with kernel size 𝑘𝑞, and we can set kernel set 𝑄 in advance. In contrast to ℒ𝑖𝑛𝑡𝑒𝑟 , the contrast pairs 

in ℒ𝑖𝑛𝑡𝑟𝑎 are limited to samples within the same label and are applied using the same smoothing kernel. 

𝑞(𝒙(𝑖)(𝑡)) =
1

𝑘𝑞
∑ 𝒙(𝑖)(𝑡)

𝑡+𝑘𝑞

𝑠=𝑡
, 𝑡 = 1,… , 𝑇 − 𝑘𝑞 , (11) 

𝑞(𝒙(𝑝)(𝑡)) =
1

𝑘𝑞
∑ 𝒙(𝑝)(𝑡)

𝑡+𝑘𝑞

𝑠=𝑡
, 𝑡 = 1,… , 𝑇 − 𝑘𝑞 . (12) 

4.4 Hyperparameter Tuning 

In this section, we present the guidelines for tuning the hyperparameters in our framework. The 

hyperparameters include 𝐷, 𝐶1 , 𝐶2, 𝐶3 in the functional neural network 𝑓(·) and the kernel set 𝑄 in 

the contrastive loss ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 .  

The number of convolution layers 𝐷 and the number of bases 𝐶1 determine the performance of 

basis layer 𝜷(·). The ability to fit complex functions increases with increasing 𝐷, whereas the padded 

length 2 ∗ (𝑘𝑤 − 1) ∗ 2𝐷 grows exponentially with 𝐷. Therefore, 𝐷 is set to satisfy the requirement 
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that the padded length should not exceed the raw data length 2 ∗ (𝑘𝑤 − 1) ∗ 2𝐷 < 𝑇  for all the 

functions. The number of bases 𝐶1 can first be set as an initial value 𝐽 ∗ 𝐶 ∗ 𝑆, where 𝑆 is the number 

of estimated piecewise linear segments for one function. During training, additional bases among the 

𝐶1  bases can be pruned by adding a channel-wise attention module to the neural network 𝑓(·) . 

Channels 𝐶2  and 𝐶3  are the parameters for the traditional neural network 𝑔(·), and the network 

structure is the same as in previous practices (Franceschi et al., 2019; Yue et al., 2022). Therefore, 𝐶2 

and 𝐶3 can be set using the same settings as (Franceschi et al., 2019). 

The setting of smoothing kernels 𝑞 ∈ 𝑄 can follow the procedure of smoothing functional data 

with a roughness penalty introduced in (Ramsay et al., 2005). 

5. Evaluation 

In this section, we apply the proposed framework to a real dataset obtained from the manufacturing 

of threaded pipe connections to demonstrate its effectiveness. A total of 658 samples are manually 

labeled by the manufacturer, including normal connections and two types of nonconforming threaded 

pipe connections. The dataset has a substantial class imbalance, with 599 samples for normal 

connections, 28 samples for one defect type, and 31 samples for another defect type. As shown in Figure 

7, each sample is characterized by multichannel functional data, with varying-length observations 

during the thread engagement phase of the manufacturing process.  

 

Figure 7. Multichannel functions for each label in the steel pipe dataset. 

To configure our framework, we first select the basis functions for the knowledge-infused padding 

introduced in Section 4.2.1. Taking the torque function in the manufacturing process as an example, we 
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choose the Fourier basis because the missing thread engagement process exhibits a periodic pattern. 

The results obtained using the Fourier basis and other traditional padding methods are shown in Figure 

8. Compared with traditional padding methods, our knowledge-infused padding does not affect the 

distribution of the original functions. Similarly, we select the monomial basis for the turns and 

tightening speed functions in the manufacturing process since both the turns and tightening speed during 

the thread engagement process can be approximated with polynomials. 

 

Figure 8. Padding results obtained using different padding methods. (a) Knowledge-infused padding; 

(b) Zero padding; (c) Replication padding; (d) Reflective padding. 

The other hyperparameters are set as follows: we set the number of convolution layers 𝐷 = 5 and 

number of bases 𝐶1 = 40, following the guidelines outlined in Section 4.4. The number of channels 

for other parts of the neural network, denoted as 𝐶2 = 160, 𝐶3 = 320, is consistent with the values 

used in (Yue et al., 2022). Average pooling kernels of size {1,3,5} are used in 𝑄. 

To demonstrate the efficacy of our framework when dealing with incomplete and imbalanced 

functional data, we visualize the representations of functional data, as shown in Figure 9. The fixed-

dimensional representations are initially obtained from the multichannel and incomplete functions using 

functional neural networks, and are then visualized using the t-SNE technique (Van der Maaten and 

Hinton, 2008). We present the results from both the untrained network and the network after training to 

demonstrate the impact of representation learning. Figure 9 (a) illustrates that representations from 

different functional data samples are mixed in the feature space when using an untrained network. 

However, after representation learning through training with the contrastive loss in Section 4.3, the 

representations, as depicted in Figure 9 (b), become distinctly separated in the feature space. The 
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separation facilitates subsequent classification, demonstrating that our framework enables the accurate 

classification of incomplete and imbalanced functional data. 

 

Figure 9. Visualization of the representations with t-SNE. (a) Representations from the untrained 

functional neural network. (b) Representations from the functional neural network after training. 

For comparison, we select three benchmark methods, each representing one of the categories 

introduced in Section 2.2. The baseline method for classifying the functional data is DTW combined 

with a k-nearest neighbor (KNN) classifier. Additionally, we utilize POIFD (Elías et al., 2022), a 

benchmark method for evaluating functional depth, which considers partial observability. The 

functional depth needs to be combined with depth-based classifiers (Cuesta-Albertos et al., 2017; Li et 

al., 2012) to classify functional data. To apply POIFD to our dataset, we use the R package proposed in 

(Elías et al., 2022) to calculate depth measures and implement a depth-based classifier following 

(Cuesta-Albertos et al., 2017). Sparse functional linear discriminant analysis (SFLDA) (Park et al., 2022) 

is chosen as a representative low-dimensional representation-based method, and its implementation is 

based on the open code available in (Park et al., 2022). To ensure fair comparisons, we adopt the same 

SVM classifier as the backbone for classifier training in both our framework and the depth-based 

classifier using POIFD.  

To evaluate the performance, we employ balanced accuracy and macro-F1 as evaluation metrics, 

which are commonly used for imbalanced classification. We employ a 5-fold cross-validation on the 

threaded pipe connection dataset. In each fold, we randomly select 25% samples from the training set 

as the validation set. The average results of 5-fold cross-validation using our framework and competing 

methods are presented in Table 1. As shown in Table 1, our proposed framework outperforms the 

competing methods in terms of both balanced accuracy and macro-F1 metrics. To provide a more 

detailed analysis of the classification accuracy, we present the recall rates for each label obtained from 
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5-fold cross-validation in Table 2. Notably, all methods perform well in classifying normal samples. 

However, the distinguishing factor lies in the recall rates of defect labels. Our framework exhibits higher 

recall rates for minority labels than other methods, emphasizing its superiority in handling imbalanced 

datasets and effectively identifying nonconforming threaded pipe connections in the manufacturing 

process. The detailed classification results of each fold are shown in Appendix A.3. 

 

Table 1. Comparison of performance on the threaded pipe connection dataset 

Framework Balanced Accuracy Macro-F1 

DTW 0.750 0.744 

POIFD 0.732 0.745 

SFLDA 0.816 0.814 

DeepFunction 0.894 0.907 

 

Table 2. Comparison of recall rates for each label 

Framework Label Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

DTW 

Defect 1 0.50 0.50 0.83 0.80 0.60 

Defect 2 0.50 0.83 0.67 0.71 0.33 

Normal 1.00 0.99 1.00 1.00 0.99 

POIFD 

Defect 1 0.50 0.50 0.17 0.40 0.40 

Defect 2 0.83 1.00 0.50 0.86 0.83 

Normal 0.99 1.00 1.00 1.00 1.00 

SFLDA 

Defect 1 0.50 0.17 0.50 1.00 0.60 

Defect 2 1.00 0.83 1.00 1.00 0.67 

Normal 1.00 0.98 1.00 1.00 1.00 

DeepFunction 

Defect 1 0.83 0.67 0.67 0.80 0.60 

Defect 2 1.00 1.00 1.00 0.86 1.00 

Normal 1.00 0.99 1.00 1.00 1.00 

6. Conclusion 

This study introduces a novel deep metric learning framework tailored for the classification of 

imbalanced, multichannel, and incomplete functional data within the context of manufacturing 

processes. While prior research on classifying multichannel and incomplete functional data exists, 

addressing the challenge of imbalanced classification has not been adequately explored within the realm 

of functional data analysis. To facilitate an imbalanced classification, we propose a novel functional 
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neural network that encodes multichannel and incomplete functional data, allowing it to be trained 

effectively on highly imbalanced datasets. Furthermore, the padding mechanism and contrastive loss 

associated with the functional neural network are specifically tailored to address the characteristics of 

functional data derived from manufacturing processes. We also provide comprehensive guidelines for 

tuning the hyperparameters of the framework to ensure optimal performance. 

To validate the effectiveness of our framework, we apply it to a real dataset derived from the 

manufacture of threaded pipe connections. The results demonstrate that our framework outperforms 

existing benchmark methods designed for incomplete functional data. This validation underscores the 

utility of our framework in achieving the accurate identification and classification of nonconforming 

threaded pipe connections in industrial manufacturing processes. 
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A. Appendix 

A.1 Proofs for the Functional Neural Network 𝜷(·) 

In this section, we introduce the details and proofs for constructing the Toeplitz matrix form of 

𝑩(𝑐) and 𝑯(𝑐) in the basis layer 𝜷(·).  

The Toeplitz matrix is a square matrix 𝑷𝑁×𝑁  where the values along the negative sloping 

diagonals are equal. Given the first column [𝑝0, … , 𝑝𝑁−1]
𝑇 and first row [𝑝0,… , 𝑝−𝑁+1], the matrix is 

in the following form: 

𝑷𝑁×𝑁 =

[
 
 
 
 
 

𝑝0 𝑝−1 𝑝−2 ⋯ 𝑝−𝑁+2 𝑝−𝑁+1

𝑝1 𝑝0 𝑝−1 ⋯ 𝑝−𝑁+3 𝑝−𝑁+2

𝑝2 𝑝1 𝑝0 ⋯ 𝑝−𝑁+4 𝑝−𝑁+3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑝𝑁−2 𝑝𝑁−3 𝑝𝑁−4 ⋯ 𝑝0 𝑝−1

𝑝𝑁−1 𝑝𝑁−2 𝑝𝑁−3 ⋯ 𝑝1 𝑝0 ]
 
 
 
 
 

. 
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For the functional data 𝒙(𝑡), a Toeplitz matrix always exists for convolution weights 𝒉(𝑐)
(𝑙) (𝑡) 

given any length 𝑇 of the observations 𝒙(𝑡). Suppose the weights 𝒉(𝑐)
(𝑙) (𝑡) have a convolution kernel 

𝒘(𝑐)
(𝑙)

= [𝑤1, … , 𝑤𝑘𝑤
] with kernel size 𝑘𝑤 and dilation size 𝑑. The Toeplitz matrix is of size 𝑇 × 𝑇, 

and the matrix is derived by setting the value of 𝑝𝑛, 𝑛 = 1,… , 𝑇 − 1 as the following: 

𝑝𝑛 = 0, ∀𝑛 ≠ 𝑟 ∗ 2𝑑 , 𝑟 = 0,… , 𝑘𝑤 − 1, 

𝑝𝑟∗2𝑑 = 𝑤𝑘𝑤−𝑟 , 𝑟 = 0,… , 𝑘𝑤 − 1. 

For example, we set the kernel size 𝑘𝑤 = 3 and the dilation size 𝑑 = 1 for a functional input of 

length 𝑇 = 6. The Toeplitz matrix is derived from convolution kernel [𝑤1 , 𝑤2, 𝑤3] as: 

𝑯(𝑐)
(𝑙)

=

[
 
 
 
 
 
𝑤3 0 0 0 0 0
0 𝑤3 0 0 0 0
𝑤2 0 𝑤3 0 0 0
0 𝑤2 0 𝑤3 0 0
𝑤1 0 𝑤2 0 𝑤3 0
0 𝑤1 0 𝑤2 0 𝑤3]

 
 
 
 
 

. 

It has to be noted that the formula for 𝒉(𝑐)
(𝑙) (𝑡) does not consider the padded value of 𝒙(𝑡). 

Therefore, the Toeplitz matrix of the convolution layer 𝒉(𝑐)
(𝑙) (𝑡) is an approximation of the convolution 

operation. The approximation can be inaccurate when the padded length is considerable under a large 

dilation size 𝑑. Therefore, we apply the partial convolution (Liu et al., 2018) technique to deeper layers 

to alleviate the effect of padding. In each convolution operation, an element-wise multiplication is 

performed between the input 𝒖(𝑐)
(𝑙−1)

 and a binary masking layer 𝑴, where the binary mask is zero if 

the corresponding region is a padded value and the symbol "⨀" denotes the Hadamard product. 

𝒖(𝑐)
(𝑙) = 𝑩(𝑐)

(𝑙) (𝑡) + 𝑯(𝑐)
(𝑙) (𝑴⨀𝒖(𝑐)

(𝑙−1)
)

||𝟏||1
||𝑴||1

𝒖(𝑐)
(𝑙−1)

 

Moreover, we add a causal constraint to the convolution layers to accept only the padded value at 

the beginning of each input function. The padded values for 𝒙(𝑡) when 𝑡 > 𝑇  are not involved 

because only the thread engagement phase at the beginning of each function is incomplete. Thus, each 

Toeplitz matrix is of the same size 𝑇 × 𝑇 and can be multiplied to obtain a matrix 𝑯(𝑐) representing 

all layers. 

𝑯(𝑐) = ∏ 𝑯(𝑐)
(𝑙)

𝐷−1

𝑙=0
, 

〈𝜷(𝑐)(𝑡), 𝒙(𝑡)〉 = 𝑩(𝑐) + 𝑯(𝑐)𝑿. 

The 𝑯(𝑐) is also a 𝑇 × 𝑇 matrix and can be adapted to input 𝑿 with any length 𝑇. 𝑯(𝑐) can 

be viewed as a matrix basis which is adaptive to the input function 𝒙(𝑡). In this way, the input 𝒙(𝑡), 
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each channel 𝜷(𝑐)(𝑡)  of 𝜷(·) , and output 〈𝜷(𝑐)(𝑡), 𝒙(𝑡)〉  are all functional data. A total of 𝐶1 

functional data will be generated from 𝜷(·) given the input 𝒙(𝑡). 

𝜷(𝒙(𝑡)) = [〈𝜷(1)(𝑡), 𝒙(𝑡)〉, … , 〈𝜷(𝐶1)(𝑡), 𝒙(𝑡)〉] 

Therefore, the basis layer 𝜷(·) is a functional neural network that can accept and adapt to a 

functional input of any length without specifying the domain range. 

A.2 Visualization of the Learned Bases through Functional Neural Network 

The 𝐶1 functional bases 𝜷(𝑐)(𝑡) in the functional neural network 𝜷(·) can be visualized. By 

solving the following equation, we can derive the observations of the functional basis 𝜷′
(𝑐)

 and 

visualize the learned basis 𝜷(𝑐)(𝑡). 

𝜷′
(𝑐)

⨀𝑿 = 𝑯(𝑐)𝑿. 

For example, we select the functional neural network learned in the first fold of the 5-fold cross-

validation on the threaded pipe dataset. The 𝜷(·) consists of 𝐷 = 5 convolution layers with 𝐶1 = 40 

channels. The Toeplitz matrces 𝑯(𝑐) are derived using Equation (7) and the functional basis 𝜷′
(𝑐)

 are 

calculated given the functional input 𝒙(𝑡). 

We randomly selection one sample of multichannel functional data and the learned basis is shown 

in Figure A.2-1. 

 

Figure A.2-1. Visualization of the Learned Basis. 

Through the weights of the following neural network 𝑔(·), we can further identify the most 

important functional bases. A more straightforward way is to add weights to each channel 𝜷(𝑐)(𝑡), such 

as the channel-wise attention layers (Wang et al., 2020). 
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A.3 Classification Results of Each Fold 

The classification results on the steel pipe dataset are shown from Figure A.3-1 to Fig. A.3-4. In 

each subplot, we plot the confusion matrix of the classification. Each row in the matrix represents the 

actual label, and each column represents the predicted label. 

 

Figure A.3-1. Classification results of DTW. (a) 1st fold; (b) 2nd fold; (c) 3rd fold; (d) 4th fold; (e) 5th 

fold. 

 

 

Figure A.3-2. Classification results of POIFD. (a) 1st fold; (b) 2nd fold; (c) 3rd fold; (d) 4th fold; (e) 

5th fold. 

 

 

Figure A.3-3. Classification results of SFLDA. (a) 1st fold; (b) 2nd fold; (c) 3rd fold; (d) 4th fold; (e) 

5th fold. 
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Figure A.3-4. Classification results of DeepFunction. (a) 1st fold; (b) 2nd fold; (c) 3rd fold; (d) 4th fold; 

(e) 5th fold. 
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