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ABSTRACT
The improvement of sensing technology enables features of process variables to be collected during the
fabrication of products. This article develops an automatic tool for process feature rankings based on
these data. Based on the sensing data characteristics and the need of manufacturing system analysis, we
propose two rules of the feature ranking scheme: assessing general dependency between each individual
process feature and the quality variable, and satisfying a diversity rule. Specifically, we propose a feature
ranking scheme based on the sparse distance correlation (SpaDC) that satisfies these two rules. Theoretical
properties of the proposed algorithm are investigated. Simulation studies and two real-case studies from
semiconductor manufacturing applications demonstrate that the SpaDC method ranks the features effec-
tively given these two ranking rules.
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1. Introduction

In the most manufacturing processes, multiple process variables
(e.g., temperature, pressure, speed, and vibration signals) are
collected and converted to process features (e.g., mean, variance,
and natural frequency of those process variables) to characterize
the conditions of the manufacturing processes. Ranking the
process features based on the dependency relationship with the
quality variable is highly demanded (Vakharia et al. 2016; Shao
et al. 2013). Based on the ranking result, the practitioners can
analyze the root causes of quality variations, quickly identify
the leading features for process design improvements, prioritize
the resources for quality improvement, and optimize the sensor
placement for monitoring the key process features.

In traditional statistical quality control, identifying the major
factors from personnel, machines, materials, methods, and envi-
ronments is mainly based on experiential knowledge. Fishbone
diagrams and Pareto charts (Montgomery 2007; Abidin et al.
2011) have been widely used as standard methods to identify the
leading factors of a process. At the present time, the advanced
sensing technologies are widely used in manufacturing pro-
cesses and generate a large amount of process data during system
operations. By retrospective analysis of the dependent rela-
tionship between the product quality variable and the process
features obtained from the manufacturing processes, we aim at
developing algorithms to perform process feature ranking.

An automatic feature ranking shall be stipulated by certain
rules based on inherent characteristics of the process. First, as
many sensors are installed along the entire production line,
the size of total process features is usually large. However, the
root causes that lead to the process faults and disturbance in
a given time period is quite limited among all the potential
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failures. Furthermore, each root cause typically affects multiple
process variables simultaneously, resulting in both dependency
and redundancy among the process features (Abidin et al. 2011).
Second, a specific product quality issue only involves a few dis-
turbances, and thus numerous process features may be weakly,
or even not related to the specific quality variable. Third, the
dependency relationship between the quality variable and the
process features, and the dependency relationship among the
process features themselves are complex and ambiguous: they
may be nonlinearly related, or certain features may relate to the
variance of the quality variable instead of its mean.

These characteristics of the manufacturing process spawn
two specific rules of the feature ranking procedure. First, the
ranking should be based on a general dependency, given the
complex and ambiguous relationship between process features
and the quality variable. This general dependency measure shall
take both linear and nonlinear dependency relationships into
accounts between the process features and quality variables—
including the nonlinear relationship between individual process
features and the quality variables, as well as the relationship
between the individual process features and the variance of
the quality variable. Second, since many process features are
associated with few root causes, the ranking procedure shall
satisfy the diversity rule—a process feature shall be prioritized
if it is not correlated to other features which have already been
deemed as strongly related to the quality variable. The diversity
rule is proposed to address the fact that one root cause that
occurred will impact a set of process features that are dependent
to each other. With the diversity rule, only one feature within
a bunch of dependent features according to each root cause is
prioritized and thereby encourages a small number of leading
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features to cover all potential root causes that relate to the
quality variable. If the diversity rule is not satisfied, then the
highly ranked features may entirely relate to the major root
cause, whereas other process features showing less dependency
to the quality variable, but related to other minor root causes,
are neglected. In this way, the highly ranked features cannot
represent the necessary information for all root causes. Thus,
a ranking scheme without the consideration of the diversity
rule may deliver misleading results for the objectives. As we
will see from the literature review, few existing feature ranking
methods consider diversity or discrepancy of features. However,
this goal is usually achieved by traditional quality tools like
fishbone charts, as they intrinsically consider the difference of
items therein.

In this article, we develop a feature ranking scheme that
satisfies the diversity rule. This scheme also partially satisfies
the following rule of general dependency: the ranks can reflect
the dependency between the quality variable and individual
process features. Here, we have to emphasize that the general
dependency is referred as both linear and nonlinear dependency
between individual process features and quality variables, rather
than only the linear dependency. It should be noted that the
dependency between the quality variable and the interactions of
those process features is not the focus on this study and it cannot
be identified by our proposed method. The ranking method is
originated from the distance correlation, where we incorporated
a new distance metric with the weights on features. To rank
the features, we formulate an optimization problem by maxi-
mizing the weighted distance correlation while maintaining a
certain degree of weight sparsity. This optimization problem is
essentially a conic quadratic programming problem (Ben-Tal
and Nemirovski 2001) and thus can be solved efficiently. This
method is named as the Sparse Distance Correlation (SpaDC)
method. As discussed above, it is suitable for retrospective anal-
ysis of the process data collected from manufacturing systems
for identifying the leading features related to the variation of the
quality variable.

The remainder of this article is organized as follows. Sec-
tion 2 reviews the related literatures on feature ranking and gen-
eral dependency measures. Section 3 introduces the proposed
SpaDC method. Section 4 investigates the theoretical properties
of SpaDC, provides an illustration of how it works, and dis-
cusses some characteristics of the method. Section 5 validates
the method via the simulation studies. Section 6 presents two
applications of SpaDC: one involves ranking 24 process features
in the epitaxy stage of a solar cell manufacturing process, and
the other involves ranking over one thousand overlay measure-
ments in a lithography process. Section 7 concludes this article.
Proofs are provided in the supplementary materials.

2. Literature Review

The problem of feature ranking and selection has been studied
in the literature for a long time. Most feature selection methods
are developed with a statistical model that associates the features
with the responses. For linear models, methods such as stepwise
regression (Weisberg 2005) and Lasso (Tibshirani 1996) can
be used for feature ranking. Grömping (2006) introduced the

R package “relaimpo,” which provides six different assessments
for the relative importance of regressors in a linear model,
either based on the regression coefficients and their standard
errors, or the decomposition of R2 statistic. Choi et al. (2020)
discussed how ridge regression could also help to infer the
importance of variables, and the ranking result is evaluated
by concordance score, with the comparison with Lasso and
the elastic net regression. They discovered that when the pair-
wise correlations among the features have a large variation, the
ridge regression has improved ranking performance. However,
these ranking procedures are based on linear models between
inputs and outputs and thus only aim for designated situations.
Although predictive methods such as ensemble models (Fried-
man, Hastie, and Tibshirani 2001) tackle broader relationships
between inputs and outputs, feature ranking approaches based
on predictive models are not desirable in general. For one thing,
these feature ranking rules require reconfiguration once the
process changes. Furthermore, predictive models cannot cap-
ture certain relationships between process features and quality
variables, for example, the case in which the variance of the
quality variable is dependent with the process features.

Except for the model-based feature ranking procedure, there
are also ranking methods based on general dependency indices.
General dependency indices are the extensions of Pearson
correlation coefficients that not only measure the correlation
between variables but also take the general dependency of
random variables into account. Examples of general dependency
indices include mutual information (Steuer et al. 2002), distance
correlation (Lyons 2013, Székely, Rizzo, and Bakirov 2007),
and Hilbert–Schmidt Independence Criterion (HSIC) (Gretton,
Herbrich, et al. 2005, Gretton, Smola, et al. 2005). Among them,
the mutual-information-based method requires the estimation
of the marginal and joint densities of the random variables and
thus is difficult to be calculated efficiently. Distance correlation
has received much attention in recent years. The distance
correlation originates from energy distance (Székely and Rizzo
2013), a technique that characterizes the difference between
distributions using pairs of observations. It was used by Huling
and Mak (2020) to balance the distributions of covariates for
estimating causal effects based on observational data. The
distance correlation and the HSIC have been shown to be
equivalent (Sejdinovic et al. 2013).

General dependency indices can be used for feature ranking.
In the literature, Song et al. (2012) established an HSIC-based
stepwise feature selection method, which can also be used for
feature ranking. Li, Zhong, and Zhu (2012) and Kong, Wang,
and Wahba (2015) developed a feature screening method by
selecting a threshold to remove the features with a small distance
correlation of the response variable. Yenigün and Rizzo (2015)
proposed a stepwise variable selection method using distance
correlation for regression modeling. However, these ranking
procedures do not take diversity rule into consideration.

Recently, the diversity of the features has been proposed in
Christidis et al. (2020). They propose to aggregate estimators in
linear regression to form an overall fit. To achieve high accuracy
of the prediction, they suggest that the groups of features used by
these estimators should be different. In essence, nonoverlapping
groups of features are encouraged as they provide unique infor-
mation for the predictor of interest. Although this idea is similar
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to the diversity rule of feature ranking, the diversity in this
article is based on the general dependency between individual
features, and our goal is feature ranking instead of predictive
modeling. The diversity rule of feature ranking is also similar
to the minimal-redundancy-maximal-relevance (mRMR) cri-
terion (Peng, Long, and Ding 2005), which adopts a stepwise
procedure and selects the mth feature as the one most relevant to
the output and most irrelevant with the previous m−1 features.
However, mRMR is based on mutual information criterion,
which relies on the density estimation and thus involves high
computational complexity. Instead, the SpaDC method is based
on the distance correlation from each pair of features, which can
be calculated efficiently using the method proposed in Huo and
Székely (2016).

3. Sparse Distance Correlation (SpaDC) Ranking
Procedure

Let X = (
X1, . . . , Xp

)
be the p-dimensional process features,

and let Y be the associated quality variable. When n products
are fabricated from the manufacturing system, the features are
formatted into a data matrix X ∈ R

n×p. Let X = [
x1, . . . , xp

] =⎡
⎢⎣

x(1)�
...

x(n)�

⎤
⎥⎦, where xi represents the ith process feature of all

products and x(j)� represents all process features obtained from
sample j. The quality indices of these n products are denoted as
y = (

y(1), . . . , y(n)
)� ∈ R

n×1. From the data X and y, we aim to
obtain the ranks of the features that satisfy the diversity rule.

3.1. Distance Correlation

Our feature ranking procedure is based on distance correlation
(Székely and Rizzo 2004). Distance correlation is an energy
statistic (Székely and Rizzo 2017), which is a function of dis-
tances between all pairs of samples. As introduced in Section 2,
it is a general dependency measure and can identify linear and
nonlinear dependency relationships.

Let random vector (X,Y) follow an arbitrary joint distri-
bution FX,Y . The distance covariance and distance correlation
between X and Y are defined based on two prescribed distance
metrics dX (·, ·) and dY (·, ·) of space R

p and R respectively
(Lyons 2013). With these distance metrics, the population dis-
tance covariance for (X,Y) is defined as the square root of

V2(X,Y) = E[(dX(X(1),X(2))−d̄X(X(1))−d̄X(X(2)) + ¯̄dX)

× (dY(Y(1),Y(2))−d̄Y(Y(1))−d̄Y(Y(2)) + ¯̄dY)].

Here d̄X (·) = EX1

[
dX

(·,X(1)
)]

and ¯̄dX = EX1,X2

[
dX

(
X(1),X(2)

)]
.(

X(1),Y(1)
)

and
(
X(2),Y(2)

)
are two independent samples from

the distribution FX,Y . The function d̄Y (·) and the quantity ¯̄dY
are defined similarly.

Based on V2 (X,Y), the squared-distance correlation between
random vector X and Y is defined as R2 (X,Y) =

V2(X, Y)√
V2(X,X)V2(Y , Y)

if V (X,X) V (Y , Y) > 0. Under certain

condition of dX (·, ·) and dY (·, ·) (Lyons 2013), the value of
R2 (X,Y) can be regarded as a dependency measure between X
and Y , as ≤ R2 (X,Y) ≤ 1 and R2 (X,Y) = 0 if and only if X and
Y are independent.

From the observed samples X ∈ R
n×p and y ∈ R

n×1,
V (X,Y) and R2 (X,Y) are estimated with the following proce-
dure. First, calculate the pairwise distance akl = dX

(
x(k),x(l)),

and obtain Akl = akl−āk·−ā·l + ā·· where āk· = 1
n

∑n
l=1 akl,

ā·l = 1
n

∑n
k=1 akl, and ā·· = 1

n2
∑n

k, l=1 akl. Similarly, calculate
Bkl based on bkl = dY

(
y(k),y(l)). The sample distance covariance

is defined as

V2
n
(
X, y

) = 1
n2

n∑
k, l=1

AklBkl. (1)

The squared sample distance correlation R̂2
n
(
X, y

)
is defined

analogously as R2
n
(
X, y

) = V2
n(X,y)√

V2
n(X, X)V2

n(y,y)
when Vn (X, X)

Vn
(
y, y

)
> 0.

Evidently, R2
n
(
X, y

)
and V2

n
(
X, y

)
are consistent estimators

to their population counterparts. Through their sampling distri-
butions, these statistics can be used to test the general indepen-
dence between X and Y . The effectiveness of the distance-based
method in detecting general relationships has been validated in
the literature (Simon et al. 2014).

3.2. Distance Covariance Based on the Weighted
l1-Distance Metric

To facilitate feature ranking, we assign a weight βi ≥ 0 to each
process feature Xi, and perform the ranking based on regulariza-
tion path of β = (

β1, . . . , βp
)� when maximizing a weighted

sample distance correlation between X and y. To calculate the
weighted sample distance correlation from the dataset, we define
the following β-weighted �1-distance between features x and x′ :

dβ

(
x,x

′) =
∑p

i=1
βi

∣∣∣xi−x
′
i

∣∣∣. (2)

The weighted �1-distance metric is used here because it leads
to a convex formulation of the optimization problem as we shall
see later, though this distance metric cannot directly identify the
dependence between Y and the interaction effects of xi’s. With
the Euclidean distance metric on the domain of y and the β-
weighted �1-distance on the domain of x, the weighted sample
distance covariance and the weighted sample distance correla-
tion can be directly derived from Equation (1). The detailed
derivation is given in Supplementary material A.

V2
n,β

(
X, y

) = d�
n β ; R2

n,β
(
X, y

) ∝ V2
n,β

(
X, y

)
√

V2
n,β (X, X)

= d�
n β√

β�Fnβ
.

Here, the jth element of vector dn is dn,j = Vn
(
xj, y

)
, and

the
(
i,j

)
-element of Fn is [Fn]ij = Vn

(
xi,xj

)
, where xi ∈

R
n×1y ∈Rn×1. The function Vn (·, ·) is defined according to

Equation (1) by evaluating the sample distance covariance of
two n×1 vectors, using Euclidian distance metric d (u,v) =
|u−v| for both domains. Notably, dn and Fn are calculated from
the sample distance covariance between each process feature
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and the quality variable, and each pair of features respectively.
The readers should be aware that this step indicates that the
dependency between Y and int

(
Xi,Xj

)
cannot be identified, if

Y is independent with both Xi and Xj. The fast computation
procedure Huo and Székely (2016) can be employed to calculate
entries of dn and Fn. We note that Vβ (X,Y) = 0 if and only if
each feature Xi is independent of Y for every i corresponding to
βi> 0, as shown in Supplementary material B.

3.3. Formulating the Optimization Problem

We assume that the features x1, . . . , xp are scaled to have
Vn (xi,xi) = 1 for i = 1, . . . , p. We formulate the following
optimization problem to achieve feature ranking:

max
β

d�
n β

subject to β�Fnβ = 1,
p∑

i=1
βi≤c;βi≥ 0 for all i = 1, . . . , p. (3)

In this problem, we aim to find a sparse weight vector β

that leads to the maximum weighted sample distance correla-
tion R2

n,β
(
X, y

) ∝ d�
n β√

β�Fnβ
. The denominator of R2

n,β
(
X, y

)
is

restricted to 1, and the constraint
∑p

i=1 βi ≤ c is applied to
encourage sparsity of β for key feature ranking. The parameter
c controls the level of regularization, and the positive elements
of the solution β (c) specify a subset of features that relate to
Y . Considered that Problem (3) is not a convex optimization
problem due to the constraint β�Fnβ = 1, it is further relaxed
to the following convex optimization problem:

min
β

−β�dn

s.t. β�Fnβ ≤ 1;
p∑

i=1
βi ≤ c;βi≥ 0 for all i = 1, . . . , p. (4)

Proposition 1 gives a result on the validity of the relaxation and
the uniqueness of the solution.

Proposition 1. With probability 1, all elements in vector dn have
different values and Fn is positive definite. As a result,

i. If Problem (3) is feasible, then Problem (4) has a unique
optimal solution;

ii. If Problem (3) is not feasible, then at most one element
of β (c) is nonzero, and the optimal solution of (4) is also
unique.

The proof is given in Supplementary material C.
Problem (4) can be transformed to a standard form of a conic

quadratic programming problem (Ben-Tal and Nemirovski
2001), as detailed in Supplementary material D. Therefore, it
can be solved efficiently with existing interior-point convex
optimization solver. In Section 4, we shall see that this problem
leads to diversity, the intriguing property that is critical for
feature ranking.

3.4. Feature Ranking With Distance Correlation Criteria

The SpaDC method ranks the features by solving Problem (4)
with different values of regularization parameter c. According
to Proposition 1, the solution to Problem (4) is unique, and
we denoted it by β (c). Let J (c) = {

i: [β (c)]i > 0
}

be the set
of nonzero elements of β (c). As c increases from 0 to a larger
number, some elements among β (c) enterJ (c) and the features
are ranked based on the sequence of their first appearance in it.
Specifically, each feature Xi is associated with a threshold

Ti = inf {c:i ∈ J (c)} . (5)

The features X1, . . . , Xp are then ranked by sorting T1, . . . , Tp.
To implement the above idea, we first need to calculate all

possible sets J (c) for a series of values c≥. A direct approach
is to construct a regularization path {β (c) :c ≥ 0}. However,
there is no existing algorithm for it. The presence of quadratic
constraints of β makes Problem (4) essentially different from
those with well-studied regularization paths (Efron et al. 2004;
Hastie et al. 2004; Rosset and Zhu 2007; Tibshirani and Taylor
2011). As an alternative approach, we need to evaluate β

(
cj
)

for a series of values cj, j = 1, . . . , J to form a dictionary
D = {(

cj, β
(
cj
))

:j = 1, . . . , J
}

. With such a dictionary D, we
can obtain T̃i = min

{
cj:i ∈ J

(
cj
)

,j = 1, . . . , J
}

, by which we
rank features

{
Xi,i = 1, . . . , p

}
.

There are two specific implementations to obtain D. One
implementation is to adopt a bisection search algorithm. Using
Proposition 2, we can effectively limit the values of c’s for which
Problem (4) needs to be solved.

Proposition 2. Let Fn be positive definite and all elements of dn
be different.

i. Problem (3) is not feasible if c< 1, and it is feasible when
c ≥ 1.

ii. J (c) = J
(√p

)
for c >

√p.
iii. If 1 ≤ c1 < c̃ < c2 ≤ √p and J (c1) = J (c2), J

(
c̃
) =

J (c1) = J (c2).

The proof of Proposition 2 is given in Supplementary mate-
rial E. Statements (i) and (ii) of Proposition 2 specify that
Problem (4) only needs to be solved for c ∈ [

1,√p
]

and
statement (iii) indicates that if the solution of Problem (4) at
c1c2 shows that J (c1) = J (c2), then solving Problem (4)
again for c ∈ (c1,c2) is unnecessary. With Proposition 2, we
implemented a bisection search algorithm (Algorithm 1) to
determine the ranks of all features. According to Proposition 2,
the exploration starts with cmin= 1 and cmax = √p in Step 1.
In Step 2, the subroutine “Search_Interval” finds all the possible
J (c)’s according to c ∈ (c1,c2), by evaluating if the middle point
c̃ satisfies J

(
c̃
) = J (c1) or J

(
c̃
) = J (c2), and recursively

exploring the subintervals
(
c1,c̃

)
if J

(
c̃
) 	= J (c1) and the

subinterval
(
c̃,c2

)
if J

(
c̃
) 	= J (c2).

Besides the bisection method, a warm-start strategy, moti-
vated by Friedman et al. (2007), is another implementation,
especially suitable if there are many process features while we are
only interested in obtaining the ranks of the leading r features.
This algorithm is summarized in Algorithm 2. In this procedure,
we start with c= 1. In every step, we solve the optimization
Problem (4) at c = 1 + kδ using the interior point method, by
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setting 1 + (k − 1) δ as the initial value. If the nonzero elements
of β (1+kδ) and β (1+ (k−1) δ) are different, then the rank of
a new feature is obtained.

Algorithm 1 Bisection search for ranking the features
1. Initiate cmin= 1, cmax = √p and calculate J (cmin) and

J (cmax). Initiate the dictionary D = {(cmin,J (cmin)),
(cmax,J (cmax))}; Set Kmax, the maximum levels of recursion.

2. Call Search_Interval(cmincmax,J (cmin) , J (cmax)) to
add entries into D. .

3. Calculate ki = min {c: {c;J (c)} ∈ D; i ∈ J (c)}. Then the
rank of the features is determined by the ascending order of
ki, i = 1, . . . , p.

Subroutine Search_Interval(c1,c2,J (c1) ,J (c2) ,K)

1. Let c = (c1 + c2) /2, and calculate J (c). If J (c) 	= J (c1)
and J (c) 	= J (c2), write {c : J (c)} to the dictionary D;

2. If K≥Kmax return;
3. If J (c) 	= J (c1), call Search_Interval

(c1, c,J (c1) , J (c), K+1);
4. If J (c) 	= J (c2), call Search_Interval

(c, c2,J (c) , J (c2), K+1);

In practice, features i and i′ may share the same rank if
we observe ki = ki′ in Step 3 of Algorithm 1 or if we find
that β (1+kδ) contains two or more nonzero elements than
β (1+ (k−1) δ) when implementing the warm-start strategy.
We regard such tied features with the same priority. For some
features, the solved weight will always be 0 no matter how
we increase c. These features are regarded as having the least
importance with respect to Y . The ties may be either caused
by a small search depth Kmax, a large step δ, or some inherent
reasons related to the ranking procedure that will be elaborated
in Section 4.3.

4. Theoretical Properties and Discussions

In this section, we first investigate the theoretical properties of
the SpaDC method. We show that under certain conditions, the
features dependent with Y are ranked before the independent
ones and that the diversity rule can be achieved. The explanation
of how SpaDC satisfies the diversity rule and how the ties are
generated are illustrated using a three-feature demonstration.
Finally, we discuss applicable scenarios of the proposed meth-
ods.

4.1. Theoretical Properties

Let us assume that Y is dependent with some of the fea-
tures X1, . . . , Xm and independent with the other features
Xm+1, . . . , Xp. Proposition 3 states that the probability that
J (c) = {1, . . . , m} for a c> 0 will converge to 1 as the sample
size n→ ∞, under certain conditions.

Proposition 3. Let X = (
X�

1 , X�
2
)� , where X1 = (X1, . . . ,

Xm)� ∈ R
m and X2 = (

Xm+1, . . . , Xp
)� ∈ R

p−m. Xi is inde-
pendent with Y if and only if i > m. Assume that E |Xi|2v < ∞
for all i = 1, . . . , p and E |Y|2v < ∞ for an even number v ≥ 2.
Let A (Xn,Yn) indicate the event that for a c,J (c) = {1, . . . , m}.

Let
[
V

(
Xi,Xj

)]
p×p := F =

[
F11 F12
F21 F22

]
, the population coun-

terpart of Fn, and let d =
[

d1
d2

]
be the population counterpart

of dn. If the vector d1 belongs to the interior of the cone
spanned by vectors F(1)

11 F(2)
11 , . . . , F(m)

11 1m, where F(1)
11 , . . . , F(m)

11 ,
are the columns of F11, 1m = (1, . . . , 1)� ∈ R

m, we have
P (A (Xn,Yn)) = 1 − O

(
n1−v).

The proof of Proposition 3 is given in Supplementary mate-
rial F. Proposition 3 points out that the probability that there
exists a c such that “J (c) contains exactly the dependent fea-
tures” goes to 1 when n → ∞.

The statement in Proposition 3 relies on the condition that
vector d1 belongs to the interior of the cone spanned by vectors
F(1)

11 F(2)
11 , . . . , F(m)

11 1m. In general, it holds when the dependency
of features among X1 is weak, because the cone spanned by[

F(1)
11 , . . . , F(m)

11 , 1
]

has a large range. Especially, if all features in
X1 are independent, the cone is simply Rm+, so any d1 > 0 must
lay in this cone, and so the statement of Proposition 3 holds.

Despite the implication of Proposition 3, the SpaDC method
does not simply rank the features based on their sample distance
correlation with Y like Li, Zhong, and Zhu (2012). The following
proposition illustrates how SpaDC method achieves the diver-
sity rule, and it will be illustrated intuitively in Section 4.2.

Proposition 4. Let F = [
V

(
Xi,Xj

)]
p×p and d = [V (Xi, Y)]p×1,

where V (·, ·) is the distance covariance based on the univariate
Euclidean metrics. Write F and d in the following block-wise

form:F =
⎛
⎝ F11 f1 F12

f�
1 f11 f�

2
F�

12 f2 F22

⎞
⎠ ; d =

⎛
⎝ d1

d∗
d2

⎞
⎠ where F11 ∈

R
m×m, f1 ∈ R

m×1, F12 ∈ R
m×(p−m−1), f2 ∈ R(p−m−1)×1,

and F22 ∈ R(p−m−1)×(p−m−1). The following statements hold:

1. If the probability that “for a c > 1, Problem (4) has a solution(
β�

1,n 0
)� with β1,n > 0” goes to 1 when n → ∞, d1 =

F11γ 1 + μ1 for a γ 1 ≥ 0 and μ ≥ 0.
2. Assume that the condition in Statement (i) holds. Under

additional assumption that f1 = 0, F�
12γ 1 + d∗f2 > d2,

and d∗>μ, the probability that there exists a c′ such that
“m + 1 ∈ J

(
c′) and m + 2, . . . , p /∈ J

(
c′)” goes to 1 when

n → ∞
Proposition 4 indicates that the probability that “J (c) is an

increasing set sequence as c increases, whereas Xm+1 is not
ranked before the features Xm+2, . . . , Xp” goes to zero. The proof
of this proposition is given in Supplementary material G. In
Proposition 4, Statement (i) guarantees that the probability of
selecting features X1,…, Xm goes to 1 when n→ ∞. Statement
(ii) gives the critical condition that with a high probability,
J

(
c′) = {1, . . . , m + 1} for a c′. Except for the condition

that Xm+1 is independent with the features Xm+2, . . . , Xp, the
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following situations help to satisfy the assumptions in Statement
(ii):

• Xm+1 is strongly dependent with Y and the rest of the features
Xm+2, . . . , Xp (i.e., the values of d∗ and elements in f2 are
large).

• The dependency between each of Xm+2, . . . , Xp and Y is
small (i.e., the values of elements in d2 are small).

• The dependency between Xm+2, . . . , Xp and certain mem-
bers in X1, . . . , Xm is strong (i.e., the values of elements in
F�

12γ 1 are large).

The last situation indicates the diversity rule.

4.2. A Graphical Illustration for SpaDC Method

In this section, we aim at acquiring an in-depth understanding
of the SpaDC method using geometric illustrations of Problem
(4) for cases involving three features X1, X2, X3. An example
of the geometric illustration for Problem (4) is shown in Fig-
ure 1(a). In this 3D figure, the three axes denote the decision
variables β1, β2, and β3. The 3D shape is the intersection of the
ellipsoid β�Fnβ ≤ 1, the half-space β1 + β2 + β3 ≤ c0, and the
first octant {β :β1,β2,β3≥ 0}. The grayscale of this 3D shape’s

surface illustrates the negative objective value, β�dn, where a
large value is indicated by the light shade, and a small value is
indicated by the dark shade. The solution β (c0) at the current
value c0= 1.28 is marked by the thick solid dot, and path of β (c)
when c changes from 1 to c0= 1.28 is illustrated by the solid
black curve.

The first case, shown through the three figures in Figure 1(b),
aims to demonstrate how the diversity rule is satisfied. In this
case, we let X1 and X3 be strongly dependent, X1 and X2 be
independent, and X2 and X3 be independent. Therefore, we
set Fn (1, 3) = 0.5, Fn (1, 2)= 0 and Fn (2, 3)= 0, leading to the
special curvature of the ellipsoid. The feature X1 is strongly
related to Y with dn,1= 0.6, whereas X2 and X3 have a similar
degree of relatedness with Y , that is, dn,2 = dn,3= 0.4. The top
plot in Figure 1(b) shows that when c0= 1, β (c0) = (1, 0, 0)�
and only β1> 0. The middle plot shows that β (c) moves along
the bottom plane β3= 0 and β2 becomes non-zero when c> 1,
so X2 ranks the second. When c becomes even larger (c > 1.38),
all β1, β2, and β3 become positive, and when c> 1.42, the half-
space constraint β1 + β2 + β3 ≤ c becomes inactive, as shown
in the bottom plot. Therefore, X1 ranks the first, X2 ranks the
second, and X3 ranks the third. In this example, we see that
although X2 and X3 have a similar degree of dependency with

Figure 1. A geometric illustration of the optimization Problem (4), and the path of β (c).
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Y , the ranking result shows that X2 ranks before X3. In essence,
the curvature of the ellipsoid surface driven by the dependency
relationship among features warps the path of β (c) and helps to
achieve the diversity rule.

The second case, shown in Figure 1(c), aims to illustrate
how the ties in the features are generated. In this case, the
features X1 and X2 are weakly dependent to Y with dn,1 =
dn,2= 0.15, whereas the feature X3 is strongly dependent to Y
with dn,3= 0.5. X1 and X2 are dependent and Fn (1, 2) = 0.5,
whereas each of them is independent with X3. The top plot
shows that when c0= 1, β (c0) = (0, 0, 1)�. The path of β (c)
in the middle plot shows that when c increases from 1, the first
and the second element of β (c) become positive simultaneously,
until the constraint β1 + β2 + β3 ≤ c0 becomes inactive.
Therefore, X3 ranks first, and X1X2 tie at the second place. From
this example, we can see that the ties can be inherent to the
optimization problem. This example also shows a typical situ-
ation where ties happen: the features are dependent with each
other and not much dependent with Y . Although the SpaDC
procedure gathers the features into ordered groups with tying
features, the authors do not regard it as a disadvantage for the
proposed method in engineering practice, as the groups indicate
different degrees of importance of features. As the features in
the early groups tend to be more related to the quality variable
and not dependent on each other, the tying features also provide
useful information for the process.

In supplementary material H, we provide an animation to
illustrate the path of β (c) for the above two cases with inter-
pretations.

4.3. Discussion

In this section, we discuss the computational complexity of
the SpaDC procedure and discuss one limitation of the SpaDC
algorithm on identifying the interaction effect of the features.

Computational Complexity. The overall computational time
for the SpaDC involves two parts: (i) the calculation time of
dn and Fn and (ii) the computational time for solving Problem
(4) with a series of c’s. The vector dn and matrix Fn involve
p
(
p+1

)/
2 values of sample distance covariances. Using the

method of Huo and Székely (2016), each of these elements can
be calculated with O

(
n log n

)
floating point operations, and the

computation of different elements can be performed in parallel.
For the second-order cone programming, the computation time
for each β (c) is O

(
p3 log (1/ε)

)
for calculating a solution β (c)

with ε-accuracy (Ben-Tal and Nemirovski 2001).
Interaction Effects: The SpaDC method is essentially based

on the statistics of dn and Fn, the pairwise sample distance
covariance between features and the sample distance covari-
ance between xi and y. For this reason, it cannot identify the
dependency between Y and the interaction effects of two or
more feature Xi’s. A fundamental reason is that the weighted
�1-distance metric is not a strong negative type (Lyons 2013)
and thus the induced distance covariance cannot account for all
dependency relationships between X and Y , though it facilitates
a convex formulation of the optimization problem. Our target
in the article is to conduct feature ranking for root-cause trace
in manufacturing processes, where the main effects of process
features are more important.

5. Simulation Studies

In this section, we compare the SpaDC method with six existing
feature selection and ranking methods in the literature. We aim
to validate that our scheme ranks the dependent features prior
to the independent ones and meanwhile it satisfies the diversity
rule.

5.1. Existing Benchmarks and General Settings

Six existing feature selection and ranking methods are used in
the simulation study for benchmarking purposes. Yenigün and
Rizzo (2015) proposed a stepwise variable selection method for
a regression model based on the distance correlation of the
residuals. This method, which is called the YR method in short,
derives a variable ranking method directly, because a forward-
selection procedure naturally gives an order of the variables. Li,
Zhong, and Zhu (2012) proposed a feature screening method
through ranking the features X1, . . . , Xp according to the indi-
vidual relationship with Y , and the ranking scheme is called as
LZZ in our simulation study. We also included the LMG method
(Lindeman 1980) implemented with the R package “relaimpo”
(Grömping 2006) in our comparison study, which ranks features
based on the R2 statistics of linear models. Three feature ranking
methods in our comparison are based on predictive models.
Two of them are based on linear models, that is, the Lasso
and adaptive Lasso methods (Zou 2006, Huang, Ma, and Zhang
2008). We used the MATLAB package “penalized” to compute
the regularization paths (McIlhagga 2016) for ranking the pro-
cess features. The last method is based on feature importance
indices of the random forest model (Altmann et al. 2010), and
we abbreviate it as the RF method.

In the next two subsections, we will consider five settings
where the features are independent and dependent. Under each
setting, we generally follow the procedure in Yenigün and Rizzo
(2015) and generate the datasets

(
X, y

)
by repeating the proce-

dure 1000 times. Six competing methods are applied to these
1000 datasets, generating 1000 sequences of the corresponding
features. For i = 1, . . . p, we count the number of times that
each feature is ranked as the ith one. When a tie of r features
appears in a ranked feature sequence, each feature in this tie is
then counted as 1/r replication on every tied rank. For example,
assume that feature X1 is ranked as the first feature; X2 and
X3 are tied at the second feature in one replication. For X1,
this replication is counted as one replication ranked as the first
feature. For X2 and X3, half replication is counted as the second
feature, and half is counted as the third feature. Finally, the
ranking distribution for each feature is calculated.

5.2. Simulation With Independent Features

In the first three settings, the number of features to be ranked is
p= 8, and they are independent of each other.

• Setting 1: Let X1, . . . , X8 ∼ N (0, 1), and Y = |X1| + X2
2 +

X3 + ε, where ε ∼ N (0, 1). A total of 100 samples are
generated from (X,Y).

• Setting 2: Let X1, . . . , X8 ∼ N (0, 1) and Y = log(4 +
sin(2X1)+sin(X2)+X2

3+X4+0.1)+ε, where ε ∼ N
(
0, 0.12).

The sample size is 500.
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• Setting 3: Let Y be dependent on three variables X1, . . . , X3
with Y = Z

(
4−X2

1−X2
2−X2

3
) + ε, where X1, X2, X3 ∼

Unif (−1, 1), ε ∼ N
(
0, 0.12), Z= +1 or −1 with probability

of 0.5, and Z is independent with X1, . . . X8. Here, Y has an
equal probability of being positive or negative. A total of 500
samples are generated from (X,Y).

The ranking results of Settings 1–3 are given in Supplemen-
tary material I, where we count the proportion of runs where
each variable Xj is ranked to the 1st to the 8th place using each
individual method. From the results of Setting 1, we find that all
methods rank X3 at the first place most of the time. SpaDC, LZZ,
and YR usually rank X1 and X2 at the second place and the third
place. However, Lasso, Adaptive Lasso, and LMG tend to rank
X1 and X2 to the first three places less often, and RF ranks X2
even fewer to the top-three. This is because Lasso and AdpLasso
only capture the linear relationship, and RF is not as sensitive
to nonlinear dependency relationships as distance correlation-
based methods.

For the nonlinear relationship specified in Setting 2, SpaDC,
LZZ, and YR rank X1,…, X4 ahead of X5,…, X8 in the most
replications. However, the Lasso, AdpLasso, LMG, and RF rank
features X3 to the 5th to 8th places most of the time. Hence, the
schemes of the SpaDC, LZZ, and YR are more likely to rank the
dependent features before the irrelevant ones when nonlinear
dependency exists.

The results of Setting 3 show that the methods based on gen-
eral dependency measures tend to rank features dependent with
the quality variable before the independent ones. However, the
ranking methods based on predictive models (Lasso, adaptive
Lasso, LMG, and RF) cannot deliver such performance, because
the features X1, X2, X3 influence the variance of Y instead of its
mean. We further discusse and compare the situation where the
process variables and quality variable are linearly dependent and
where the process variables impact the variance of the quality
variable in Supplementary Material H.

5.3. Simulation With Dependent Features

In the next two settings, we investigate the situation where the
features are dependent. We focus on testing if the diversity rule
is satisfied.

• Setting 4: Three features, X = (X1,X2,X3)
� are generated,

and Y represents the quality variable. (X1,X2,X3,Y)�
jointly follows a multivariate normal distribution with zero
mean and the following covariance structure: �X,Y =⎛
⎜⎜⎝

1 0 ρ M
0 1 0 m
ρ 0 1 m
M m m 1

⎞
⎟⎟⎠

Here, the feature X1 and Y are strongly correlated
(corr (X1,Y) = M= 0.6), while (X2,X3) and Y are weakly cor-
related (m= corr (X2,Y) = corr (X3,Y) = 0.2 <M). Among the
three features, X2 is independent with X1, while X3 is correlated
with X1 with a correlation coefficient of ρ= 0.1, 0.2, . . . , 0.6. A
total of 1000 samples are generated in this setting.

• Setting 5: A total of six features X1, . . . , X6 are generated,
and Y represents the quality variable. (X1, . . . , X6,Y)�
jointly follows a multivariate normal distribution with zero
mean and the following covariance structure �X,Y =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ12 0 0 0 0 M
ρ12 1 0 0 0 0 m
0 0 1 ρ34 0 0 M
0 0 ρ34 1 0 0 m
0 0 0 0 1 ρ56 m
0 0 0 0 ρ56 1 m
M m M m m m 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

With this structure, the features X1, . . . , X6 can be divided
into three correlated groups: [X1,X2] [X3,X4] and [X5,X6]. Y is
strongly correlated with X1 and X3, with M= 0.6. Meanwhile, Y
is weakly correlated with the rest, that is, m= 0.2. The parame-
ters ρ12, ρ34, and ρ56 are equal, and they are selected from four
values, that is, 0.4, 0.5, 0.6, and 0.7. A total of 1000 samples are
generated from (X,Y).

Figure 2 (the left panel) illustrates the distribution of the
ranks for X1, X2, and X3 in Setting 4 through line charts. Here,
the row indicates the methods, and the column indicates the
variables X1, . . . , X3. Each subplot describes the proportion of
runs (y-axis) that this feature is ranked as the first (black line),
the second (red line), and the third (blue line) place using one
method, when ρ (x-axis) varies from 0.1 to 0.6. According
to the results of Setting 4, feature X1 is always ranked as the
first one. When ρ is 0.1, the frequencies that the ranks of
X2 and X3 in SpaDC are distributed at the second and the
third places are very close, as can be observed from the panel
corresponding to X2 and X3 for the SpaDC method. However,
when ρ increases from 0.1 to 0.6, X2 and X3 are more inclined
to be ranked in the second and third places by the SpaDC
method, respectively. This situation has not been observed in
the other four methods. Recall that X2 is independent with X1,
and thus prioritized to the second place. Therefore, SpaDC tends
to prioritize the features that are independent of others leading
features to meet the diversity rule, whereas other methods do
not.

Recall that in Setting 5, Y is strongly correlated with X1 and
X3, with M= 0.6. As expected, the results show that X1 and X3
are ranked in the first two places in most of the 1000 replications
for methods in comparison. Figure 2 (the right panel) shows
how each method ranks other features to the third place among
these replications: the y-axis of each subplot represents the pro-
portion one method rank Xj to the third place, j= 2, 4, 5, 6, and
the x-axis illustrates ρ= ρ12 = ρ34 = ρ56. When ρ increases
from 0.4 to 0.7, the SpaDC method constantly ranks X5 or X6
in the third place with more replications than X2 or X4. As ρ

increases, the gap becomes much larger, and X5 or X6 is always
ranked to the third place following X1 and X3 when ρ= 0.7. This
trend has not been observed in the LZZ or YR method. Recall
that X5 and X6 are the features that are always independent with
X1 and X3. When X2 and X4 are increasingly dependent with
X1 or X3, in more cases X5 or X6 thus ranks the third place due
to the diversity rule. The result thus demonstrates that SpaDC
meets the diversity rule when the relationship between X and
Y becomes more complex. However, the other four methods do
not have such properties.
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Figure 2. (a) The comparison results of setting 4, when the correlation ρ between X1 and X3 changes from 0.1 to 0.6. Black, red and blue lines correspond to the percentage
of cases where the feature is ranked first, second, and third. (b) The comparison results of setting 5. The percentage of replications that Xi is ranked as the third feature
when ρ varies between 0.4 and 0.7.

In conclusion, according to the results of the first three
simulation settings, the SpaDC method is similar to the YR or
LZZ method when the process features are independent of each
other. Compared with the schemes based on linear models (i.e.,
Lasso, Adaptive Lasso, and LMG) and the random forest, the
ranking schemes based on general dependency can capture the
nonlinear dependency between the features X and the quality
variable Y as well as the case where the features X affect the
variance of Y . The simulations with Settings 4 and 5 further
illustrate that the SpaDC method is superior to the YR and LZZ
methods as it satisfies the diversity rule.

6. Case Studies

In this section, we validate the SpaDC method using two real
examples. One is the data analysis of a solar cell manufacturing
process. The other one is the analysis of overlay data from a
lithography process.

6.1. Epitaxy Process in Solar Cell Manufacturing

In this case study, we investigate an epitaxy process in solar
cell manufacturing (McEvoy, Castaner, and Markvart 2012). In
this process, wafer substrates and the bases of solar cells, are
sequentially loaded into a reaction chamber. On the top of each
wafer, three thin films are deposited sequentially. During the
epitaxy process of each wafer, three in situ process variables (i.e.,
the reflectance of the films and two temperature variables within
the chamber), are measured as three time series. These three
time series are, respectively, transformed into 18 and 6 indices
through the feature extraction process detailed in Du, Zhang,

and Shi (2018). In the end, 24 features are generated from the
epitaxy process, and we denote them as X = (X1, . . . , X24).

The solar conversion efficiency (SCE), denoted as Y , is one
of critical quality metrics in solar cell manufacturing processes.
However, it must be individually tested offline after completing
the entire fabrication. Since SCE is closely related to the epitaxy
process, practitioners may rank the process features obtained
from the epitaxy process based on their relationships with the
SCE. With this ranking, they can monitor a small number of
leading features during the manufacturing process and respond
quickly once detect the process changes without waiting for the
SCE inspections on the final product.

In this case study, 50 samples of (X,Y) are collected and
the features are ranked using the SpaDC method. The ranking
results show that 24 features are ranked as X1, X8, X23, X22, X24,
X20, X11, X10, followed by all the rest of the features tied together.
From the bisection algorithm, the values of c’s within the dictio-
nary are 1.0, 1.6177, 1.7188, 2.0781, 2.2466, 2.2578, 2.3926, and
4.8990. The strongest dependency between X1 and Y is validated
by the seven known follow-up test samples acquired after these
50 samples. Figure 3(a) shows that the final quality of the first
two follow-up samples is in control and the last five follow-
up samples are with a shifted mean. We check the individual
control charts that monitor each feature and find that only X1
exhibits an abrupt change during the last five samples, as shown
in Figure 3(b). This result shows that the SpaDC method ranks
X1 correctly as the first feature.

We may interpret the results of the other leading features
through Figure 4, which illustrates the sample distance correla-
tion between each pair of features (Fn) and the sample distance
correlation between each feature and the SCE (dn). Here, Xi cor-
responds to the row i or column i of the left figure, and its rank
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Figure 3. (a) Control chart for X1; (b) Control chart for SCE.

Figure 4. Distance correlations between the two process features (Fn , left) and the distance correlation between each process feature and its quality variable (dn , right).
The rows/columns of the matrix (left) and the element of the vector (right) correspond to features X1, . . . , X24. The numbers marked at the left side and the bottom of the
matrix and the numbers at the left side of the vector are the features’ ranks.

is marked at the left side and the bottom of the matrix Fn and
at the left side of the vector dn. We observe that the features
X1, X8, X23, X22, X24, X20, X11, X10 (whose ranks are marked as
numbers at the sides of the matrix Fn or vector dn in the figure)
are all moderately dependent on Y , and we can observe that
their sequence confirms with the magnitude of dn. From Fn,
we identify that the remaining 16 tied features (without marked
numbers) relate to the former features or barely dependent on
Y . Although the pairwise distance correlation values shown in
Figure 4 facilitate interpretation of the results, the ranks of these
features cannot be obtained directly.

6.2. Lithography Process in Semiconductor Manufacturing

In a lithography process, the geometric pattern of one layer
of microstructures is projected from a reticle onto the wafer
surface through an exposure system. The overlay measurements
of a wafer refer to the displacement error on the wafer of this
projection process, and they are regarded as the most important
process variables for lithography. The overlay measurements of

an entire wafer are in the form of 2D overlay error map, as
illustrated in Figure 5(a). In this figure, the x-y plane represents
the surface of the wafer, and each vector at a point represents
the displacement error of the printed geometric pattern at this
location. Therefore, the desired appearance of an overlay error
map is that all vectors are short and random.

The root causes in the lithography lead to specific patterns
of the overlay error map. In this case study, we use a simu-
lation testbed to generate the overlay errors for 1000 wafers.
For the purpose of illustrating the diversity rule, we only gen-
erate root causes that lead all vectors within a region to shift
simultaneously along a random direction. Such root causes of
the lithography process include local bumps of chucking and
local lens distortion. Specifically, we consider four root causes
that affect the overlay error in four fixed regions, as illustrated
in the shaded regions in Figure 5(b). The measurements of
overlay vectors are taken on a 21 × 21 grid. Each overlay vector
is described by two real values, and thus the entire overlay vector
field contains over 842 features of the overlay vectors. For each
wafer, the quality variable is the sum of the magnitudes of the
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Figure 5. (a) the overlay error on one sample wafer, where the overlay error (arrows)
is measured on many locations on the wafer plane (z1, z2) (b) the locations of the
defects. In each shaded region, the overlay vector has a simultaneous shifting trend
due to one root cause.

Figure 6. The ranking results of the six methods. Each feature is either an x or a y
component of the displacement vector measured at one point on the wafer. The
numbers indicate the rank of the top features, and the locations of the numbers
represent their corresponding points on the wafer.

underlying shifts in four regions obtained from the testbed. We
thereby obtained data matrix X ∈R1000×842 and y ∈R1000.

To automatically reveal the root causes of the overlay process,
we rank all overlay features based on their relationship with this
quality variable. The quality variable is nonlinearly related to the
individual overlay measurement as a large magnitude of shift
may cause either positive or negative value of features. Mean-
while, the overlay vectors corresponding to each root cause are
significantly correlated.

We applied six different methods as comparison, namely,
SpaDC, Lasso, Adaptive Lasso, RZZ, YR and RF, in ranking the
overlay features. The leading six features are marked in Figure 6
at the location of the error vector with their rank numbers. For
the SpaDC method, the first six features are obtained with the
values c =1.00, 1.05, 1.15, 1.20, 1.55, and 1.65. We can see that
the features with ranks 1–4 correspond to the four root causes
or regions of defects. It means that the SpaDC method finds
the leading features in each of the four regions correspond-
ing to four independent root causes. Also, no features in the
regions without potential root causes (i.e., without shadows) are
included among the top-ranked features. It indicates that the
SpaDC method is able to identify all potential root causes from

the leading features, instead of only prioritizing features from
one or two dominant zones of specific root causes.

This goal is also achieved by the YR method, although YR
does not satisfy the diversity rule in Settings 4 and 5 of the
simulation studies. Compared with them, RZZ and RF both miss
one root cause (the region at the upper-right part of the wafer)
within the six leading features. We found that the feature of
this missing root cause is ranked as numbers 7 and 9, respec-
tively. The underlying reason is that RF and RZZ do not take
the diversity rule into consideration, and thus several leading
features are dependent and correspond to the same root cause.
Finally, the leading features from Lasso and Adaptive Lasso
do not correspond to the regions affected by the root causes.
This is mainly due to the nonlinearity between the features and
the quality variable, while Lasso and Adaptive Lasso are more
suitable for linear models. This case study shows that the SpaDC
method prioritizes the dependent features and simultaneously
satisfies the diversity rule.

7. Conclusions

In this article, we develop an automatic method to rank the
process features based on their relationship with the quality
variable. Based on the characteristics of the process data, we
proposed two ranking rules to guarantee that the leading fea-
tures provide useful information for process improvement (i)
the ranking method should be based on general-dependency
measure; and (ii) the ranking scheme considers diversity rule.
We further proposed SpaDC ranking scheme, which takes both
rules into consideration. The theoretical investigation and a
graphic illustration of the SpaDC indicate that it indeed satisfies
the ranking rules. The method is further validated through the
simulation and real case studies of semiconductor manufactur-
ing processes.

The SpaDC method may be further improved and extended
in two aspects. One potential aspect is to find distance metrics
that both enable feature ranking and take the interaction effect
among features into consideration. Another desirable option is
to extend the formulation of SpaDC to accommodate scalable
computation with a large number of features.

Supplementary Materials

The article contains supplementary materials, including the proofs, the
video illustrations, additional simulation results, further discussions, and
computer codes for reproduction.
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