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Abstract 

Distance covariance is a widely used statistical methodology for testing the dependency between two 

groups of variables. Despite the appealing properties of consistency and superior testing power, the testing 

results of distance covariance are often hard to be interpreted. This paper presents an elementary 

interpretation of the mechanism of distance covariance through an additive decomposition of correlations 

formula. Based on this formula, a visualization method is developed to provide practitioners with a more 

intuitive explanation of the distance covariance score.  
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1. Introduction 

Testing for the independence between two types of measurements has been a basic problem in 

statistics and has significant importance in engineering applications. Among the literature on 

independence testing methods, the distance covariance (Lyons 2013, Székely, et al. 2007) enjoys 

an appealing property of being statistically consistent against all forms of dependencies and has 

been recognized for its high testing power (Sarkar and Ghosh 2018, Simon and Tibshirani 2014). 

Since distance covariance has been proposed, the method has been extended and adapted for 

multiple purposes, including the feature screening (Li, et al. 2012) and causal inference 

(Chakraborty and Zhang 2021). It is also extended for multiple types of data (Zhou 2012). On 

another line of dependence testing approach, Gretton, et al. (2005), Gretton, et al. (2005), Gretton, 

et al. (2008), and Gretton, et al. (2012) proposed several kernel-based methods for measuring 

independence. Distance covariance is shown to have an equivalent relationship with Hilbert 

Schmidt Independence Criterion (HSIC), one of the kernel-based dependence measures 
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(Sejdinovic, et al. 2013) when the kernel functions of HSIC and the distance metrics of distance 

covariance are selected correspondently.  

 Despite the strong testing power, the lack of interpretation remains a critical barrier to the 

widespread application of distance covariance in the engineering field. Given the measurements 

from two groups of variables, distance covariance determines whether there is strong evidence to 

reject the independent hypothesis between these two groups of variables. However, even when the 

independent hypothesis is rejected, practitioners still do not know how and why the variables are 

related. This lack of interpretation limits its application in engineering. For example, practitioners 

in the manufacturing industry often aim to investigate the relationship between manufacturing 

process variables and product quality variables. Upon the rejection of the independent hypothesis, 

distance covariance fails to provide further insights into the relationship between the two groups 

of variables, impeding the diagnostic or modeling process and hindering the achievement of 

quality improvement goals.   

 Although there are multiple understandings of the distance covariance test statistics, none 

of them provide an explicit and intuitive understanding of the relationship between variables. In 

the original version of distance covariance (Székely, Rizzo and Bakirov 2007), the distance 

covariance is interpreted as a weighted 𝐿2 norm of 𝑓𝑋𝑌 − 𝑓𝑋𝑓𝑌 , where 𝑓𝑋𝑌 , 𝑓𝑋  and 𝑓𝑌  are 

characteristic functions of the joint distribution (𝑋, 𝑌), and the marginal distributions 𝑋 and 𝑌. The 

proposition 3.7 of Lyons (2013) associated the distance covariance with the norm of a barycenter 

map. As for HSIC, the population statistic is defined as the norm of the cross-covariance operator. 

However, all the above interpretations are not intuitive and requires abstract concepts of 

probability theory and functional analysis, making it difficult to develop illustrations and 
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visualization approaches for the relationship between two groups of variables, especially for high-

dimensional data.    

 In this paper, we propose an elementary interpretation for distance covariance. This 

interpretation is based on a key result of the paper: the formula of additive decomposition of 

correlations (ADC), which explicitly shows that distance covariance between 𝑋  and 𝑌  is the 

weighted sum of the correlations between all pairs of features 𝜙𝑖(𝑋) and 𝜓𝑗(𝑌), where {𝜙𝑖(𝑋)} 

and {𝜓𝑗(𝑌)} are sets of features generated from 𝑋 and 𝑌. We further established the connection 

between the sample statistics of HSIC and distance covariance: the data {𝐱𝑖}𝑖=1
𝑛  and {𝐲𝑖}𝑗=1

𝑛  are 

transformed to 𝑛 orthogonal feature vectors, and the sample statistic is a weighted sum of 𝑛2 pairs 

of features among them. Based on these results, we propose a data visualization method that 

displays both sets of features generated from 𝑋 and 𝑌 and the correlations between them. The 

practitioner can evaluate the engineering implications of the features to decide whether the 

selection of semi-metrics that defines the distance covariance are appropriate. The visualization 

also enables practitioners to understand what leads to the rejection of the independent hypothesis, 

thereby leading to a clearer interpretation of the test result and enabling the practitioners, especially 

non-statisticians in engineering sectors to confidently utilize the distance covariance method. 

The remaining part of the article will be organized as follows. In Section 2, we provide an 

overview of the relevant background knowledge and existing works related to our interpretation. 

In Section 3, we present the main results of ADC formula, which forms the foundation of our 

interpretation of distance covariance. We will then describe the visualization method developed 

using the ADC formula. In Section 4, we demonstrate the using the visualization method through 

several examples. We use the visualization approach on a dataset of solar cell manufacturing in 

Section 5. Finally, Section 6 concludes the article.  
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2. Overview of distance covariance and Hilbert-Schmidt independent criterion 

This section reviews the distance covariance method (Lyons 2013, Székely, Rizzo and Bakirov 

2007), the HSIC (Gretton, Borgwardt, Rasch, Schölkopf and Smola 2012, Gretton, Bousquet, 

Smola and Scholkopf 2005). Specifically, we will highlight the existing results on the association 

between distance covariance and HSIC (Sejdinovic, Sriperumbudur, Gretton and Fukumizu 2013), 

which is the prerequisite for understanding the ADC formula.  

2.1. Distance covariance for testing statistical independence.  

Consider a standard setup where two random vectors 𝑋 ∈ 𝒳 = ℝ𝑝 and 𝑌 ∈ 𝒴 = ℝ𝑞 represent the 

data collected from two groups of variables. The joint distribution of (𝑋, 𝑌) is 𝑃𝑋𝑌. In this article, 

the distance covariance we discuss follows the generalized distance covariance introduced in 

Lyons (2013), while we drop the word “generalized” thereafter for simplicity. Let 𝑑(⋅,⋅) and 𝜌(⋅,⋅) 

be two semi-metrics of negative types defined on 𝒳  and 𝒴  that satisfy 𝔼[𝑑2(𝑥0, 𝑋)] < ∞ and 

𝔼[𝜌2(𝑦0, 𝑌)] < ∞  for some 𝑥0 ∈ 𝒳  and 𝑦0 ∈ 𝒴 , the generalized distance covariance for the 

population 𝑃𝑋𝑌 is defined as  

𝑉(𝑃𝑋𝑌, 𝑑, 𝜌) = 𝔼𝑋,𝑌𝔼𝑋′,𝑌′𝑑(𝑋, 𝑋
′)𝜌(𝑌, 𝑌′) + 𝔼𝑋𝔼𝑋′𝑑(𝑋, 𝑋′)𝔼𝑌𝔼𝑌′𝜌(𝑌, 𝑌

′)

− 2𝔼𝑋𝑌[𝔼𝑋′𝑑(𝑋, 𝑋′)𝔼𝑌′𝜌(𝑌, 𝑌
′)], 

where (𝑋, 𝑌), (𝑋′, 𝑌′) ~
𝐼𝐼𝐷
𝑃𝑋𝑌. Given IID sample 𝒟 = (𝐱𝑖, 𝐲𝑖)𝑖=1

𝑛 ~𝑃𝑋𝑌, the sample statistic for this 

generalized distance covariance �̂�(𝒟, 𝑑, 𝜌) can be calculated from the following procedure:   

1. Calculate the pairwise distance metrics between every two samples of 𝑋  and 𝑌 , 𝐃 =

𝑑(𝐱𝑖, 𝐱𝑖′)𝑛×𝑛, 𝐑 = 𝜌(𝐲𝑗 , 𝐲𝑗′)𝑛×𝑛
.  
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2. Calculate �̃� = (𝐈 −
1

𝑛
𝐉)𝐃 (𝐈 −

1

𝑛
𝐉) and �̃� = (𝐈 −

1

𝑛
𝐉) 𝐑 (𝐈 −

1

𝑛
𝐉) to center the rows and 

columns of 𝐃 and 𝐑, where 𝐉 = 𝟏𝑛𝟏𝑛
⊤  is an 𝑛 × 𝑛 matrix of 1s and 𝐈 is the order-𝑛 identity 

matrix.   

3. �̂�(𝒟, 𝑑, 𝜌) =
1

𝑛2
[vec �̃�]

⊤
[vec �̃�] =

1

𝑛2
tr(�̃�⊤�̃�).  

Both population and sample distance covariance are non-negative. The sample statistics �̂�(𝒟, 𝑑, 𝜌) 

gives a consistent estimation of the population counter part 𝑉(𝑃𝑋𝑌, 𝑑, 𝜌). Lyons (2013) shows that 

if the distance metrics 𝑑 and 𝜌 are both strong negative types, 𝑉(𝑃𝑋𝑌, 𝑑, 𝜌) = 0 only when 𝑋 and 

𝑌  are independent. Therefore, the hypothesis testing procedure can be defined based on the 

asymptotic distribution of �̂�(𝒟, 𝑑, 𝜌) (Theorem 2.7 of Lyons (2013)), with its rejection region 

being �̂�(𝒟, 𝑑, 𝜌) > 𝐻, where the threshold 𝐻 is defined by the prescribed type I error rate.  

2.2. HSIC and its relationship with distance covariance 

The Hilbert-Schmidt independence criterion is an independency testing procedure defined based 

on the reproducing kernel Hilbert spaces (Aronszajn 1950) and distribution embedding. Let 𝑘(⋅,⋅) 

and 𝑙(⋅,⋅)  be symmetric, positive definite kernel functions on 𝒳 ×𝒳  and 𝒴 × 𝒴  that satisfy 

𝔼𝑋[𝑘(𝑋, 𝑋)] < ∞ and 𝔼𝑋[𝑙(𝑌, 𝑌)] < ∞ respectively. Gretton, et al. (2005) proposed HSIC as the 

squared Hilbert-Schmidt norm of the covariance operator between two RKHS 𝒳  and 𝒴  with 

respective kernels 𝑘 and 𝑙, and expressed HSIC(𝑃𝑋𝑌, 𝑘, 𝑙) in their Lemma 1 with 

HSIC(𝑃𝑋𝑌, 𝑘, 𝑙) = 𝔼𝑋,𝑋′,𝑌,𝑌′[𝑘(𝑋, 𝑋
′)𝑙(𝑌, 𝑌′)] + 𝔼𝑋,𝑋′𝑘(𝑋, 𝑋′)𝔼𝑌,𝑌′𝑙(𝑌, 𝑌

′)

−2𝔼𝑋,𝑌[𝔼𝑋′𝑘(𝑋, 𝑋′)𝔼𝑌′𝑙(𝑌, 𝑌
′)],

(1) 

where (𝑋, 𝑌), (𝑋′, 𝑌′)  are two independent samples from the distribution 𝑃𝑋𝑌 . Under certain 

conditions, HSIC(𝑃𝑋𝑌, 𝑘, 𝑙)equals to zero if and only if 𝑋 and 𝑌 are independent. The empirical 

HSIC is given as HSIĈ(𝒟; 𝑘, 𝑙) =
1

𝑛2
tr(𝐊𝐇𝐋𝐇) , where 𝐊 = [𝑘(𝐱𝑖, 𝐱𝑖′)]𝑛×𝑛  and 𝐋 =



6 

 

[𝑘(𝐲𝑖, 𝐲𝑖′)]𝑛×𝑛. The empirical HSIC is also used as a testing statistic for independence because it 

is a consistent estimation for HSIC(𝑃𝑋𝑌, 𝑘, 𝑙).  

 Sejdinovic, Sriperumbudur, Gretton and Fukumizu (2013) established the connection 

between HSIC and distance covariance under a stricter condition on kernels, 𝑘 ∈ 𝐿2(𝒳2, 𝑃𝑋
2), 𝑙 ∈

𝐿2(𝒴2, 𝑃𝑌
2). Let the distance semi-metrics be generated by the kernels through 

𝑑(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥) + 𝑘(𝑥′, 𝑥′) − 2𝑘(𝑥, 𝑥′); 𝜌(𝑦, 𝑦′) = 𝑙(𝑦, 𝑦) + 𝑙(𝑦′, 𝑦′) − 2𝑙(𝑦, 𝑦′), 

The distance covariance and the HSIC are related with  

𝑉(𝑃𝑋𝑌, 𝑑, 𝜌) = 4 ⋅ HSIC(𝑃𝑋𝑌, 𝑘, 𝑙). (2) 

 Using this connection between HSIC and distance covariance, this article derives an 

additive decomposition of correlations formula from to interpret the distance covariance. 

3. Additive decomposition of correlations and the visualization methods.  

Recall that both distance covariance or HSIC are consistent against any dependence alternative, 

while their definition does not reveal an intuitive explanation of their mechanism. In this section, 

we give an intuitive interpretation of them by presenting an additive decomposition of correlations 

formula for both population and sample statistics. In short, our interpretation of distance 

covariance can be described with two key points:  

• The distance semi-metrics or the kernel function in respective domains 𝒳 and 𝒴 specifies 

a set of features with weights (importance indices) in either domain through Mercer’s 

decomposition.   

• The distance covariance is a weighted-sum-of-squared correlation of all pairs of features.  

Based on the formula, we develop a visualization method for distance covariance.  
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3.1. ADC formula of population distance covariance 

Under the setup discussed in Section 2, let the marginal distributions of data (𝑋, 𝑌) be 𝑃𝑋(𝑥) =

∫𝑃𝑋𝑌(𝑥, 𝑦)𝑑𝑦 and 𝑃𝑌(𝑦) = ∫𝑃𝑋𝑌(𝑥, 𝑦)𝑑𝑥 respectively. We will interpret the distance covariance 

with the HSIC due to the connection (2), and therefore we generate the following kernel functions.  

𝑘(𝑥, 𝑥′) = −𝑑(𝑥, 𝑥′) + 𝔼𝑋~𝑃𝑋[𝑑(𝑋, 𝑥
′)] + 𝔼𝑋′~𝑃𝑋

[𝑑(𝑥, 𝑋′)] − 𝔼𝑋~𝑃𝑋𝔼𝑋′~𝑃𝑋
[𝑑(𝑋, 𝑋′)]

𝑙(𝑦, 𝑦′) = −𝜌(𝑦, 𝑦′) + 𝔼𝑌~𝑃𝑌[𝜌(𝑌, 𝑦
′)] + 𝔼𝑌′~𝑃𝑌[𝜌(𝑦, 𝑌

′)] − 𝔼𝑌~𝑃𝑌𝔼𝑌′~𝑃𝑌[𝜌(𝑌, 𝑌
′)]

(3) 

The kernels are defined such that they generate the distance metrics 𝑑(⋅,⋅) and 𝜌(⋅,⋅) respectively, 

according to Definition 17 of Sejdinovic, Sriperumbudur, Gretton and Fukumizu (2013). Also, this 

specific form of kernels is centered at marginal distributions 𝑃𝑋  and 𝑃𝑌  respectively with 

𝔼
𝑥,𝑥′ ~

𝐼𝐼𝐷
𝑃𝑋
[𝑘(𝑥, 𝑥′)] = 0  and 𝔼

𝑦,𝑦′ ~
𝐼𝐼𝐷

𝑃𝑌
[𝑙(𝑦, 𝑦′)] = 0  (see Equation (4.4) of Sejdinovic, 

Sriperumbudur, Gretton and Fukumizu (2013)), and we will see later that it leads to features with 

zero mean.  

The key step to deriving the ADC formula is to apply the eigen decomposition for the kernel 

functions 𝑘(⋅,⋅) and 𝑙(⋅,⋅) in the expression of HSIC. By Mercer’s theorem of 𝜎-compact space 

(Sun 2005), we can express the kernels 𝑘(⋅,⋅) and 𝑙(⋅,⋅) using 𝑘(𝑥, 𝑥′) = ∑ 𝜆𝑖𝜙𝑖(𝑥)𝜙𝑖(𝑥
′)∞

𝑖=1  and 

𝑙(𝑦, 𝑦′) = ∑ 𝜎𝑗𝜓𝑗(𝑦)𝜓𝑗(𝑦
′)∞

𝑗=1 . Ensured by the centered kernels 𝑘(⋅,⋅) and 𝑙(⋅,⋅), {𝜙𝑖} and {𝜓𝑗} 

are orthonormal function basis regarding the probability measure 𝑃𝑋(𝑥) and 𝑃𝑌(𝑦) respectively.  

The formulation leads to the following result, the additive decomposition formula of HSIC.  

Proposition 1 Suppose that kernel functions 𝑘 ∈ 𝐿2(𝒳, 𝑃𝑋), 𝑙 ∈ 𝐿2(𝒴, 𝑃𝑌) defined in (3) has 

Mercer decompositions 𝑘(𝑥, 𝑥′) = ∑ 𝜆𝑖𝜙𝑖(𝑥)𝜙𝑖(𝑥
′)∞

𝑖=1  and 𝑙(𝑦, 𝑦′) = ∑ 𝜎𝑗𝜓𝑗(𝑦)𝜓𝑗(𝑦
′)∞

𝑗=1  

regarding distribution 𝑃𝑋 and 𝑃𝑌, respectively. The HSIC in Equation (1) can be derived as 

HSIC(𝑃𝑋𝑌, 𝑘, 𝑙) = ∑∑𝜆𝑖𝜎𝑗(corr[𝜙𝑖(𝑋),𝜓𝑗(𝑌)])
2

∞

𝑗=1

∞

𝑖=1

. (4) 
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The derivation of this proposition is given in Appendix A. Proposition 1 explicitly expresses how 

HSIC involves the correlation between features implicitly defined by the kernel functions. With 

Equation ( 2 ), we immediately have the additive decomposition formula of the distance 

covariance:   

𝑉(𝑃𝑋𝑌; 𝑑, 𝜌) = 4∑∑𝜆𝑖𝜎𝑗(corr[𝜙𝑖(𝑋),𝜓𝑗(𝑌)])
2

∞

𝑗=1

∞

𝑖=1

. (5) 

Equation (5) provides a convenient interpretation of how distance covariance detects 

statistical dependence. The eigen functions {𝜙𝑖(𝑥)} and {𝜓𝑗(𝑦)} can be seen as two sequences of 

functions that generate infinite features from the functions of ℝ𝑝 → ℝ and ℝ𝑞 → ℝ respectively 

for evaluation the dependency between 𝑋  and 𝑌 . The distance covariance is the sum of their 

pairwise correlations corr[𝜙𝑖(𝑋),𝜓𝑗(𝑌)]  weighted by 𝜆𝑖𝜎𝑗 ’s. For simple distribution and the 

kernel function 𝑘 and 𝑙, we found that the eigen functions 𝜙𝑖 , 𝜓𝑗 corresponding to smaller eigen 

values 𝜆𝑖 ’s and 𝜎𝑗 ’s are more complex features. Therefore, the expression (5) automatically 

assigns smaller weights for the squared correlation of complex features and assign larger weights 

for the squared correlation of simpler features. When 𝑋 and 𝑌 are independent, the correlation 

between any features generated from 𝑋  and 𝑌  are also independent, thereby resulting in zero 

distance covariance.  

3.2. ADC formula of sample distance covariance  

Next, we present the corresponding ADC formula for the sample distance covariance. Note that 

Sejdinovic, Sriperumbudur, Gretton and Fukumizu (2013)  only illustrated the relationship 

between population distance covariance and HSIC, but not the relationship between the empirical 

HSIC and the sample distance covariance. We first establish this relationship through pure 

algebraic derivation.  



9 

 

Proposition 2 Given data 𝒟 = (𝐱𝑖, 𝐲𝑖)𝑖=1
𝑛 , we have 

�̂�(𝒟; 𝑑, 𝜌) = 4 ⋅ HSIĈ(𝒟; 𝑘, 𝑙) (6) 

if the distance metrics 𝑑 and 𝜌 are generated by 𝑘 and 𝑙 respectively.  

The proof is given in Appendix B. Then, Proposition 3 below gives the ADC formula for the 

sample HSIC.   

Proposition 3 The closed-form expression of the empirical HSIC is given by  

HSIĈ(𝒟; 𝑘, 𝑙) =
1

𝑛2
∑∑𝜆𝑖𝜎𝑗 corr̂ (𝛟𝑖, 𝛙𝑗)

2
𝑛

𝑗=1

𝑛

𝑖=1

, (7) 

where {𝜆𝑖, 𝛟𝑖}  are the eigenvalues and eigenvectors of the matrix 𝐇𝐊𝐇, and {𝜎𝑗 , 𝛙𝑗}  are the 

eigenvalues and eigenvectors of the matrix 𝐇𝐋𝐇, where 𝐇 = 𝐈 −
1

𝑛
𝐉, 𝐊 = (𝑘(𝐱𝑖, 𝐱𝑗))

𝑛×𝑛
, and 

𝐋 = (𝑙(𝐲𝑖, 𝐲𝑗))
𝑛×𝑛

. corr̂ (⋅,⋅) denotes the sample correlation between two vectors.  

 The proof of Proposition 3 is in Appendix C. The results of Proposition 2 and Proposition 

3 lead to the following ADC formula of sample distance covariance:  

�̂�(𝒟; 𝑑, 𝜌) =
4

𝑛2
∑∑𝜆𝑖𝜎𝑗 corr̂ (𝛟𝑖, 𝛙𝑗)

2
𝑛

𝑗=1

𝑛

𝑖=1

. 

The ADC formula for sample distance covariance share many similarities with its population 

counterpart, except that (1) each feature 𝛟𝑖  or 𝛙𝑗  is an ℝ𝑛  vector comprised of the a feature 

generated from individual samples in 𝒳 or 𝒴, and (2) there are a total of 𝑛 features of either 𝒳 or 

𝒴. Therefore, the sample distance covariance (or empirical HSIC) can be interpreted as a finite 

weighted sum of pairwise sample correlation between one feature of 𝑋 within “the bag of features 

of X,” {𝛟𝑖}𝑖=1
𝑛 , and another feature of 𝑌 within another bag of features of Y, {𝛙𝑗}𝑗=1

𝑛
.  Formally, 

they are the eigenfunctions of 𝑘(⋅,⋅) or 𝑙(⋅,⋅)defined over the empirical distribution of {𝐱𝑖} and 
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{𝐲𝑗}. We will see in Section 4 that smaller 𝜆𝑖 and 𝜎𝑗  in the ADC of sample distance covariance 

also corresponds to complex features 𝛟𝑖 and 𝛙𝑗, and thereby the correlations of complex features 

are associated with smaller weight 𝜆𝑖𝜎𝑗 . This is a nice characteristic of distance covariance in 

general, because the correlation between complex features is much less interpretable than the 

correlation between simple features, and they tend to be attributed to mere chances. Incorporating 

the weights appropriately reflect the importance of all pairwise correlation. 

3.3. Visualization method developed based on the theoretical results  

Sample ADC formula enables us to interpret DC. First, we may construct distance matrices 𝐃,𝐑 

(or kernel matrices 𝐊, 𝐋), then calculate the spectral decomposition of −
1

2
𝐇𝐃𝐇 and −

1

2
𝐇𝐑𝐇 (or 

𝐇𝐊𝐇  and  𝐇𝐋𝐇 ) to obtain the eigen systems {𝜆𝑖, 𝛟𝑖}  and {𝜎𝑖, 𝛙𝑖} . Based on them, feature 

dictionary and correlation map illustrate the latent features and their pairwise correlation.  

• Feature dictionary  

Feature dictionary calculates and illustrates {𝛟𝑖: 𝑖 = 1,… , 𝐼}  and {𝛙𝑗: 𝑗 = 1,… , 𝐽} , the 

features of both domains 𝒳,𝒴, where 𝐼 and 𝐽 are prescribed number of leading eigen vectors 

of 𝐊  and 𝐋 . Take domain 𝒳  for example. If 𝑝 = 1 , we may draw the scatter plot of 

(𝑥𝑛, 𝛟𝑖(𝑛)) for each feature, where 𝛟𝑖(𝑛) is the 𝑛th element of 𝛟𝑖. If 𝑝 = 2, scatter plots of 

the dataset {𝐱𝑛} may be used, where the colors of the individual data points correspond to the 

value of 𝛟𝑖(𝑛). When 𝑝 is larger than 2, we may first transform each individual sample of 𝐱𝑛 

to a point (𝑥1, 𝑥2) on ℝ2 plane using low-dimensional embedding methods like t-sne (Hinton 

and Roweis 2002), then to use color map to illustrate the shapes of the features.  
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• Correlation Map  

The correlations maps are 𝐼 × 𝐽 image, where each pixel illustrates the intensity of correlation 

between 𝛟𝑖 and 𝛙𝑗, the 𝑖th feature of 𝑋 and the 𝑗th feature of 𝑌. Two versions of correlation 

maps can be used. The raw correlation map illustrates the values of corr̂ (𝛟𝑖, 𝛙𝑗)
2
 at each 

(𝑖, 𝑗) location, which directly shows the correlation between each pair of features. The weighed 

correlation map illustrates the values of 𝜆𝑖𝜎𝑗 corr̂ (𝛟𝑖, 𝛙𝑗)
2

 with the values of complex 

features (large 𝑖  or 𝑗) tempered, given small values of 𝜆𝑖  and 𝜎𝑗 . The benefit of weighted 

correlation map is that when all feature correlations are displayed (𝐼 = 𝐽 = 𝑛), four times the 

average of all values in the weighted correlation map gives the value of sample DC.  

To interpret the results from the feature dictionary and correlation map, we may start with 

identifying the pairs of features with a large value of �̃�𝑖𝑗 that provides the major contribution to 

the sample DC. Then, we can look up the associated 𝛟𝑖 and 𝛙𝑗 from the feature dictionary, to 

interpret how each feature describe the variability within 𝑋 and 𝑌 respectively. The practitioners 

may also follow up with scatter plots between 𝛟𝑖 and 𝛙𝑗 to examine how the feature 𝑖 of 𝑋 and 

the feature 𝑗 of 𝑌 are related with each other. The visualization method conforms with the DC 

tests, in the sense that the sum of values in the weighted correlation map is proportional to the 

sample DC, indicated by the ADC formula. So the ADC-based visualizations give a direct 

interpretation of the DC results.  

3.4. Notes to practitioners 

In engineering practice, the identification of the relationship between the two groups 

physical variables in signals, spatial data, and images typically follows a two-step procedure. In 

step 1, a group of features is extracted from each group of variables composing the signals, spatial 
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data and images. Then, the relationship between these two groups of features is investigated 

through statistical modeling. It is revealed from the ADC formula that the distance covariance 

method performs a similar procedure. However, there are two unique characteristics of the distance 

covariance approach that deserves attention from practitioners.  

• The latent features {𝛟𝑖} and {𝛙𝑗} are orthogonal, with a zero mean. They are generated 

automatically from the centered kernel functions 𝑘 and 𝑙 through Mercer’s theorem, which 

is ultimately determined by distance metrics 𝑑 and 𝜌 and the marginal distribution of {𝐱𝑛} 

and {𝐲𝑛}. The distinction is that in engineering practices, the features are usually selected 

based on the meaning of the physical variables, and no orthogonality is guaranteed.  

• The distance covariance can be regarded as a composite index calculated from the weighted 

sum of every pair of features within two groups, where the weight of the correlation 

coefficient 𝜆𝑖𝜎𝑗 is the product of weights of features in either group. The weights in distance 

covariance are also automatically generated from the distance metrics 𝑑 and 𝜌 through the 

Mercer’s theorem, not assigned by practitioners based on their experience and preferences. 

Although for many kernels, it is rational that the weights with simpler features are associated 

with larger weights, the weights in the distance covariance cannot be configured arbitrarily 

and may not match engineering interpretations.  

The ADC and visualization method provide valuable information for practitioners to use distance 

covariance: the feature dictionary enables the practitioners to examine if the automatically 

generated features match specific engineering interpretations and if the weights match engineer’s 

understanding of the features’ importance. If the generated features are not suitable, the 

practitioner may switch to a different kernel function or distance semi-metric. If the distance 
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covariance test decides that the two variables are dependent, the correlation map will further 

indicate to which pairs of features the decision is attributed to.   

4. Experiments 

In this section, we conduct a few experiments to illustrates the ADC and the visualization method. 

The major goal is to demonstrate the application of the feature dictionary correlation map to 

interpret the correlations. At the same time, we verify the covariance formula, and investigate the 

difference between multiple kernels or equivalently distance semi-metrics. In the first experiment, 

we will first study several examples where both 𝑋  and 𝑌  are one-dimensional. In the second 

experiment, we study a case where 𝑋 and 𝑌 are two-dimensional.  

4.1. Experiments with one-dimensional X and Y 

 We interpret the independence testing results from six data sets  (Newton 2009, Sarkar and 

Ghosh 2018), where both 𝑋  and 𝑌  are one-dimensional, as illustrated in Figure 1. Each case 

contains 500 data points. Below each figure, the two numbers indicate the values of the Pearson 

correlation coefficient and distance correlation coefficient. In each case, we tried the distance 

covariance testing with four configurations of distance semi-metrics or kernels of the domain of 

𝒳 and 𝒴, where Euclidian distance metric is given as 𝑑(𝑥, 𝑥′) = |𝑥 − 𝑥′|, the polynomial kernel 

function is given as 𝑘(𝑥, 𝑥′) = (𝛽 + (𝑥 − 𝑥′)2)−𝛼, and the double exponential kernel is given as 

𝑘(𝑥, 𝑥′) = exp(− (𝑥 − 𝑥′)2 𝛼⁄ ). The two kernels are selected because they are universal kernels 

(Micchelli, et al. 2006) and thus the derived tests are consistent against all dependency alternatives. 

These configurations are summarized in Table 1.  
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Figure 1 Illustration of six datasets where 𝑋 and 𝑌 are one-dimensional 

 

Table 1 Four configurations of the distance covariance testing 

Configurations X Y 

I Euclidian distance Euclidian distance 

II Polynomial kernel 𝛼 = 0.5, 𝛽 = 0.5 Polynomial kernel 𝛼 = 0.5, 𝛽 = 0.5 

III Polynomial kernel 𝛼 = 2, 𝛽 = 0.5 Polynomial kernel 𝛼 = 2, 𝛽 = 0.5 

IV Double Exponential kernel 𝜃 = 1 Double Exponential kernel 𝜃 = 1 

  

 Newton (2009) validated that distance covariance method is able to reject the independency 

hypothesis for each of the six cases. In this paper, we will not repeat this hypothesis testing 

procedure. Instead, we use the ADC formula to interpret and visualize why 𝑋  and 𝑌  are not 

independent. Take the data set 1 (“W” shape) for example. Figure 2 illustrates the leading six 

features (𝛟𝑖  and 𝛙𝑗 , 𝑖, 𝑗 = 1,… ,6) generated from the spectral decomposition from both the 

domains of 𝑋  and 𝑌  under Configuration I, according to Step 1 of Section 3.3.3. The raw 

correlation map and the weighted correlation map between each pair of features are illustrated in 

Figure 3. From the raw correlation map, we can see that the following pairs of features have 

squared sample correlation coefficients above 0.1: the squared correlation between 𝛙1 and 𝛟2, 

𝛟4 are 0.4282 and 0.2582 respectively, and the squared correlation between 𝛙2 and 𝛟6 is 0.2497. 

By checking the feature dictionary, we can know why and 𝑌 𝛙1 and 𝛟2 are deemed correlated: 

samples with large values of 𝛟2 has extreme values in 𝑋 and are distributed at two tails of “W”, 

where 𝑌 also tends to be large. Thus, it also has large value of 𝛙1.  Similarly, samples with large 

values of 𝛟4 are located either at the center, or at the two tails of “W”, also correspond to large 
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values of 𝛙1. These features in the data (𝑥𝑖, 𝑦𝑖) leads to the large value of corr̂ (𝛟2, 𝛙1)
2, thus 

large value of distance covariance, and thus the rejection of the independent hypothesis. 

Nevertheless, the features become complex when 𝑖 or 𝑗 increases, and therefore interpreting the 

correlation between 𝛟6  and 𝛙2  is hard. In the weighted correlation map, we can see that 

𝜆2𝜎1 corr̂ (𝛟2, 𝛙1)
2  has a highest value of 719.5, 𝜆4𝜎1 corr̂ (𝛟4, 𝛙1)

2 = 114.3 , whereas 

𝜆6𝜎2 corr̂ (𝛟6, 𝛙2)
2 only has a value of 9.7. The total value of  ∑ ∑ 𝜆𝑖𝜎𝑗 corr̂ (𝛟𝑖 , 𝛙𝑗)

2
𝑗𝑖  is 868.3, 

resulting in a distance covariance of 4 × 868.3 5002⁄ = 0.0139. The correlation components of 

the above three pairs of features take accounts of 97.15% of the total distance covariance. Also, 

we observe that the correlation of complex features has significantly lower weights: for example, 

the share of 𝜆6𝜎2 corr̂ (𝛟6, 𝛙2)
2 is much lower than the other two pairs of features due to the small 

weight 𝜆6𝜎2, where 𝜆6 = 2.82 only takes 1.68% of the ∑ 𝜆𝑖𝑖  and 𝜎2 = 13.85 only takes 13.84% 

of ∑ 𝜎𝑗𝑗 . The low weights 𝜆𝑖𝜎𝑗  for large 𝑖 and 𝑗 can be regarded as an automatic penalization for 

the correlation of complex features, for which the practitioners have stronger belief that large 

correlation is driven by chance.  

 

Figure 2 The leading features for 𝑋 and 𝑌 for data set 1 when using Euclidean distance semi-metric 
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(a)     (b) 

Figure 3 (a) The raw correlation map of corr̂ (𝛟𝑖, 𝛙𝑗)
2
, where the 𝑦 axis denotes 𝛟𝑖 and 𝑥 axis 

denotes 𝛙𝑗; (b) the squared correlation map 𝜆𝑖𝜎𝑗corr̂ (𝛟𝑖, 𝛙𝑗)
2
 in the distance covariance  

 There are several common observations from the dictionary of features and correlation 

maps of all six data sets. These results are provided in the supplementary materials.  

• First, 𝜆𝑖 and 𝜎𝑗  decrease rapidly when 𝑖 and 𝑗 increases, as shown in Figure 4 (a), which 

clearly shows that the weights of complex features decrease rapidly as additive components 

in the distance covariance statistic. Therefore, if 𝑋  and 𝑌  are only dependent through 

complex features (i.e.,  corr (𝜙𝑖(𝑋), 𝜓𝑗(𝑌)) = 0  for small 𝑖, 𝑗 ’s while 

corr (𝜙𝑖(𝑋),𝜓𝑗(𝑌)) > 0 for large 𝑖, 𝑗’s), the population distance correlation will be a 

small positive number and therefore significant amount of samples are needed to reject the 

independence hypothesis.   

• Second, only a small number of weighted correlations between the features contribute to 

significant percentage of the distance covariance statistics. As we see in Figure 3 (b), only 

a limited number of blocks are shaded. Specifically, Figure 4 (b) shows how limited pairs 

of weighted correlation component take a major proportion of total distance covariance. 

The 𝑥-axis is the number of pairs of 𝜆𝑖𝜎𝑗corr̂ (𝛟𝑖, 𝛙𝑗)
2
, and 𝑦 axis shows the proportion 

to the total distance covariance that cannot be covered by these pairs of weighted squared 
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correlations. We can see that limited pairs of weighted squared correlations dominate in 

the ADC Equation (7).  

• Third, both the features and weights are dependent on the distribution of 𝑋 or 𝑌 and the 

kernels or distance semi-metrics used. First, Figure 5 and Figure 6 compares the features 

generated from dataset 1 (W shape) using polynomial kernel with 𝛼 = 0.5, 𝛽 = 0.5 and 

with 𝛼 = 2, 𝛽 = 0.5, as well as their weights. We can see that the features generated from 

two kernels are slightly different (for example, the two ends of feature 1 of 𝑋). More 

importantly, with the kernel with 𝛼 = 0.5, the weights for complex features decay more 

rapidly compared with the kernel with 𝛼 = 2. It indicates that the kernel with 𝛼 = 0.5 puts 

more testing power on the linear dependency. Second, even when the same kernel function 

or distance semi-metric is used, the six datasets are associated with slightly different 

features of 𝑋 and 𝑌 with different weights. It indicates that the latent features and their 

weights also rely on the marginal empirical distribution of data. This observation implies 

that the visualization should be performed on a case-by-case basis, for each dataset and the 

selection of kernels or distance semi-metrics.  

4.2. Experiments with multi-dimensional X or Y 

In this section, we consider two cases where 𝑋 and 𝑌 are both two-dimensional, where the raw 

data is illustrated in Figure 7. Colors are added to the data points to illustrate how data points of 𝑋 

and 𝑌 are associated with the same sample.  

Case I: 𝑋 = (𝑍 cos 2𝜋𝑈 , 𝑍 sin 2𝜋𝑈); 𝑌 = (𝑅 cos 𝜋𝜃𝑍 , 𝑅 sin 𝜋𝜃𝑍)  where 𝑅,𝑈, 𝑍, 𝜃  are 

independent, 𝑅~𝑈(0,1), 𝑈~𝑈(0,1). 𝑍~𝑈(0,1), and 𝜃 = ±1 with probability 0.5 each.  
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Case II: 𝑋 = (𝑍 cos 2𝜋𝑈 , 𝑍 sin 2𝜋𝑈) , 𝑌 = (‖𝑋 − 𝑃1‖ + ‖𝑋 − 𝑃3‖ − ‖𝑋 − 𝑃0‖, ‖𝑋 − 𝑃2‖ +

‖𝑋 − 𝑃4‖ − ‖𝑋 − 𝑃0‖),where𝑈~𝑈(0,1) . 𝑍~𝑈(0,1) . The coordinates fo the five points are 

𝑃1(−1,0), 𝑃2(1,0), 𝑃3(0,0.5), 𝑃4(0, −0.5) and 𝑃0(0,0).  

 In the first case, the latent variable 𝑍 is associated with the distance to origin for 𝑋 and the 

angle for 𝑌. It aims to demonstrate a typical situation where the dependency between 𝑋 and 𝑌 is 

driven by common latent variables, so that the joint distribution of 𝑋 and 𝑌 can be represented as 

𝑃𝑋𝑌(𝑥, 𝑦) = ∫ 𝑝(𝑥|𝑧)𝑝(𝑦|𝑧)𝑝(𝑧)𝑑𝑧 .  In the second case study, our goal is to evaluate our 

visualization method when the distributions of 𝑋 and 𝑌are different. For each case, we generated 

a dataset with the sample size of 𝑁 = 1000. We applied distance covariance with Euclidian 

distance metrics in both the domain of 𝑋 and 𝑌 to test the independency between them.  

We use ADC to visualize the relationship between 𝑋 and 𝑌 for each case. The results of 

the feature map, the raw correlation map, and the weighted correlation map for each case are 

illustrated in  

Figure 8 and Figure 9, respectively. Distance covariance test results in a close-to-zero p-

value for either case, and we aim to use the visualization approach to learn how 𝑋 and 𝑌 are related.  

The visualization for case study 1 is given in Figure 9. We can see that the feature 𝛟3 and 

the feature 𝛙2 are most correlated. From the feature dictionary, we can see that feature 3 of 𝑋 can 

be interpreted as the norm of each data points, and feature 2 of 𝑌  can be interpreted as the 

horizontal location of the point of the data point. It validates the mechanism of how the data are 

generated.  

 Figure 10 provides the visualization for case 2. Multiple pairs of features 𝛟𝑖 , 𝛙𝑗  are 

correlated from the raw correlation graph, among which the simplest features 𝛟1, 𝛙1  has the 

largest weight thus contribute the most to the distance covariance. The points at the bottom right 
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region in the scatter plot of 𝑋 tends to have large values in feature 1, 𝛟1, of X, shown the feature 

dictionary of Figure 10. The points in this region correspond to small 𝑌1 and large 𝑌2, as their 

distance to 𝑃1(−1,0) and 𝑃3(0, .5) are significantly smaller than their distance to 𝑃2(1,0) and 

𝑃4(0, −.5). Therefore, they have a small value of features of 𝛙1, according to the feature map.  

 In summary, the experiments above all illustrate that the visualization method can provide 

extra insights into how the datasets between 𝑋 and 𝑌 are dependent, after a significant dependency 

relationship between 𝑋 and 𝑌 is identified from the distance covariance method.  

 
  (a) (b) 

Figure 4 (a) The leading features’ weight 𝜆𝑖, 𝜎𝑗  of dataset 1 when using Euclidean distance semi-

metric. (b) The proportion of the remaining components in Equation (7) apart from the largest few 

pairs of components, indicated with 𝑥 axis.  

 

 
Figure 5 The features and weights from dataset 1 using polynomial kernel with 𝛼 = 𝛽 = 0.5.  

 

 
Figure 6 The features and weights from dataset 1 using polynomial kernel with 𝛼 = 2, 𝛽 = 0.5.  
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 X Y X Y 

 (a) (b) 

Figure 7 Two cases where two dimensional vectors 𝑋 and 𝑌 are dependent.  

 

   
Figure 8 The feature dictionary, the raw correlation map and the weighed correlation map for two-

dimensional 𝑋, 𝑌, case 1.   
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Figure 9 The feature dictionary, the raw correlation map and the weighed correlation map for two-

dimensional 𝑋, 𝑌, case 2.  

5. Case study 

In smart manufacturing, it is important to decide whether there are connections between 

the sensor measurements obtained from the equipment of the manufacturing process and the 

quality evaluation of the final product, to facilitate in-process quality control through monitoring 

the process measurements. It is also necessary to understand how the process data are related to 

the quality measurements, for both obtaining further assurance on the data-driven decisions and 

revealing the root cause of the quality issues.  

In this case study, we consider the process and quality data obtained from the epitaxy stage 

of a solar cell manufacturing process, where semiconductor material is deposited on top of 

substrates through a chemical vapor decomposition. For this manufacturing process, the essential 

process measurements are the time series of the temperature within the chamber and the surface 

reflectance. A total of 𝑝 = 24 variables that summarize the characteristics of these time series are 

obtained from 𝑛 = 50 sample products. After the manufacturing process, the solar conversion 

efficiency (SCE) 𝑌 are measured for these samples. In the end, a matrix of process variables 𝐗 ∈
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ℝ50×24 and a vector of the quality variables 𝐘 ∈ ℝ50×1 are obtained. The readers may refer to Du, 

et al. (2018) for a detailed interpretation of these variables.  

The distance covariance with the Euclidean distance is applied for testing the dependence 

between 𝑋 and 𝑌. The p-value obtained from the permutation test is 0.002. We now use the ADC 

to understand and visualize how 𝑋 and 𝑌 are related.  

We start with visualizing the correlation maps. The raw correlation map is shown in Figure 

10. It shows that 𝛙1 is related with 𝛟1, 𝛟2 and 𝛟3, where the sample correlations are similar 

levels. However, the correlation between 𝛟1  and 𝛙1  contributes the most to the distance 

covariance as can be seen in the weighted correlation map.  

After identifying the related features, we aim at understanding what these features represent. 

In the domain of 𝑌, the feature 𝛙1 is monotonic with the 𝑌 value. We compared the empirical 

distribution of 𝑌 for these two groups of data, as in Figure 11. The gap indicates that the samples 

with positive or negative 𝜙1 are associated different distributions of 𝑌. More specifically, samples 

with 𝜙1 < 0 are associated with smaller value of 𝑌, thereby resulting in lower value of SCE. To 

understand 𝛟1 , we observe a pair-wise scatter plots of 𝑋1, … , 𝑋24  where the values of 𝜙1  for 

individual samples are presented by their colors, as shown in Figure 12. The plots in the diagonals 

of the figure, with gray backgrounds, are the scatter plot between each 𝑋𝑖 and the value of 𝜙1. The 

figure indicates that 𝜙1 is significantly correlated with 𝑋1, 𝑋2, 𝑋3, 𝑋7, 𝑋8, 𝑋9, where these variables 

are strongly correlated with each other as well. Therefore, 𝜙1 can be regarded as a composite 

index that reflects the common information of all these correlated features. To visualize how 𝜙1 

relates to 𝑌, we divide all samples into two groups based on 𝜙1 > 0 or 𝜙1 < 0. In conclusion, a 

linear composite index of 𝑋1, 𝑋2, 𝑋3, 𝑋7, 𝑋8, 𝑋9 is dependent with the 𝑌 value.   
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In this case study, we are lucky to relate the features 𝜙1, 𝜓1 to specific variables using the 

visualization method. In general, however, we would point out that there is no guarantee that the 

features automatically generated from the data allow simple engineering interpretations despite the 

visualization output, especially when 𝐗 and 𝐘 are in high dimension. This problem roots in the fact 

that each feature’s values of individual samples are determined directly through the eigen vectors 

of kernel gram matrix. Therefore, it is hard for us to customize the features based on the 

engineering need. We will leave this problem for future studies.  

  

Figure 10 The raw correlation map and the weighted correlation map for the case study.  

6. Conclusion  

Distance covariance and HSIC are known for their power to detect any dependency relationship 

between two groups of variables. Despite their superiority in testing the dependency, a significant 

drawback of implementing distance covariance in engineering applications is that the testing 

results do not directly characterize the relationship between the two groups of variables. This 

drawback hinders the application of distance covariance by domain experts who could potentially 

benefit from the result, and also separate the identification of association with the follow-up 

relationship modeling or diagnostic step. The literature did not provide intuitive interpretations of 

distance covariance for the practitioners: they are either based on distances of characteristic 

functions or based on the Hilbert-Schmidt norm of the cross-covariance operators between two 

RKHSs. The gap between the literature and the real needs from industry and applications motivates 
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us to give an elementary interpretation of distance covariance and develop a visualization method 

for deciphering the distance covariance testing result.  

 This study derived an additive decomposition of correlations (ADC) formula for both 

population and sample distance covariance. This formula leads to a very intuitive interpretation of 

the distance covariance approach with arbitrary semi-metric: (1) the semi-metrics implicitly 

generate a class of weighted orthonormal features of both 𝑋 and 𝑌, (2) the distance covariance 

evaluates the weighted sum of all correlations between individual features.  

 We designed a visualization method to understand the testing results of distance covariance. 

The visualization method is based on the ADC formula, and they help to identify how 𝑋 and 𝑌 are 

dependent. The method is illustrated on multiple simulated and real datasets on revealing how the 

two groups of variables are independent with each other.  

 From this paper, the authors hope that the ADC formula clarifies the mechanism of distance 

covariance to a wider range of applicants and the visualization method provide additional 

information for revealing dependence between variables. We also hope the insights gained from 

this mechanism motivate new relationship mining and evaluation approaches for data with more 

complex structures.  

 

Figure 11 The empirical distribution of 𝑌 when 𝜙1 is positive or negative.  
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Appendices 

Appendix A: Proof of Proposition 1 

For kernel 𝑘 defined on (𝒳, 𝑃𝑋), Mercer theorem (Sun 2005) states that 

𝑘(𝑥, 𝑥′) =∑𝜆𝑖𝜙𝑖(𝑥)𝜙𝑖(𝑥
′)

∞

𝑖=1

 

where the eigen functions 𝜙i ∈ 𝐿2(𝒳, μ)  with ∫ 𝜙𝑖(𝑥)𝜙𝑗(𝑥) 𝑑𝜇 = 𝛿𝑖𝑗 , the nonnegative 

eigenvalues {λi} are absolutely summable, and the series converges absolutely and uniformly 𝜇2 

almost everywhere.   

Because the kernels 𝑘(𝑥, 𝑥′) and 𝑙(𝑦, 𝑦′) are centered around 𝑃𝑋 and 𝑃𝑌 respectively, we 

have 𝔼𝑋~𝑃𝑋[𝑘(𝑋, 𝑥
′)] = 0, and thereby 

𝔼𝑋~𝑃𝑋[𝜙𝑖(𝑋)] = 𝜆𝑖
−1𝔼𝑋~𝑃𝑋𝔼𝑋′~𝑃𝑋

[𝑘(𝑋′, 𝑋)𝜙𝑖(𝑋
′)] = 𝜆𝑖

−1𝔼𝑋′~𝑃𝑋
[𝜙𝑖(𝑋

′)𝔼𝑋~𝑃𝑋𝑘(𝑋, 𝑋
′)] = 0 

By the eigen decomposition, 𝔼𝑋~𝑃𝑋[𝜙𝑖
2(𝑋)] = 1. Therefore, we know that all features 𝜙𝑖(𝑋) 

have zero mean and unit variance. The same reasoning applies to 𝜓𝑗(𝑌)s, and they also have zero 

mean and unit variance. Put the expression of 𝑘(𝑥, 𝑥′)  and 𝑙(𝑦, 𝑦′)  to HSIC(𝑃𝑋𝑌, 𝑘, 𝑙) ,  

HSIC(𝑃𝑋𝑌, 𝑘, 𝑙)

= 𝔼𝑋,𝑋′,𝑌,𝑌′[𝑘(𝑋, 𝑋
′)𝑙(𝑌, 𝑌′)] + 𝔼𝑋,𝑋′[𝑘(𝑋, 𝑋′)]𝔼𝑦,𝑦′[𝑙(𝑌, 𝑌

′)]

− 2𝔼𝑋,𝑦[𝔼𝑋′[𝑘(𝑋, 𝑋′)]𝔼𝑌′[𝑙(𝑌, 𝑌
′)]] 
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= 𝔼𝑋,𝑋′,𝑌,𝑌′ [∑𝜆𝑖𝜙𝑖(𝑋)𝜙𝑖(𝑋
′)

∞

𝑖=1

∑𝜎𝑗𝜓𝑗(𝑌)𝜓𝑗(𝑌
′)

∞

𝑗=1

]

+ 𝔼𝑋,𝑋′ [∑𝜆𝑖𝜙𝑖(𝑋)𝜙𝑖(𝑋
′)

∞

𝑖=1

] 𝔼𝑌,𝑌′ [∑𝜎𝑗𝜓𝑗(𝑌)𝜓𝑗(𝑌
′)

∞

𝑗=1

]

− 2𝔼𝑋,𝑌 [𝔼𝑋′ [∑𝜆𝑖𝜙𝑖(𝑋)𝜙𝑖(𝑋
′)

∞

𝑖=1

] 𝔼𝑌′ [∑𝜎𝑗𝜓𝑗(𝑌)𝜓𝑗(𝑌
′)

∞

𝑗=1

]] 

= 𝔼𝑋,𝑋′,𝑌,𝑌′ [∑∑𝜎𝑗𝜆𝑖𝜙𝑖(𝑋)𝜙𝑖(𝑋
′)𝜓𝑗(𝑌)𝜓𝑗(𝑌

′)

∞

𝑗=1

∞

𝑖=1

] + 0 − 0 

= ∑∑𝜎𝑗𝜆𝑖𝔼𝑋,𝑌[𝜙𝑖(𝑋)𝜓𝑗(𝑌)]𝔼𝑋′,𝑌′[𝜙𝑖(𝑋
′)𝜓𝑗(𝑌

′)]

∞

𝑗=1

∞

𝑖=1

 

= ∑∑𝜎𝑗𝜆𝑖(corr[𝜙𝑖(𝑋)𝜓𝑗(𝑌)])
2

∞

𝑗=1

∞

𝑖=1

. 

The absolute and uniform convergence statement from Mercer’s theorem ensures the 

interchangeability between expectations and summation.  

Appendix B: Proof of Proposition 2 

From 𝐃 = [𝑘(𝐱𝑖, 𝐱𝑖) + 𝑘(𝐱𝑖′ , 𝐱𝑖′) − 2𝑘(𝐱𝑖, 𝐱𝑖′)]𝑛×𝑛 and 𝐑 = [𝑙(𝐲𝑗, 𝐲𝑗) + 𝑙(𝐲𝑗′ , 𝐲𝑗′) −

2𝑙(𝐲𝑗′ , 𝐲𝑗)]𝑛×𝑛
, we can see 𝐇𝐃𝐇 = −2𝐇𝐊𝐇 and 𝐇𝐑𝐇 = −2𝐇𝐋𝐇, where 𝐇 = 𝐈 −

1

𝑛
𝐉. On the 

other hand,   

�̃� = �̃� = 𝐃 −
1

𝑛
𝐃𝐉 −

1

𝑛
𝐉𝐃 +

1

𝑛2
𝐉𝐃𝐉 = 𝐇𝐃𝐇, �̃� = 𝐑 −

1

𝑛
𝐑𝐉 −

1

𝑛
𝐉𝐑 +

1

𝑛2
𝐉𝐑𝐉 = 𝐇𝐑𝐇, 

so �̂�(𝒟, 𝑑, 𝜌) =
1

𝑛2
tr(�̃�⊤�̃�) =

1

𝑛2
𝑡𝑟(𝐇𝐃𝐇𝐇𝐑𝐇) = 4

1

𝑛2
tr(𝐇𝐊𝐇𝐇𝐋𝐇) =

4

𝑛2
tr(𝐊𝐇𝐋𝐇) = 4 ⋅

HSIĈ(𝒟; 𝑘, 𝑙), where we used 𝐇𝐇 = 𝐇. 
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Appendix C: Proof of Proposition 3 

Let the spectral decomposition of 𝐇𝐊𝐇 = 𝚽𝚲𝚽⊤ and 𝐇𝐋𝐇 = 𝚿𝚺𝚿⊤. Put it into the expression 

of sample HSIC:  

HSIĈ(𝒟; 𝑘, 𝑙) =
1

𝑛2
tr(𝐊𝐇𝐋𝐇) 

=
1

𝑛2
tr(𝚽𝚲𝚽⊤𝚿𝚺𝚿⊤) =

1

𝑛2
tr(𝚲𝚽⊤𝚿𝚺𝚿⊤𝚽) =

1

𝑛2
⟨𝚲𝚽⊤𝚿,𝚽⊤𝚿𝚺⟩𝐹 

=
1

𝑛2
∑∑[𝚲𝚽⊤𝚿]𝑖𝑗[𝚽

⊤𝚿𝚺]𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

=
1

𝑛2
∑∑(𝜆𝑖𝛟𝑖

⊤𝛙𝑗)(𝜎𝑗𝛟𝑖
⊤𝛙𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

=
1

𝑛2
∑∑(𝜆𝑖𝜎𝑗)(𝛟𝑖

⊤𝛙𝑗)
2

𝑛

𝑗=1

𝑛

𝑖=1

. 

Here, vectors 𝛟𝑖’s and 𝛙𝑗’s are the columns of 𝚽 and 𝚿 respectively. From 𝐇𝐊𝐇𝟏 = 𝟎 and 

𝐇𝐋𝐇𝟏 = 𝟎, we have 𝚽⊤𝟏 = 0 and 𝚿⊤𝟏 = 0. With 𝛟𝑖
⊤𝛟𝑖 = 1 and 𝛙𝑗

⊤𝛙𝑗 = 1, we have 

𝛟𝑖
⊤𝛙𝑗  = corr̂ (𝛟𝑖, 𝛙𝑗).  
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