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Hybrid Nonlinear Variation
Modeling of Compliant Metal
Plate Assemblies Considering
Welding Shrinkage and Angular
Distortion
Ship assembly involves thousands of large dimensional compliant metal plates. These com-
pliant metal plates are fully welded together by seam welding in the assembly process. Dif-
ferent from the automobile and aerospace assembly process, the final variation of ship
assembly is significantly influenced by the geometric nonlinearity and welding deformation
generated during the seam welding process. This paper develops a nonlinear variation
model (NVM) to consider the geometric nonlinearity, welding shrinkage, and angular dis-
tortion based on elastic mechanics. Furthermore, the nonlinear variation model is cali-
brated by the composite Gaussian process (CGP) to compensate for other factors that
are not considered in the nonlinear variation model. The proposed model is validated by
a case study on the deviation prediction of an assembly of two compliant metal plates
and compared with the existing methods. The results show that the proposed model has a
significant improvement in prediction accuracy of assembly deviation.
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1 Introduction
The dimensional variation reduction and control of compliant

metal plate assemblies play a key role in improving production effi-
ciency and reducing the costs in the shipbuilding industry. A large
ship hull is usually welded by thousands of large dimensional com-
pliant metal plates, which is a typical multi-stage assembly process.
The dimensional variation is critical to both quality and efficiency in
the multi-stage ship hull assembly process. If there is a very small
dimensional deviation from the designed shape at single-stage
assembly, it can easily stack up to significant dimensional misalign-
ments of large blocks (e.g., subassemblies) and makes it challenging
to meet the assembly requirement of hull butt joint [1]. As a result, a
large amount of dimensional trimming and surface treatments are
needed, which is time-consuming, low efficiency, and high cost
in ship assembly.
For the ship hull assembly process, it is common that the compli-

ant ship parts are fully welded by seam welding, such as arc welding
and laser welding, to prevent sea water from seeping into the hull.
During the assembly process, some dimensional deformations exist

due to both the compliant (i.e., nonrigid) property of parts [2] and
local welding. Because of the compliant property, the local
welding deformation will significantly impact the global dimen-
sional variation in the fixtured assembly process. In general,
welding deformations are classified into shrinkage, angular distor-
tion, bending, and buckling [3]. Among them, welding shrinkage
and angular distortion have the most critical impacts on the final
assembly variations [4]. However, current assembly variation mod-
eling and analysis methodologies, such as the method of influence
coefficients (MIC) [5], stream of variation (SoV) method [6], cannot
effectively handle the deformation induced by local welding. There-
fore, further study is urgently needed to consider welding shrinkage
and angular distortion in variation modeling and analysis for the
ship hull assembly process.
In general, the finite element method (FEM) is a powerful tool for

accurate prediction of welding distortions [7,8]. In the past decades,
researchers have studied intensively in improving the performance
of FEM. Murakawa et al. [9] proposed an FEM for predicting dis-
tortions of structures under welding assembly based on inherent
deformation and interface element. In the further study, the iterative
substructure method was employed in the inherent strain method
for large-scale welding parts [10]. By accounting for the highly
nonlinear behavior and the transient phenomenon in the weld-
ing process, the thermal-elastic-plastic FEM can achieve high
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prediction accuracy. Huang et al. [11] employ a local solid model
and a global shell model for fast prediction of distortion in laser-
welded thin sheets. In their study, a transient thermo-elastic-plastic
analysis was used on the local three-dimensional solid model to
obtain the inherent strain for the global shell model.
In the practical manufacturing process, some random part devia-

tions induced in the former stage are unavoidable. In order to carry
out the statistical variation analysis, the most direct and widely used
method is the direct Monte Carlo simulation (MCS) [12–14], which
combines statistical analysis and FEM. In order to consider both
welding deformation and geometric tolerances on parts, Pahkamaa
et al. [15] used MCS to generate a number of different non-nominal
parts in CAD software, and these samples with deviations due to posi-
tioning error are exported to a welding simulation software.
However, this method is time-consuming and needs intensive mod-
eling and simulation efforts. This is especially true for the welding
process due to its thermal-elasto-plastic characteristics that demand
large computational costs in FEM simulation [16]. Lorin et al. [17]
proposed a steady-state convex hull volumetric shrinkage (SCV)
method to simplify the welding process simulation so that the effi-
ciency of the combination analysis between geometric variation and
welding distortion can be improved. However, this work focuses on
rigid variation simulation only.
For a nonrigid variation simulation, the classical method is MIC

[5]. In this method, the relationships between the part and assembly
deviations are linked by a sensitivity matrix, which is obtained
according to the constant linear force–displacement relationship.
Thus, MIC establishes a linear and explicit variation propagation
model for the compliant sheet metal assemblies. To further
improve the accuracy of variation analysis, Yu et al. [18] derived
the material variation-induced influence coefficients by MIC. Dahl-
ström and Lindkvist [19] developed a contact model which consid-
ers the contact effect between parts to avoid penetrations based on
MIC. Following this idea, Lupuleac et al. [20] formulated a qua-
dratic programming problem to solve the contact problem in the
MIC-based nonrigid variation simulation. By combining the
theory of SoV modeling and analysis [6], MIC was further extended
to multi-station assembly processes. Camelio et al. [21] developed a
methodology for the dimensional variation propagation analysis in
a multi-station compliant assembly system based on MIC and a
state-space model, which considers the part variation, fixture varia-
tion, and welding gun variation. Furthermore, Yue et al. [22]
defined three product-oriented indices to measure the variation
influence of individual parts at a particular station to the dimen-
sional quality of a final assembly. Zhang and Shi [23,24] extended
the MIC model to the compliant composite part assembly by deriv-
ing the relationship between external assembly forces and the defor-
mation of the composite part, which considers the anisotropic
characteristics of composite materials. Söderberg et al. [25]
employed the MCS/MIC simulation to find the stress distribution
for a composite part assembly.
These MIC-based studies have been widely applied in variation

modeling and analysis of the assembly process of the automobile
body [26–28] and aircraft fuselage or wing [29–31]. These assem-
bly processes mainly focus on spot welding or riveting to assemble
two parts together, so the local deformation (such as hot deforma-
tion near spot welding and plastic deformation near riveting
point) can be neglected. At the same time, the stiffness matrix in
these assembly processes can be treated as a constant due to the
small assembly variation, which is one of the main assumptions
of MIC. Such an assumption is valid only when the assembly var-
iation is much smaller than the source of variations (e.g., part man-
ufacturing error and fixture error [32,33]) because the stiffness
matrix of the assembly actually varies with the geometrical varia-
tion [34,35].
In order to prevent seawater from seeping into the hull, the com-

pliant plates of the hull have to be fully welded by seam welding.
Compared with other types of assembly processes such as spot
welding and riveting, the deformation induced by seam welding
is much larger and has a great impact on the assembly variation

[36]. On one hand, the seam welding distortion, especially the
angular distortion, will result in large assembly variation compared
with other source of variations. On the other hand, the seam welding
shrinkage in the plane will bring the axial or in-plane loads in the
spring-back step for the fixtured assembly [37]. All of these
mechanical behaviors will significantly change the out-of-plane
stiffness that leads to spring back with unneglectable nonlinear
behaviors. Therefore, the stiffness matrices obtained from the
constant linear relationship is no longer valid. For the same
reason, the existing MIC-based compliant variation model cannot
be applied to the compliant metal plate assemblies for the ship
hull manufacturing.
In this paper, we proposed a hybrid nonlinear variation model

(HNVM) for the compliant metal plate assembly, which includes
the nonlinear variation modeling and model calibration. Compared
with the current literature, the nonlinear variation model (NVM)
considers the geometric nonlinear mechanical behavior occurred
in the spring back, and the welding shrinkage and angular distortion
generated in the seam welding. The dimensional deviations induced
by other factors are considered by calibration of the NVM to further
improve the accuracy of the proposed model.
The remainder of this paper is organized as follows: Sec. 2 devel-

ops a HNVM for the compliant metal plate assembly in the ship hull
manufacturing. In Sec. 3, a case study is conducted to validate the
proposed model. Section 4 discusses the conclusions, limitations,
and some future works.

2 Hybrid Nonlinear Variation Modeling
This section presents the detail derivations for the proposed

hybrid nonlinear variation model. Section 2.1 introduces the
NVM without considerations of welding shrinkage and angular dis-
tortion. In Sec. 2.2, the impacts of welding shrinkage and angular
distortion are modeled and integrated to the NVM in Sec. 2.1. To
further improve the NVM accuracy, Sec. 2.3 conducts model cali-
bration to capture other welding deformation effects that are not
considered in the NVM. In this paper, we name the NVM after
the calibration as the HNVM.
An overview of the proposed method is shown in Fig. 1. Accord-

ing to the geometric and material parameters, the NVM is estab-
lished based on the nonlinear elastic mechanics first, which
parameterizes the welding shrinkage and angular distortion. Then
the welding shrinkage and angular distortion computed by the

Fig. 1 Flowchart of the proposed method
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welding FEM simulation software are integrated into the NVM.
Thus, the assembly deviation can be directly calculated according
to the part deviation quickly. In order to improve the prediction
accuracy, the prediction error with respect to the welding FEM
simulation is calculated to calibrate the NVM. Finally, we predict
the final assembly deviation for the compliant metal plate assembly
considering welding shrinkage and angular distortion with high pre-
cision using the proposed HNVM. The statistical assembly varia-
tion analysis can be implemented by generating different part
deviations and the repeated welding FEM simulations are avoided
in the proposed method.

2.1 Variation Model Considering Geometric Nonlinearity.
In Sec. 2.1.1, the main steps and the corresponding mechanism
for the compliant plate assembly are introduced to illustrate the geo-
metric nonlinearity in the ship assembly. After that, Sec. 2.1.2
develops the variation model considering geometric nonlinearity.
It should be noted that Sec. 2.1 focuses on the global representation
of the variation model which is based on the element formulation.
More detail discussions about the element representation will be
provided in Sec. 2.2.1.
Before discussing the details of the modeling results, we have the

following basic assumptions: (i) the deformation caused by gravity
is not considered in the modeling. (ii) Only dimensional variations
in the normal direction (i.e., direction along the thickness) of parts
are considered. (iii) The proposed nonlinear model is based on the
nonlinear elastic mechanics and the material of parts is assumed to
be homogeneous and isotropic. (iv) The material parameters are
independent on the temperature in the proposed nonlinear model.
Here are some discussions about the justifications of the assump-

tions above. In terms of assumption (i), it is similar to Refs. [32,33]

for variation modeling of the ship plates’ assembly. The hull block
is a kind of box structure [1], which consists of two main categories
of plates. One category is that the normal direction of the plate is
perpendicular to the direction of gravity, such as girder, solid
floor. For these plates, the gravity has no impact on the assembly
deviation in the normal direction. Another category is that the
normal direction of the plate is parallel to the direction of gravity,
such as the bottom plate, deck. Though the sizes of these plates
are big, they are welded by a lot of girders and solid floors in the
gravity direction. For these plates, the deviations caused by
gravity are very small. In terms of assumption (ii), the ratio of the
part thickness to the length or the width is very small (3:1000 ∼
12:1000) in the shipbuilding industry. Thus, the in-plane welding
shrinkage relative to the length and the width of parts is very
small. In addition, the in-plane dimensional variations are restricted
in the fixtured assembly process in our study. Assumptions (iii) &
(iv) are the base of proposed elastic NVM, which means that the
heat transfer process, plastic deformation process, and phase trans-
formation process are not considered in NVM. However, their influ-
ences on the final assembly deviation are compensated in the model
calibration, which will be discussed in Sec. 2.3.

2.1.1 Analysis of a Compliant Assembly. The variation model
for assembly of compliant plates will consider all mechanic interac-
tions involved in a single station, including positioning, clamping,
welding, and releasing (i.e., PCWR, as shown in Fig. 2). More dis-
cussions on each of those mechanical actions are provided as
follows:

(1) Positioning (Fig. 2(a)): In order to develop the variation
model, a right-hand coordinate system is used. The origin
of the coordinate system is defined at the joint point of two

Fig. 2 PCWR cycle: (a) positioning, (b) clamping, (c) welding, and (d ) releasing
(figure revised from Ref. [23])
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ideal parts. It is also the starting point of seam welding. The x
axis is along the AB direction as shown in Fig. 2(a). In the
positioning process, the fixed plate is assumed to be a canti-
lever plate, with one end of these two plates (end A and end
B) positioned to the locating fixtures. The deviations in the
z-direction of the assembled pair of plates caused by manu-
facturing errors are denoted by vectors P1V and P2V if each
plate has more than one source of variation. Then, the devia-
tion of these two parts is illustrated as

PV =
P1V
P2V

{ }
(1)

(2) Clamping (Fig. 2(b)): The parts with dimensional deviations
are clamped to their nominal positions by applying a set of
clamping forces at certain clamping points. In this step, a fun-
damental assumption is that a linear relationship exists
between the clamping forces and deflections because the
deviations of the parts are very small with respect to the
size of the parts; and there is no in-plane force generated.
If we use vector Fclamp to denote the total clamping force
and Kclamp to denote the stiffness matrix in the clamping
step, then the constant linear force–displacement relationship
can be represented as

Fclamp = −Kclamp · PV (2)

(3) Welding (Fig. 2(c)): In a ship assembly process, a seam
welding is used to assemble the two plates together while
the clamping forces are still applied to hold both plates. If
end A and end B are not fixed in the x-direction, the dimen-
sional shrinkage in the x-direction will be generated and
make the width of the assembled plates smaller than that
before welding. However, end A and end B are fixed in the
welding assembly process. Although the dimensional shrink-
age in the x-direction is restricted, the shrinkage in the
x-direction is still generated along the weld seam due to the
material solidification, which will bring the axial loads in
the x-direction and increase the out-of-plane stiffness of the
assembly.

(4) Releasing (Fig. 2(d )): After welding, the spring back of the
assembly occurs when the clamping forces are released.
The spring-back deviations are determined by the releasing
force Frelease and stiffness matrix of the assembly. The
releasing force Frelease is assumed to have the same magni-
tude as the clamping forces Fclamp [5,32,33]. However, the
stiffness matrix of the assembly is quite different from that
before welding. Due to the influence of welding distortion
and in-plane loads induced by in-plane shrinkage, the stiff-
ness matrix of the assembly will increase and vary with the
spring-back deviations. Thus, the constant linear force–dis-
placement relationship does not hold in such a case. In
order to improve the accuracy of variation analysis, a nonlin-
ear relationship between the releasing force Frelease and the
assembly deviation AV is represented as

KS(
AV) · AV = Frelease (3)

where the secant stiffnessKS(
AV) is dependent on the assem-

bly deviation AV. The expression of KS(
AV) consists of dif-

ferent order terms of AV. In this paper, only two orders are
considered, then KS(

AV) can be expressed as the following
formula:

KS(
AV) =KL +KN1(

AV) +KN2(
AV) (4)

where KL is a constant stiffness matrix which is the linear
term (represented by L). KN1(

AV) and KN2(
AV) denote the

first-order nonlinear (represented by N1) term and the
second-order nonlinear (represented by N2) term, respec-
tively. By considering Eq. (3), Eq. (4) can be further

represented as:

(KL +KN1(
AV) +KN2(

AV)) · AV = Frelease (5)

Equation (5) shows that the relationship between the releasing
force Frelease and the assembly deviation AV is complicated, and
the releasing force can be divided into a linear term and two nonlin-
ear terms.

2.1.2 Variation Modeling. The releasing force Frelease has the
same magnitude as the clamping force Fclamp, but opposite in the
direction [5,32,33], i.e.

Frelease = −Fclamp (6)

Considering Eq. (2), the mechanical equilibrium Eq. (5) in the
releasing process can be rewritten as

(KL +KN1(
AV) +KN2(

AV)) · AV =Kclamp · PV (7)

Equation (7) establishes the nonlinear relationship between part
deviation and assembly deviation. Notably, if we only consider
the constant stiffness matrix KL, Eq. (7) is degenerated into the
equilibrium equation in MIC.
In this study, the geometric nonlinear mechanical behavior is

considered in the variation model. Since the secant stiffness
matrixKS(

AV) is dependent on AV, the inverse of the secant stiffness
matrix KS(

AV) cannot be obtained directly. In order to solve the Eq.
(8), we rewrite Eq. (7) as

ψ(AV) =KS(
AV) · AV −Kclamp · PV = 0 (8)

To account for the axial or in-plane loads, the secant
stiffness matrix KS(

AV) of the assembly must be recalculated
from the deformed geometry. In this paper, Newton–Raphson
method is applied to account for the incremental updates of
the stiffness matrix. If only the first order of the increment devia-
tion, i.e., ΔAV, is considered, the nonlinear equation can be
written as

ψ(AVn+1) = ψ(AVn + ΔAVn) = ψ(AVn)

+
∂ψ
∂AV

( )
AV=AVn

·ΔAVn = 0

(n = 0, 1, 2, · · · )

(9)

where n denotes the number of iterations and ∂ψ
∂AV

( )
is a Jacobi

Matrix. Then, we get the first order of the increment deviation

ΔAVn = −(Kn
T )

−1 · ψ(AVn) (10)

where Kn
T =KT (

AVn) = ∂ψ
∂AV

( )
AV=AVn is the secant stiffness matrix at

the nth iteration.
Because AVn+1 = AVn + ΔAVn, the (n + 1)th approximation for

the assembly deviation can be expressed as

AVn+1 = AVn + (Kn
T )

−1 · [Kclamp · PV −Kn
s · AVn] (11)

where Kn
s =Ks(

AVn) is the tangent stiffness matrix at the nth
iteration.
Equation (11) gives an approximate solution for Eq. (7). The iter-

ative procedure is illustrated in Fig. 3. The nonlinear relationship
between the releasing force Frelease and the assembly deviation
AV is represented by the curve. Kn

T is the tangent slope of the
point (AVn, Frelease(

AVn)). The solution of the final assembly devia-
tion AV* is to meet the condition Frelease(AV*) = −Fclamp. To better
illustrate this condition, point B corresponds to the final solution of
AV*in Fig. 3.
The iteration will not end until ‖ΔAVn‖2 ≤ ξ, where ξ is the con-

vergence threshold. It can be shown that if n= 0 and AV0= 0, the
nonlinear model illustrated by Eq. (11) is degenerated into the linear

041003-4 / Vol. 142, APRIL 2020 Transactions of the ASME



MIC model, thereby indicating that the MIC model is a simplified
form of nonlinear model under linear condition.

2.2 Nonlinear Variation Model Considering Welding
Shrinkage and Angular Distortion. In this section, the NVM is
first represented by finite element form to consider the interaction
between degrees-of-freedom (DOFs) in Sec. 2.2.1. Then, the
welding constraint is proposed to consider welding shrinkage and
angular distortion in Sec. 2.2.2. Finally, in Sec. 2.2.3, we propose
the global constraint equation and develop an element representa-
tion for the NVM considering welding shrinkage and angular
distortion.

2.2.1 Element Representation. In order to account for the influ-
ence of welding shrinkage and angular distortion, the interaction
between DOFs in different directions cannot be ignored. Without
loss of generality, a common rectangular plate shell element is
used in this paper. The generalized displacements (u0, v0, w0, ϕx,
ϕy)

T in the first-order plate theory (Mindlin theory) [38] are
applied, which considers five DOFs of a point in a plate. In this
theory, u0, v0, and w0 denote the deformation of a point at the ref-
erential mid-plane in x-, y-, and z- directions, respectively. φx and
φy denote the rotation angles of the normal to the cross section
with respect to the y- and the x-axes caused by in-plane deformation.
Correspondingly, the equilibrium equation for any element nodal
can be formulized by

eKS(
eV) · eV = eF (12)

where eV, eF, and eKS(
eV) are the element displacement vector, the

element external force vector, and the element nonlinear secant
stiffness matrix, respectively. The detailed derivation of eKS(

eV)
is listed in the Appendix. The element nonlinear secant and
tangent stiffness matrices, i.e., eKS(

eV) and eKT(
eV), can also repre-

sented by Eqs. (13) and (14) [34]

eKS(
eV) = eKL + eKN1(

eV) + eKN2(
eV) (13)

eKT (
eV) = eKL + 2eKN1(

eV) + 3eKN2(
eV) (14)

where the linear item eKL is independent of
eV, while the first-order

and second-order nonlinear items, i.e., eKN1(
eV) and eKN2(

eV), are
dependent on eV.
By assembling all the individual element stiffness matrices

together, the global stiffness matrix can be constructed. Given the
global stiffness matrix, all the nodal displacements of the assembly
can be calculated by solving Eq. (11).

2.2.2 Welding Constraint. In order to consider the welding
constraints, paired nodes of two assembled parts need to be

defined first. As shown in Fig. 4(a), the paired nodes are the
nodes along the end of each plate. In the spot welding or riveting
process, the paired nodes can be regarded as rigidly assembled
together because the local deformation due to spot welding or riv-
eting can be neglected. However, for the seam welding, the influ-
ence of the local welding deformation cannot be neglected. This
is because after the seam welding, material shrinkage exists along
the weld seam, thereby leading to a displacement for all nodes of
the assembly except the nodes clamped by the fixtures at the end.
As shown in Figs. 4(b) and 4(c), the vertical dash and solid lines
denote the positions of the nodes before and after welding. In
order to consider the deformation induced by the local welding,
we propose the following welding constraint:

eVi+1 − eVi = eΔi (15)

Fig. 4 Illustrations of nodal displacements: (a) before welding,
(b) after welding, and (c) equivalent expression

Fig. 3 The iterative procedure for obtaining the final assembly
deviation AV*
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where eΔi = (Δui, Δvi, Δwi, Δφxi , Δφyi )
T represents the relative

displacement for the paired nodes i+ 1 and i induced by the local
welding deformation. Δui denotes the relative displacement in the
x-direction, which is illustrated in Fig. 4(c). Similarly, Δvi and
Δwi are the relative displacements the in y and z directions. Δφxi

and Δφyi are angular distortions around the y- and x-axes,
respectively.

2.2.3 Global Constraint Equation. Other than paired nodes
along the weld seam, the fixed nodes should also satisfy the con-
straint that the DOFs of these nodes are zero (i.e., fixed constraint).
In this paper, we assume that there are M nodes for the assembly,
thereby indicating there are 5M DOFs. Among these DOFs, there
are m DOFs must satisfy certain constraint condition such as
welding constraint and fixed constraint. Then, the global constraint
equation can be represented as

G · AV = d (16)

where AV= (u01, v01, w01, φx1, φy1, u02, v02, w02, φx2, φy2, · · · , u0M,
v0M, w0M, φxM, φyM)

T is the displacement vector of all nodes for the
assembly. d= (d1, d2, · · · , dm)

T is the displacement constraint
vector. G is a m× 5M coefficient matrix for the constraint equation.
According to the Lagrangian multiplier method [39], Eqs. (3)

and (16) can be further written as

KS GT

G 0

[ ]
·

AV
λ

{ }
=

Frelease

d

{ }
(17)

where λ= (λ1, λ2 · · · λm)
T is the Lagrange multiplier. Substitute Eqs.

(11)–(17), we have

AV

λ

{ }n+1

=
AV

λ

{ }n
+ Kn

T GT

G 0

[ ]−1

· Kclamp 0

0 I

[ ]
·

PV

d

{ }{

− Kn
S GT

G 0

[ ]
·

AV

λ

{ }n}
(18)

Equation (18) is the proposed NVM, which considers the welding
shrinkage and angular distortion.

2.3 Nonlinear Variation Model With Calibration. As
shown in the model assumption that NVM is based on elastic
mechanics, the impact introduced by heat transfer process, plastic
deformation process, and phase transformation process is not con-
sidered during the mechanical derivation. Thus, there may also
exist some model errors near the weld seam. To improve NVM
accuracy, this subsection will calibrate the NVM and propose the
HNVM.
In general, the model calibration for each node can be formula-

rized as

CV = w0 + δ (19)

where CV is the deviation in the z-direction after calibration, and w0

is a nodal displacement in the z-direction that is calculated by NVM
(i.e., Eq. (18)) in Sec. 2.3. δ is the model deviation induced by other
factors (such as plastic deformation, phase transformation, etc.) that
are not considered in the NVM. However, such model deviation can
be modeled as Gaussian process (GP) in general, which is a function
of the locations on the plate, i.e., the coordinate locations of the
node in x, y.
In the literature, GP model is widely used for approximating the

computer experiments. Based on the GP model, composite Gauss-
ian process (CGP) model is developed to approximate complex
surfaces more accurately, which considers both global and local
variations by a composite of two Gaussian processes [40]. The
deviation prediction errors of nodes from NVM will be larger
near the weld seam but smaller near the fixed end. Since a
single Gaussian process can only capture the global variations

and cannot capture the local variations well, we use CGP to cali-
brate the nonlinear variation model. Thus, δ can be formalized as

δ = fglobal(x, y) + σ(x, y)flocal(x, y) (20)

fglobal(x, y) ∼ GP(μ, τ2g(x, y)) (21)

flocal(x, y) ∼ GP(0, l(x, y)) (22)

where (x, y) is the coordinate locations of all nodes in x, y. Figure 4
illustrates the coordinate of two assembled parts. The GP for global
variations follows a distribution with the constant mean μ and
variance τ2, and the correlation structureg(x, y) requires smoothness
to capture the global variations. l(x, y) is a local correlation structure
for modeling local variations. Overall, the CGP model for δ
is equivalent to assuming δ ∼ GP(μ, τ2g(x, y) + σ2(x, y)l(x, y)).
σ2(x, y) can be further written as σ2(x, y)= σ2θ(x, y), where θ(x, y)
is the standardized volatility function fluctuating around the unit
value; σ2 is the constant variance. The equivalent CGP model indi-
cates that δ follows a multivariate Gaussian distribution. Based on
this assumption, the log-likelihood function can be further derived.
The unknown parameters can be obtained by maximizing the
log-likelihood function. More derivation details can be referred in
Ref. [40]. After the parameters in CGPmodel are estimated, the non-
linear variation model can be calibrated to predict the dimensional
deviations more accurately.

3 Case Study
In this section, a case study is conducted to illustrate the perfor-

mance of the proposed HNVM in predicting the assembly devia-
tion. The experiment setting and the assembly deviation are
elaborated in Sec. 3.1. Then, the FEA experiment is conducted to
validate the proposed model in Sec. 3.2. Finally, we compare our
method with the existing methods and provide the discussions in
Sec. 3.3.

3.1 Problem Description. In this section, we mainly illustrate
the experiment setting and assembly deviation. The hull block is a
kind of box structure [1]. In the multi-stage manufacturing process
of the hull block, the welding of cantilever plates is very common.
Figure 5 shows a real example of cantilever-plate welding in a ship
building process. As shown in Fig. 5(a), plate 1 and plate 2 are can-
tilever plates of block #684, which are welded within block #684 in
the first stage. Similarly, block #744 also has cantilever plates with
opposite direction. In the next assembly stage, block #684 and block
#744 are assembled together (as shown in Fig. 5(b)). Because of the
large structural stiffness and the great weight of the block, the ends
connected to the block are fixed while the ends used to weld block
#684 and block #744 together are free.
In order to explain how the initial part deviation propagates and

how the welding shrinkage and angular distortion affect the final
assembly deviation, two cantilever plates with size 800 × 400 ×
6 mm3 are assembled together by butt-welding in this case study.
The Young’s modulus and Poisson’s ratio of the plates are
210,000 N/mm2 and 0.3, respectively. One end of each plate is
fixed, and another end of each plate is clamped by two clamps at
the corner. The coordinates of these four clamps are (40, 10),
(−40,10), (40,790), and (−40,790), respectively. Their geometry
and fixture arrangement are shown in Fig. 6. The welding direction
is along the y-axis.
In this case study, we assume that there is a 1mm deviation in

z-direction at the free end of these two plates. Only the welding
shrinkage in the x-direction and the angular distortion around the
y-axis are considered. Under this assumption, the welding constraint
(17) for the paired nodes i+ 1 and i can be represented as
eVi+1 −e Vi = (Δui, 0, 0, Δφxi, 0)

T . Table 1 lists the x- and
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y-coordinates of the nodes where part deviation exists. The corre-
sponding shrinkages in the x-direction and angular distortions
around the y-axis are obtained from FEM simulation and also
listed in Table 1. The shrinkages and angular distortions are mea-
sured after FEM simulation, which will be described in Sec. 3.2.
After the part deviation is introduced and the welding constraint

is obtained, the assembly deviation of each node can be predicted by
solving Eq. (18) via MATLAB. We set ξ = 2 × 10−7 as the conver-
gence criteria in this case. After getting NVM, the model calibration
by CGP is conducted in R “CGP” package [41]. In the model cal-
ibration, the initial value of σ2/τ2 is needed. In this case study, we
set σ2/τ2= 0.2 as the initial value. Notably, the different initial
values will not make a large difference on the final calibration
results.

3.2 Finite Element Method Simulation. In this section, the
parameters used in FEM simulation of welding are first provided

in Sec. 3.2.1, and then, the simulation results are shown in
Sec. 3.2.2.

3.2.1 Parameter Setting. The proposed model is verified using
a three-dimensional thermal-elastic-plastic FEM simulation in
Simufact.welding 6.0.0 software. The FEM simulation procedure
can be referred to in Ref. [42]. In our welding simulation, low
carbon steel material (S235-SPM_sw) is selected to estimate the
deformation. The material properties can be found from the material
database of Simufact.welding 6.0.0. The double ellipsoid heat
source model [43] is used. The heat source parameters of width,
depth, front length, and rear length involved are 3 mm, 6 mm,
3 mm, and 6 mm, respectively. The dimensions, part deviations,
and fixture arrangement for the parts are the same as illustrated in
Sec. 3.1. The clamping force on each fixture is 500 N. The eight-
node linear hexahedron element is used for this welding simulation.
The original mesh size for the parts is 10 × 10 × 6 mm3. However,
an automatic local mesh refinement is employed on the areas of

Fig. 5 An example of cantilever-plate welding in the ship building process: (a) the drawing of block #684 and
(b) the assembly of block #684 and block #744

Fig. 6 The geometry and fixture arrangement for the assembly
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welding zones to improve the simulation accuracy. Each refinement
level halves the element size in the heat input area [44]. In this
study, the refinement level is set as 2. Table 2 lists the welding
parameters.

3.2.2 Simulation Results

(1) Distortion in the x-direction: Fig. 7(a) shows the distortion in
the x-direction after welding. Because both ends of the plates
are fixed during the assembly, the width of the assembly is
not changed. However, there are different displacements in
the x-direction for the internal nodes of the assembled
plates. As shown in Fig. 7(a), the distortion in the x-direction
is symmetric about the y-axis and the distortion is more sig-
nificant close to the weld seam, which is consistent with our
equivalent treatment for the in-plane shrinkage using the pen-
etration between the paired nodes.

(2) Shrinkage and Angular Distortion: After welding, each pair
of the paired nodes in FEM simulation becomes one node.
Hence, it is impossible to use the paired nodes to obtain
the shrinkage and angular distortion in FEM simulation. In
this paper, the shrinkage in the x-direction and angular distor-
tion around the y-axis for the weld seam are approximated
from the nodes near the weld seam via the following geom-
etry equations:

Δui = |xa − xb| − |xa′ − xb′ | (23)

Δφxi = arccos
qp
−⇀ · ts−⇀

|qp−⇀|| ts−⇀|
− arccos

q′p′
−⇀

· t′s′
−⇀

|q′p′−⇀ ||t′s′−⇀|
(24)

where a, b, p, q, s, and t are the nodes near the weld seam.
The comma superscript denotes the corresponding node
before welding. xaand xb denote the x-coordinate values for
nodes a and b after welding, respectively. xa′ and xb′

denote their corresponding x-coordinate values before
welding. These nodes are marked in Figs. 7(b) and 7(c).
Equation (23) represents the x distance change between the
nodes a and b caused by welding (as shown in Fig. 7(c)).
Equation (A10) represents the angle change between vector

qp
−⇀

and vector ts
−⇀

caused by welding (as shown in
Fig. 7(c)). The shrinkage in the x-direction and angular dis-
tortion around the y-axis at other positions can be obtained
by the same way. Then, we can get the constraint input for
our proposed model (as shown in Table 1).

(3) Distortion in the z-direction: Fig. 8 shows the distortion in the
z-direction after welding. As shown in Fig. 8, the z-distortion
along the weld seam is significant and symmetric about the
y-axis. Notably, the distortion results in FEM simulation is
with respect to the initial parts with the part deviation. In
order to get the deviations of the key nodes in the z-direction
relative to their nominal positions, the z-coordinate values
should be extracted from this FEM simulation and subtract
the corresponding nominal z-coordinate values.

3.3 Results, Comparison, and Discussion. In this section, we
provide comparisons and discussions to validate the proposed
model. We first compare the overall assembly deviation calculated
by NVM, HNVM, MIC, and FEM simulation, respectively. Then
we select some locations on the plates to further illustrate the
local deviation and discuss the performance of our proposed
model. Finally, the central processing unit (CPU) time required
for different methods is compared.

3.3.1 Overall Deviation. In order to make a comparison, we
calculated the overall z-deviation for the assembly by NVM,
HNVM, MIC, and FEM simulation, respectively. The deviation
surface calculated by different methods is shown in Fig. 9. As
shown in Fig. 9(a), the deviation surface calculated by MIC is far
away from the FEM simulation while the deviation surfaces calcu-
lated by NVM and HNVM are much more consistent with the FEM
simulation. In the fixtured assembly processes, the in-plane welding
shrinkage results in a tension state for the assembly, which increases
the out-of-plane stiffness significantly. Therefore, the spring back
introduced by the part deviation is reduced. The proposed NVM
and HNVM consider this fact so the results are close to the FEM
simulation.
Figure 9(a) also shows that the deviation surface calculated by

MIC is smooth while the FEM simulation deviation surface is not
smooth at the weld seam area. The welding angular distortion
around the weld seam is critical for the smoothness of the deviation
surface. The welding angular distortion around the y-axis is consid-
ered by the constraint equation in NVM for this case, so there are
different degrees of angular deformation for the weld seam in the
NVM deviation surface. HNVM calibrates other local deviations
of the assembly surface in a further step, which makes it more con-
sistent with the FEM simulation surface. Therefore, the HNVM
deviation surface almost completely overlaps with the FEM simula-
tion surface (as shown in Fig. 9(b)).

3.3.2 Local Deviation. To further illustrate the comparison of
local z-deviations, we select the nodes at x=−50 mm, −150 mm,
−250 mm, −350 mm and y= 0 mm, 250 mm, 550 mm, 800 mm,
respectively, which are marked by white lines in Fig. 8. The devi-
ations of these nodes predicted by NVM, HNVM, MIC, and FEM
simulation are shown in Figs. 10 and 11. According to Ref. [42], the
mean error of FEM simulation in Simufact.welding 6.0.0 to the real
experiment is less than 10%. Thus, a 10% error range is added to the
FEM results. From Figs. 10 and 11, we know that the FEM error
range is very small compared with the results calculated by MIC,
NVM, and HNVM. Thus, the FEM simulation result has sufficient
accuracy to verify our proposed model. In addition, the performance
of deviation prediction by NVM is much better than MIC. The
maximum error between NVM and FEM simulation is less than

Table 1 Part deviations, shrinkages, and angular distortions in
FEM simulation

x- and y-coordinates
of nodes with
dimensional
deviations (mm)

Part deviations
in z-direction

(mm)

Shrinkages in
x-direction

(mm)

Angular
distortions

around y-axis
(10−3 rad)

(0,0) 1 −0.33 0.66
(0,50) 1 −0.50 0.17
(0,100) 1 −0.55 0.33
(0,150) 1 −0.56 0.67
(0,200) 1 −0.57 1.00
(0,250) 1 −0.57 1.33
(0,300) 1 −0.57 1.33
(0,350) 1 −0.57 1.67
(0,400) 1 −0.57 1.66
(0,450) 1 −0.57 0.67
(0,500) 1 −0.56 1.33
(0,550) 1 −0.56 1.00
(0,600) 1 −0.55 1.00
(0,650) 1 −0.54 0.67
(0,700) 1 −0.53 0.33
(0,750) 1 −0.47 0.33
(0,800) 1 −0.43 0.67

Table 2 Welding parameters

Parameters Value

Current 250 A
Voltage 27 V
Welding speed 41.18 cm/min
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0.05 mm in these nodes. After calibration, the HNVM is in accord
with the FEM simulation results very well.
Figures 10(a)–10(d ) show the deviations calculated by different

methods at x=−50 mm, −150 mm, −250 mm, and −350 mm,
respectively. As shown in Fig. 10(a), the deviation at x=
−50 mm calculated by NVM is smaller than FEM. However, the

prediction accuracy increases significantly compared with MIC.
When y-coordinate value increases, the deviation calculated by
FEM simulation also increases, which means the spring-back
effect of the assembly increases accordingly. In fact, the welding
direction will affect the final deformation of the weld seam signifi-
cantly. The welding process is conducted along the y-axis, which

Fig. 7 Distortion after welding: (a) x distortion, (b) the measurement of shrinkage in
the x-direction, and (c) the measurement of angular distortion around the y-axis

Fig. 8 Z distortion after welding
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leads to a progressive solidification along the y-axis. The progres-
sive solidification results in different angular distortion around the
x-axis and makes a different restriction to the spring back of the
assembly.
By comparisons between Figs. 10(a) and 10(b), we can find that

the nodes that are closer to the weld seam, the increasing trend of
deviation along the y-axis from the FEM method would be more
obvious. This is because the progressive solidification mainly
affects the assembly deviation near the weld seam. The NVM
does not fully consider the progressive solidification introduced
by the welding direction so the increasing trend of deviation
along the y-axis is not presented. However, after calibration, the
trend of the HNVM deviation surface is similar to FEM simulation.
The FEM simulation results in Figs. 10(c) and 10(d ) show that there
are some small buckling distortions at the edge (y= 0 mm and y=
800 mm). This is because the welding process introduces angular
distortion around the x-axis and the local y-direction shrinkage at
two ends of the weld seam at the same time. These two kinds of
deformations propagate to the end of the assembly and then are
restricted due to the fixed end of the assembly. The restriction
leads to some small buckling distortions at the edge. In our case
study, the angular distortion around the x-axis is set as 0 rad and
the local y-direction shrinkage at two ends of the welding seam is
also ignored so the buckling distortions are not presented. At the
same time, HNVM also has a difference with the FEM method in
Fig. 10(d ). This is because the CGP model does not consider the
fixed boundary condition in calibration. However, the difference
is very small (i.e., the maximum difference is less than 0.01 mm),
which meets the engineering requirement and can be used in
practice.

Figures 11(a)–11(d ) show the deviations calculated by different
methods at y= 0 mm, 250 mm, 550 mm, and 800 mm, respec-
tively. As shown in these four figures, the predicted deviation cal-
culated by NVM is smaller than the FEM simulation near the
weld seam. The deviation of the nodes around the weld seam is
affected by elastic deformation, plastic deformation, and phase
transformation deformation. In such a situation, the only shrink-
age in the x-direction and the angular distortion around the
y-axis cannot fully capture the assembly deviation of the weld
seam, but the max error is less than 0.05mm. Such a result
means NVM has a reasonable prediction accuracy. According to
the FEM simulation results shown in Figs. 11(a) and 11(d ),
there are some small buckling distortions at the edge of assembly
where x is less than −250 mm or greater than 250 mm, which can
also be found in Figs. 10(c) and 10(d ). Figures 11(b) and 11(c)
show that the deviation surface from the weld seam to the end
of the assembly plate is very smooth and the deviation surface
calculated by NVM has a similar trend with FEM in a small dif-
ference. However, the HNVM has similar results as FEM, thereby
indicating the HNVM is able to predict the deviation accurately
without FEM.

3.3.3 Computational Efficiency. In order to compare the
computational efficiency of different methods, the CPU time
required for different methods is recorded, which is shown in
Table 3. The different methods are implemented at a laptop
with Intel® Core™ i7-7500 CPU @ 2.70 GHz–2.90 GHz. As
shown in Table 3, the CPU time required for the welding
FEM simulation is more than 8 h. After the welding shrinkage
and angular distortion are obtained by the welding FEM

Fig. 9 Overall deviation for the assembly calculated by different methods: (a) MIC, NVM, HNVM, and FEM
and (b) NVM, HNVM, and FEM
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simulation, the CPU time required for the proposed method is
only 127.77 s. By generating different part deviations, the pro-
posed method can be employed in the statistical assembly varia-
tion analysis for the ship building process without repeated
welding FEM simulations. Even though the classical MIC is
the fastest method (the CPU time is only 3.98 s), it does not con-
sider the impacts of the welding deformation and the nonlinear-
ity, thereby leading to a relatively larger prediction error.
Therefore, the proposed method is much more efficient for vari-
ation simulations of compliant metal plate assemblies considering
welding shrinkage and angular distortion.

4 Conclusion
This paper developed an HNVM to predict the assembly devia-

tion of the compliant metal plate assembly process in a single-
station where welding shrinkage and angular distortion exist.
The proposed model was validated by a seam-welding case,
where comparisons and analysis were conducted among different
methods including NVM, HNVM, MIC, and FEM simula-
tion. The results show that the proposed model is consistent
with the FEM simulation and outperforms the existing MIC in
terms of the prediction of assembly deviation. Although the pro-
posed method is validated by the plate assembly in ship hull man-
ufacturing, it can be also applied or extended to other assembly
process, which considers the geometric nonlinearity and welding
deformation.

The major conclusions and contributions of this paper are sum-
marized as follows:

(1) This paper develops a method to consider the nonlinear
mechanical behavior in the metal plate assembly process.
Geometric nonlinearity has a significant influence on the
out-of-plane stiffness. Based on the first-order plate theory,
this paper proposes NVM, which is derived to calculate the
nonlinear deviation in the releasing step. It can be degener-
ated to a MIC model by removing nonlinearity terms in equi-
librium equations.

(2) The developed NVM considers the influence of welding
shrinkage and angular distortion on the dimensional devia-
tion of assembly. The in-plane shrinkage and the angular
distortion affect the spring back on the two-ends-
fixtured condition. In-plane shrinkage will significantly
increase the out-of-plane stiffness and reduce the assembly
deviation. However, the angular distortion, especially
the angular distortion around the weld seam, will increase
the assembly deviation. In this paper, we proposed a
welding constraint equation by modifying the matching cri-
teria of the paired nodes to make the welding deformation
as a constraint condition for the assembly. Notably, the pro-
posed method avoids a great amount of FEM simulations
by incorporating welding deformations as parameters in
the model.

(3) The HNVM leads to further improvements in the prediction
accuracy of assembly deviation. With the help from the

Fig. 10 The deviations calculated by different methods at lines (a) x=−50 mm, (b) x=−150 mm, (c) x=−250 mm, and (d ) x=
−350 mm
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calibration using CGP model, the HNVM can capture the
local deviations induced by other factors near the weld
seam. After calibration, the HNVM is finally established,
which can be used to conduct deterministic and statistical
assembly variation analysis for the welding process of
metal plate assemblies.

The proposed modeling and analysis method has several poten-
tial improvements in the future. Associate with geometric varia-
tion, the levels of assembly stresses are also very important
variables in the shipbuilding process. As dimensional variation
propagates along the multi-stage assembly process, the residual
stresses will also be accumulated, which will further have
impacts on the structural reliability and sustainability of the
ship. Thus, how to conduct stress modeling and analysis is an
important future work for multi-stage ship building process. In
addition, fixture position errors are not considered in this study,
which also deserves further investigations for the influence on
the welding distortion.
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Nomenclature
e = element
i = number of a node
m = the total number of constraints
n = iterations
A = assembly
C = calibration
M = the total number of nodes
P = part
d = the displacement constraint vector

F⊙ = clamping force vector or releasing force vector,
⊙∈{clamp, release}

eF = element external force vector
G = coefficient matrix for the constraint equation

Kclamp = the total stiffness matrix of parts in clamping process
KL = the linear term (L) of KS(

AV)
KS(

AV) = the secant stiffness that is related to the assembly
deviation

KN1(
AV) = the first-order nonlinear item of KS(

AV)

Fig. 11 The deviations calculated by different methods at lines (a) y=0 mm, (b) y=250 mm, (c) y=550 mm, and (d ) y=800 mm

Table 3 CPU time for different methods

Methods CPU time (seconds)

Welding FEM simulation 29,000
MIC 3.98
HNVM 127.77
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KN2(
AV) = the second-order nonlinear item of KS(

AV)
Kn

s = the secant stiffness matrix in the nth iteration
Kn

T = the tangent stiffness matrix in the nth iteration
eKS(

eV) = the element nonlinear secant stiffness matrix
eKT(

eV) = the element nonlinear tangent stiffness matrix
eKL = the linear term (L) of eKS(

eV)
eKN1(

eV) = the first-order nonlinear item of eKS(
eV)

eKN2(
eV) = the second-order nonlinear item of eKS(

eV)
×V = the variation vector of ×, ×∈{A, P, P1, P2}

AV* = the final variation vector of assembly
ΔAV = the first order of the increment deviation
ΔAVn = the first order of the increment deviation in the nth

iteration
eV = the element displacement vector
eVi = the displacement vector of ith node
u0 = the deformation of a point at the referential mid-plane

in x-direction
w0 = the deformation of a point at the referential mid-plane

in z-direction
x• = the x-coordinate values for the node • in the FEM

simulation model, and •∈{a, a′, b, b′}
P# = the #th part. # ∈ {1, 2}
CV = the variation in z-direction after calibration for a node

g(x, y) = the correlation structure of GP for modeling global
variations in CGP model

l(x, y) = the correlation structure of GP for modeling local
variations in CGP model

δ = the model error to be calibrated by CGP model for a
node

Δui = the equivalent relative displacement in x-direction for
the paired nodes i+ 1 and i

Δvi = the equivalent relative displacement in y-direction for
the paired nodes i+ 1 and i

Δwi = the equivalent relative displacement in z-direction for
the paired nodes i+ 1 and i

Δφxi = the equivalent relative angular distortion around y-axis
for the paired nodes i+ 1 and i

Δφyi = the equivalent relative angular distortion around x-axis
for the paired nodes i+ 1 and i

eΔi = the equivalent relative displacement for the paired
nodes i+ 1 and i

θ(X) = the standardized volatility function
λ = the Lagrange multiplier
μ = the constant mean of the global variation in CGP

model
ξ = the convergence criteria
σ2 = constant variance

σ2(x,y) = the variance function of the local variation in CGP
model

τ2 = variance of the global variation in CGP model
v0 = the deformation of a point at the referential mid-plane

in y-direction

φx = the rotation angles of normal to the cross section with
respect to y-axis

φy = the rotation angles of normal to the cross section with
respect to x-axis

Appendix: Derivation of Element’s Nonlinear Secant
Stiffness Matrix
Taking a rectangle plate with uniform thickness h as an example

(shown in Fig. 12). For any element, the Eq. (12) can be expanded
as

ek11 ek12 ek13 ek14 ek15
ek21 ek22 ek23 ek24 ek25
ek31 ek32 ek33 ek34 ek35
ek41 ek42 ek43 ek44 ek45
ek51 ek52 ek53 ek54 ek55

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦.

u0
v0
w0

ϕx

ϕy

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ =

eF1
eF2
eF3
eF4
eF5

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (A1)

where eF1,
eF2,

eF3,
eF4,

eF5 are external force components of the
element.
When the ratio of thickness to length and width is less than

1:50, the rotation angles of normal to the cross section about
the y- and the x-axes caused by in-plane deformation can be
written as

φx � −
∂w0

∂x
, φy � −

∂w0

∂y
(A2)

According to the von Kármán plate theory, the strains for the
displacement field are shown as

εxx =
∂u0
∂x

+
1
2

∂w0

∂x

( )2

+z
∂φx

∂x

εyy =
∂v0
∂y

+
1
2

∂w0

∂y

( )2

+z
∂φy

∂y

εzz = 0

γxy =
∂u0
∂y

+
∂v0
∂x

+
∂w0

∂x
∂w0

∂y

( )
+ z

∂φx

∂y
+
∂φy

∂x

( )

γxz =
∂w0

∂x
+ φx

γyz =
∂w0

∂y
+ φy

(A3)

Let �u0, �v0, �w0, �φx, and �φy denote the initial displacement field;
ũ0, ṽ0, w̃0, φ̃x, and φ̃y denote the final displacement field; and u0,

Fig. 12 Undeformed and deformed geometries of an element of a plate in the
Mindlin theory
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v0, w0, φx, and φy denote displacement increments caused by the external forces; then we have

ε̃xx − �εxx =
∂ũ0
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+
1
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The virtual strain energy is given by:

δΠ =
∫
Ω

∫h/2
−h/2

σxxδε̃xx + σyyδε̃yy+
σxyδγ̃xy + Sσxzδγ̃xz + Sσyzδγ̃yz

[ ]
dz

{ }
dxdy (A5)

where the shear correction factor S is introduced to account for the state of shear stress through thickness based on the first-order plate
theory (Mindlin theory).
Suppose that
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Then, Eq. (A5) can be rewritten as

δΠ =
∫
Ω

Nxxδε̃
0
xx + Nyyδε̃

0
yy + Nxyδγ̃

0
xy

+ Mxxδε̃
1
xx +Myyδε̃

1
yy +Mxyδγ̃

1
xy

+ Qxδγ̃
0
xz + Qyδγ̃

0
yz

⎛
⎜⎝

⎞
⎟⎠dxdy (A7)

Substituting Eq. (A4) into Eq. (A7), we have

δΠ = −
∫
Ω
δũ0

∂Nxx

∂x
+
∂Nxy

∂y

( )
dxdy −

∫
Ω
δṽ0

∂Nyy

∂y
+
∂Nxy

∂x

( )
dxdy

−
∫
Ω
δw̃0

∂Qx

∂x
+
∂Qy

∂y

( )
+

∂
∂x

Nxx
∂w̃0

∂x
+ Nxy

∂w̃0

∂y

( )
+

∂
∂y

Nxy
∂w̃0

∂x
+ Nyy

∂w̃0

∂y

( )[ ]
dxdy

−
∫
Ω
δφ̃x

∂Mxx

∂x
+
∂Mxy

∂y
− Qx

( )
dxdy −

∫
Ω
δφ̃y

∂Myy

∂y
+
∂Mxy

∂x
− Qy

( )
dxdy

+
∫La/2
−La/2

Nxyδũ0 + Nyyδṽ0 + Nyy
∂w̃0

∂y
+ Nxy

∂w̃0

∂x
+ Qy

( )
δw̃0 +Mxyδφ̃x +Myyδφ̃y

[ ]∣∣∣∣Lb/2
−Lb/2

{ }
dx

+
∫Lb/2
−Lb/2

Nxxδũ0 + Nxyδṽ0 + Nxx
∂w̃0

∂x
+ Nxy

∂w̃0

∂y
+ Qx

( )
δw̃0 +Mxxδφ̃x +Mxyδφ̃y

[ ]∣∣∣∣La/2
−La/2

{ }
dy

(A8)

For isotropic materials, the generalized Hooke’s law relates the six components of stress to the six components of strain as:

σxx
σyy
σzz
σyz
σxz
σxy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

ε̃xx − �εxx
ε̃yy − �εyy
ε̃zz − �εzz
γ̃yz − �γyz
γ̃xz − �γxz
γ̃xy − �γxy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A9)

where C11 = E/(1 − ν2), C12 = νE/(1 − ν2), C44 = E/(2(1 + ν)) are the elastic coefficients.
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The equations of equilibrium of the first-order shear deformation
plate theory [38] are given by

−
∂Nxx

∂x
+
∂Nxy

∂y

( )
= 0

−
∂Nxy

∂x
+
∂Nyy

∂y

( )
= 0

−
∂Qx

∂x
+
∂Qy

∂y

( )
− ℵ(u0, v0, w0) − q = 0

−
∂Mxx

∂x
+
∂Mxy

∂y

( )
+ Qx = 0

−
∂Mxy

∂x
+
∂Myy

∂y

( )
+ Qy = 0

(A10)

where

Nxx

Nyy

Nxy

⎡
⎢⎣

⎤
⎥⎦ =

A11 A12 0

A12 A22 0

0 0 A66

⎡
⎢⎣

⎤
⎥⎦

×

∂ũ0
∂x

+
1
2

∂w̃0

∂x

( )2

−
∂�u0
∂x

−
1
2

∂�w0

∂x

( )2

∂ṽ0
∂y

+
1
2

∂w̃0

∂y

( )2

−
∂�v0
∂y

−
1
2

∂�w0

∂y

( )2

∂ũ0
∂y

+
∂ṽ0
∂x

+
∂w̃0

∂x
∂w̃0

∂y
−
∂�u0
∂y

−
∂�v0
∂x

−
∂�w0

∂x
∂�w0

∂y

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A11)

Mxx

Myy

Mxy

⎡
⎢⎣

⎤
⎥⎦ =

D11 D12 0

D12 D22 0

0 0 D66

⎡
⎢⎣

⎤
⎥⎦

∂φ̃x

∂x
−
∂�φx

∂x
∂φ̃y

∂y
−
∂�φy

∂y
∂φ̃x

∂y
+
∂φ̃y

∂x
−
∂�φx

∂y
−
∂�φy

∂x

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
(A12)

Qy

Qx

[ ]
= S

A44 0
0 A55

[ ] ∂w̃0

∂y
+ φ̃y −

∂�w0

∂y
− �φy

∂w̃0

∂x
+ φ̃x −

∂�w0

∂x
− �φx

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (A13)

ℵ(ũ0, ṽ0, w̃0) =
∂
∂x

Nxx
∂w̃0

∂x
+ Nxy

∂w̃0

∂y

( )

+
∂
∂y

Nxy
∂w̃0

∂x
+ Nyy

∂w̃0

∂y

( ) (A14)

For isotropic materials with elastic modulus E, shear modulus
G, and Poisson ratio ν, the extensional stiffness coefficients Ajl

( j = 1, 2, 4, 5, 6; l= 1, 2, 4, 5, 6) and the bending stiffness
coefficients Djl ( j= 1, 2, 6; l= 1, 2, 6) are given by Eqs. (A15)
and (A16)

A11 =
Eh

1 − ν2
, A12 =

νEh

1 − ν2
, A22 =

Eh

1 − ν2
,

A44 = Gh, A55 = Gh, A66 = Gh
(A15)

D11 =
Eh3

12(1 − ν2)
, D12 =

νEh3

12(1 − ν2)
,

D22 =
Eh3

12(1 − ν2)
, D66 =

Gh3

12

(A16)

The interpolations for final deformations assumed yielding to the
equations of node displacements and shape functions, which can be
expressed as

ũ0(x, y) = H1
eṼ

ṽ0(x, y) = H2
eṼ

w̃0(x, y) = H3
eṼ

φ̃x(x, y) = H4
eṼ

φ̃y(x, y) = H5
eṼ

(A17)

where eṼ = [ũ0, ṽ0, w̃0, φ̃x, φ̃y]
T is the final node deformation

vector, and Hj ( j= 1, 2, 3, 4, 5) is the shape function. Then the com-
ponents of element stiffness matrix are listed as

ek11 =
∫∫

A11
∂HT

1

∂x
∂H1

∂x
dxdy +

∫∫
A66

∂HT
1

∂y
∂H1

∂y
dxdy

ek12 =
∫∫

A12
∂HT

1

∂x
∂H2

∂y
dxdy +

∫∫
A66

∂HT
1

∂y
∂H2

∂x
dxdy

ek13 =
1
2

∫∫
A11

∂w0

∂x
∂HT

1

∂x
∂H3

∂x
dxdy +

1
2

∫∫
A12

∂w0

∂y
∂HT

1

∂x
∂H3

∂y
dxdy

+
1
2

∫∫
A66

∂w0

∂x
∂HT

1

∂y
∂H3

∂y
dxdy +

1
2

∫∫
A66

∂w0

∂y
∂HT

1

∂y
∂H3

∂x
dxdy

ek14 = 0

ek15 = 0

ek21 =
∫∫

A12
∂HT

2

∂y
∂H1

∂x
dxdy +

∫∫
A66

∂HT
2

∂x
∂H1

∂y
dxdy

ek22 =
∫∫

A22
∂HT

2

∂y
∂H2

∂y
dxdy +

∫∫
A66

∂HT
2

∂x
∂H2

∂x
dxdy

ek23 =
1
2

∫∫
A12

∂w0

∂x
∂HT

2

∂y
∂H3

∂x
dxdy +

1
2

∫∫
A22

∂w0

∂y
∂HT

2

∂y
∂H3

∂y
dxdy

+
1
2

∫∫
A66

∂w0

∂y
∂HT

2

∂x
∂H3

∂x
dxdy +

1
2

∫∫
A66

∂w0

∂x
∂HT

2

∂x
∂H3

∂y
dxdy

ek24 = 0

ek25 = 0

ek31 =
1
2

∫∫
A11

∂w0

∂x
∂HT

3

∂x
∂H1

∂x
dxdy +

1
2

∫∫
A12

∂w0

∂y
∂HT

3

∂y
∂H1

∂x
dxdy

+
1
2

∫∫
A66

∂w0

∂x
∂HT

3

∂y
∂H1

∂y
dxdy +

1
2

∫∫
A66

∂w0

∂y
∂HT

3

∂x
∂H1

∂y
dxdy

ek32 =
1
2

∫∫
A12

∂w0

∂x
∂HT

3

∂x
∂H2

∂y
dxdy +

1
2

∫∫
A22

∂w0

∂y
∂HT

3

∂y
∂H2

∂y
dxdy

+
1
2

∫∫
A66

∂w0

∂y
∂HT

3

∂x
∂H2

∂x
dxdy +

1
2

∫∫
A66

∂w0

∂x
∂HT

3

∂y
∂H2

∂x
dxdy
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ek33 =
∫∫

∂HT
3

∂x
A11

2
∂u0
∂x

+
∂w0

∂x

( )2
[ ]

+
A12

2
∂v0
∂y

+
∂w0

∂y

( )2
[ ]{ }

∂H3

∂x
dxdy

+
∫∫

∂HT
3

∂y
A12

2
∂u0
∂x

+
∂w0

∂x

( )2
[ ]

+
A22

2
∂v0
∂y

+
∂w0

∂y

( )2
[ ]{ }

∂H3

∂y
dxdy

+
∫∫

A66
∂HT

3

∂x
1
2
∂u0
∂y

+
1
2
∂v0
∂x

+
∂w0

∂x
∂w0

∂y

( )
∂H3

∂y
dxdy

+
∫∫

A66
∂HT

3

∂y
1
2
∂u0
∂y

+
1
2
∂v0
∂x

+
∂w0

∂x
∂w0

∂y

( )
∂H3

∂x
dxdy

+
∫∫

SA55
∂HT

3

∂x
∂H3

∂x
dxdy +

∫∫
SA44

∂HT
3

∂y
∂H3

∂y
dxdy

ek34 =
∫∫

SA55
∂HT

3

∂x
H4dxdy

ek35 =
∫∫

SA44
∂HT

3

∂y
H5dxdy

ek41 = 0

ek42 = 0

ek43 =
∫∫

SA55H
T
4
∂H3

∂x
dxdy

ek44 =
∫∫

D11
∂HT

4

∂x
∂H4

∂x
dxdy +

∫∫
D66

∂HT
4

∂y
∂H4

∂y
dxdy

+
∫∫

SA55H
T
4H4dxdy

ek45 =
∫∫

D12
∂HT

4

∂x
∂H5

∂y
dxdy +

∫∫
D66

∂HT
4

∂y
∂H5

∂x
dxdy

ek51 = 0

ek52 = 0

ek53 =
∫∫

SA44H
T
5
∂H3

∂y
dxdy

ek54 =
∫∫

D12
∂HT

5

∂y
∂H4

∂x
dxdy +

∫∫
D66

∂HT
5

∂x
∂H4

∂y
dxdy

ek55 =
∫∫

D22
∂HT

5

∂y
∂H5

∂y
dxdy +

∫∫
D66

∂HT
5

∂x
∂H5

∂x
dxdy

+
∫∫

SA44H
T
5H5dxdy
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