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        Abstract 

Design of process control scheme is critical for quality assurance to reduce variations in 

manufacturing systems. Taking semiconductor manufacturing as an example, extensive 

literature focuses on control optimization based on certain process models (usually linear 

models), which are obtained by experiments before a manufacturing process starts. 

However, in real applications, pre-defined models may not be accurate, especially for a 

complex manufacturing system. To tackle model inaccuracy, we propose a model-free 

reinforcement learning (MFRL) approach to conduct experiments and optimize control 

simultaneously according to real-time data. Specifically, we design a novel MFRL 

control scheme by updating the distribution of disturbances using Bayesian inference to 

reduce their large variations during manufacturing processes. As a result, the proposed 

MFRL controller is demonstrated to perform well in a nonlinear chemical mechanical 

planarization (CMP) process when the process model is unknown. Theoretical properties 

are guaranteed when disturbances are additive. The numerical studies also demonstrate 

the efficiency of our methodology. 

 

Keywords: model-free reinforcement learning; process control; Bayesian inference; design of 

experiments. 
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1. Introduction  

1.1 Background and motivations 

Process control is critical to keep the stability of manufacturing processes and guarantee the quality of 

final products, especially when a manufacturing process is complex. For example, in a semiconductor 

manufacturing process, two types of factors influence the stability of the manufacturing system. First, 

internal factors from manufacturing equipment and environments, mainly refer to process dynamics 

and disturbances during the manufacturing process (Tseng and Chen, 2017). Second, external factors 

refer to control recipes designed by the manufacturer, which aim to compensate for disturbances and 

adjust the system output to its desired target. 

Traditional run-to-run (R2R) control schemes in semiconductor manufacturing processes can be 

divided into two phases. In Phase I, a process model is specified to describe the relationship between 

control input and process output through domain knowledge, design of experiments (DOE), or 

response surface methodology (RSM), followed by control recipe optimizations in Phase II (Tseng et 

al., 2019). A detailed literature review is provided in Section 1.2. However, in practical applications, 

when manufacturing processes are too complex to be described by specific models accurately, 

traditional R2R controllers may encounter significant challenges in accurate quality control. For 

example, the chemical mechanical planarization (CMP) process is one of the most important steps in 

semiconductor manufacturing to remove excess materials from the surface of silicon wafers. In 

literature, CMP processes are often controlled with explicit assumptions of process models (Castillo 

and Yeh, 1998). However, such models cannot fully capture the relationship between system outputs, 

control recipes, and disturbances, thereby leading to unavoidable model errors, which affect the 

accuracy of control optimization. 

To tackle model inaccuracy in complex manufacturing processes, model-free reinforcement 

learning (MFRL) approaches (Recht, 2019) have been developed to learn manufacturing 

environments from real-time experimental data and directly search optimal control recipes without 

process model assumptions. Therefore, MFRL provides unprecedented opportunities for control 

optimization, especially in complex manufacturing processes. However, current MFRL approaches 

need to be improved as disturbances are hidden unstable factors that affect system outputs 
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significantly (Nian et al., 2020). Take CMP process as an example, Figure 1 illustrates the system 

outputs based on the MFRL controller in Recht (2019) (defined as a basic MFRL controller). In the 

basic MFRL controller, the effects of disturbances are ignored and control recipes are directly 

optimized based on system outputs. As shown in Figure 1, compared with the case without control, 

the basic MFRL controller can roughly keep the system output close to the target level. However, the 

controlled process still experiences significant deviations during some periods, which leads to invalid 

control. Therefore, it is highly desired to design a new control methodology to improve the basic 

MFRL controller by updating real-time distributions of disturbances to reduce the variations. 

1.2 Literature review 

In this subsection, we review different process control methods for complex manufacturing systems, 

especially for semiconductor manufacturing. Since the control mechanism or process model is 

important for controller design (Bastiaan, 1997), we classify the literature into two main categories 

based on whether the process model is available/predefined or not: (1) model-based controllers and 

(2) data-driven or model-free controllers. 

Both linear and nonlinear process models have been considered in existing process control 

methodologies. Extensive pioneer works considered linear process models with disturbances that 

follow different stochastic time series. For example, Ingolfsson and Sachs (1993) analyzed the 

stability and sensitivity of the exponentially weighted moving average (EWMA) controller in 

compensating for the integrated moving average (IMA) disturbance process. Ning et al. (1996) 

formulated the process model as a linear transfer function with time-dependent drifts and developed a 

time-based EWMA controller. Tsung and Shi (1999) designed a proportional-integral-derivative 

(PID) controller for linear process models with autoregressive moving average (ARMA) disturbances 

and integrated the PID-based control scheme with statistical process control. Chen and Guo (2001) 

proposed an age-based double EWMA controller, which performs better than the EWMA controller in 

dealing with time-dependent drifts. Tseng et al. (2003) designed a new controller to improve the 

traditional EWMA controller by optimizing its discount factor and defined it as the variable-EWMA 

(VEWMA) controller, which has great performance in linear process models with ARIMA 

disturbance. Tseng et al. (2007) showed that the VEWMA controller has better performance than 
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double EWMA numerically. He et al. (2009) proposed a new controller named general harmonic rule 

(GHR) and theoretically proved its performance for a wide range of stochastic disturbances. Tseng et 

al. (2016) focused on the effects of previous process recipes and output responses on current outputs 

in semiconductor manufacturing processes, and proposed a multivariate EWMA controller for this 

linear dynamic process. Tseng and Chen (2017) proposed a generalized quasi-minimum mean square 

error (q-MMSE) controller to deal with a general-order dynamical model with added noises and 

guaranteed a long-term stability condition. Tseng et al. (2019) extended the q-MMSE controller to 

deal with more complicated disturbances such as high-order ARIMA processes. Ma and Pan (2024) 

optimized the tuning parameters in double-EWMA controllers using deep reinforcement learning, 

which performs well in linear process models with high-order ARIMA disturbances. 

Besides linear process models, nonlinear process models are also widely studied. Hankinson et 

al. (1997) introduced a polynomial function to approximate a process model in deep reactive ion 

etching. Del Castillo and Yeh (1998) reviewed different polynomial process models for 

approximation of the CMP process and proposed adaptive R2R controllers according to these 

polynomial models. Kazemzadeh et al. (2008) extended the EWMA and VEWMA controllers in 

quadratic process models. In addition to polynomial models, more complicated nonlinear process 

models are introduced by differential equations. For example, Bibian and Jin (2000) considered a 

digital control problem in a second-order system and proposed two practical control schemes to deal 

with the time delay. Chen et al. (2012) focused on the deterministic as well as stochastic process 

models with measurement delay and proposed a new controller that integrates deterministic and 

stochastic components with applications in chemical vapor deposition (CVD) processes. Clerget et al. 

(2016) proposed a nonlinear sampled model-based controller for a nonlinear system considering 

model uncertainties and measurement delays. Moya et al. (2023) proposed an adaptive feedforward 

control scheme for a nonlinear electromechanical system. Zhou et al. (2024) focused on nonlinear 

batch-based systems with constraints and proposed an integration methodology of model predictive 

control and iterative learning control. In summary, model-based controllers depend crucially on 

explicit process formulations and are suitable for cases where the focused process models are well-

validated.  
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When an explicit process model is not available, data-driven or model-free controllers are 

directly designed based on historical or offline data. For example, neural networks (NN) are widely 

used to approximate the unknown process model according to control recipes and system outputs. 

Park et al. (2005) approximated the real process model by an NN and designed an NN-based 

controller to reduce overlay misalignment errors significantly in semiconductor manufacturing 

processes. Wang and Chou (2005) proposed a neural-Taguchi-based control strategy to reach the 

desired material removal rate through an NN-simulated CMP process. Chang et al. (2006) developed 

a virtual metrology system using different NNs to describe the process model and optimized the 

control recipes accordingly. Kim et al. (2020) proposed a controller based on a least square generative 

adversarial network (GAN) and applied it to the CMP process. Tom et al. (2022) combined artificial 

NN methodology into an R2R control scheme and applied it in a spatial thermal atomic layer etching 

reactor. However, the NN-based controller also has limitations such as nonstationary control results 

and poor interpretations (Liu et al., 2018). Therefore, when controlling dynamic manufacturing 

systems characterized by unstable disturbances, existing NN-based approaches also encounter 

challenges in accurately approximating the manufacturing process. 

Compared with NN-based control methods, reinforcement learning (RL) is another efficient 

data-driven control method to learn system dynamics and optimize control recipes by interacting with 

real-time system states. Given the definition of system state, control policy, and cost or reward 

function, RL can optimize control recipes based on real-time system states (Wang et al., 2018). For 

example, Recht (2019) introduced two basic policy-based algorithms for MFRL methods, policy 

gradient and pure random search (PRS). The policy gradient method optimizes control strategies 

based on the distribution of system outputs (Li et al., 2024), while the PRS method is more general 

and directly optimizes control strategies by stochastic gradient descent. However, as pointed out by 

Nian et al. (2020), these MFRL controllers cannot be directly applied in complex manufacturing 

systems due to large variations caused by unknown process models and unstable disturbances. 

Therefore, Khamaru et al. (2021) explored an effective variance reduction method based on an 

instance-dependent function in Q-learning. 
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In summary, the above data-driven methods share a common limitation: variations are relatively 

large. As process models are unknown, hidden unstable disturbances are hard to recognize, thereby 

bringing difficulties in optimizing control recipes compensating for them. To tackle the challenges, in 

this article, we design a new process control scheme to improve the basic MFRL controller (e.g., 

PRS-based MFRL controller) by updating the distribution of disturbances through Bayesian inference. 

We define it as a model-free reinforcement learning controller with Bayesian inference (MFRL-BI).  

As disturbances can be reflected by system outputs, we use Bayesian inference to update the 

real-time distribution and integrate it into current MFRL control schemes. Figure 2 illustrates the 

difference between the control schemes of existing R2R and the proposed MFRL-BI controllers in 

terms of process assumptions and control optimization. Following the design steps of the process 

control scheme in Figure 2 (Del Castillo and Hurwitz, 1997), we divide the MFRL-BI controller into 

two phases: the optimization phase for controller learning (Phase I) and the implementation phase in 

real-time manufacturing (Phase II). In Phase I, we design experiments by virtual metrology (VM) to 

provide extensive data (Chang et al., 2006; Kang et al., 2009) for searching control recipes using 

MFRL algorithms. Considering the fact that disturbance can be inferred by system outputs, we update 

its distribution through Bayesian inference using real-time outputs. Finally, the input control recipes, 

system outputs, and disturbance inference data are collected and used for online real-time control in 

Phase II.  

The main contributions of our work are summarized as follows: (1) a new model-free control 

scheme called MFRL-BI is proposed for efficient variation reduction by updating disturbance 

processes through Bayesian inference. (2) The corresponding algorithms of the MFRL-BI controller 

that combine Bayesian inference with the current PRS-based MFRL methodology are presented. (3) 

The proposed MFRL-BI controller is theoretically shown to guarantee optimality.  

The remainder of this paper is organized as follows. Section 2 introduces the basic MFRL 

methodology in an R2R control scheme. Section 3 provides the design procedure of the MFRL-BI 

control scheme and interprets the related theoretical principles in Phases I and II. Section 4 

demonstrates the performance of our method numerically and compares it with other benchmark 
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controllers with the application in a nonlinear CMP process control. Finally, Section 5 concludes the 

paper with remarks on future research directions. 

 

2. Basic MFRL controller  

In this section, we first present formulations of the process control problem in Section 2.1, and then 

discuss the methodology and corresponding algorithms of the basic MFRL in Section 2.2. 

2.1 Process control formulation 

We consider a multiple input-multiple output (MIMO) R2R process control problem that aims to 

reduce variations in a manufacturing system. At run 𝑡 ∈ {1,2,… 𝑇}, a control recipe 𝒖𝑡 ∈ ℝ
𝑚×1 is 

optimized to keep the system output 𝒚𝑡 ∈ ℝ
𝑛×1 close to its target level 𝒚∗ ∈ ℝ𝑛×1, where 𝑇 is the 

total number of runs. 𝑚  and 𝑛  are the dimensions of input control recipes and system outputs, 

respectively. The squared errors of process outputs are used to measure the control cost (Wang and 

Han, 2013). Furthermore, as control actions also bring extra costs in the manufacturing process, the 

cost function at run 𝑡 is:  

𝐶𝑡(𝒚𝑡, 𝒖𝑡) = (𝒚𝑡 − 𝒚
∗)𝑻𝑸(𝒚𝑡 − 𝒚

∗) + 𝒖𝑡
𝑻𝑹𝒖𝑡,                                     (1) 

where 𝑸 and 𝑹 are positive definite weighted matrices. According to Del Castillo and Hurwitz (1997), 

the system output 𝒚𝑡 is affected by the control recipes 𝒖𝑡 as well as disturbances in manufacturing 

environments. Therefore, we define the underlying truth of the unknown process model as 𝒚𝑡 =

ℎ(𝒖𝑡 , 𝒅𝑡), where 𝒅𝑡 ∈ ℝ
𝑛×1 is the disturbance at run 𝑡. Combining with the cost function in Equation 

(1), we have the process control problem in 𝑇 runs as: 

min{𝒖1,𝒖2,…,𝒖𝑇} 𝐸{𝒅1,𝒅2,…,𝒅𝑇}[∑ ((𝒚𝑡 − 𝒚
∗)𝑻𝑸(𝒚𝑡 − 𝒚

∗) + 𝒖𝑡
𝑻𝑹𝒖𝑡)

𝑇
𝑡=1 ]

s. t. 𝒚𝑡 = ℎ(𝒖𝑡 , 𝒅𝑡).
                                   (2)  

Note that the process model ℎ(𝒖𝑡 , 𝒅𝑡) is general and not specified. 

In semiconductor manufacturing, it is widely recognized that process disturbances are used to 

describe the unmodeled process dynamics, which could source from manufacturing tools, products, or 

proceeding processes (Su et al., 2007) and be compensated by control recipes. As disturbances are 

hidden variables that cannot be directly observed, an additive model is widely used to quantify their 

effects on quality variables (Box and Kramer, 1992; Zhong et al, 2010; Wang and Han, 2013). 

Therefore, we have Assumption 2.1 for the process model. 
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Assumption 2.1: The manufacturing process outputs can be separated into two additive parts related 

to control recipes and disturbances respectively, i.e., 

𝒚𝑡 = ℎ(𝒖𝑡 , 𝒅𝑡) = 𝑔(𝒖𝑡) + 𝒅𝑡.                                                 (3) 

where 𝑔(𝒖𝑡) and 𝒅𝑡 are assumed to be independent.  

In semiconductor manufacturing systems, disturbance processes exhibit general autocorrelations 

due to manufacturing environments such as aging effects (Del Castillo and Hurwitz, 1997). Therefore, 

in a manufacturing cycle from runs 1 to 𝑇, the disturbance 𝒅𝑡  can be inferred from its historical 

trajectory 𝑫𝑡−1 = [𝒅1, 𝒅2, …𝒅𝑡−1]. We define the conditional probability density function of the 

disturbance at run 𝑡 as 𝑝(𝒅𝑡|𝑫𝑡−1) with mean vector 𝝁𝑡 and covariance matrix 𝚺𝑡. 

For control recipes to compensate for the disturbances, as shown in Equation (3), their effects on 

the system output are modeled by a function 𝑔(∙), which is often assumed as a linear function in 

literature (Chen and Guo, 2001; Tseng et al., 2003; 2007). Considering the potential inaccuracy, we 

relax formulation assumptions of 𝑔(∙) in our model. Although the effects of control recipes and 

disturbances on the system output are separated according to Assumption 2.1, there still exists a 

significant challenge in quantifying the effects of control recipes and disturbances as 𝑔(∙) is unknown 

and 𝒅𝑡 cannot be observed directly.  

2.2 Methodology of basic MFRL with PRS 

In the control methodology of a basic MFRL controller, the expectation of control cost over 

disturbances 𝒅𝑡 is minimized by optimizing control recipe 𝒖𝑡. Due to the unknown process model 

𝑔(∙), the cost function is also an unknown function over 𝒖𝑡. According to Recht (2019), the objective 

function in Equation (2) can be reformulated as 𝐽(𝒖) = 𝐄{𝒅1,𝒅2,…,𝒅𝑇}[∑ 𝐶𝑡(𝒚𝑡(𝒖𝑡, 𝒅𝑡), 𝒖𝑡)
𝑇
𝑡=1 ], where 

𝒖 = [𝒖1, … , 𝒖𝑡 , …𝒖𝑇]. Before optimizing the function 𝐽(𝒖), suppose the following assumption holds. 

Assumption 2.2: The function 𝐽(𝒖) = 𝐄{𝒅1,𝒅2,…,𝒅𝑇}[∑ 𝐶𝑡(𝒚𝑡(𝒖𝑡, 𝒅𝑡), 𝒖𝑡)
𝑇
𝑡=1 ] achieves a minimum at 

an unknown point 𝒖∗. 

To minimize 𝐽(𝒖), the basic MFRL controller in Recht (2019) uses a PRS-based method to 

optimize the control recipes by stochastic gradient descent (SGD). If Assumptions 2.1 and 2.2 hold, 

the optimization problem in Equation (2) can be solved via the SGD algorithm as follows. 
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SGD Algorithm: There are two steps in the SGD algorithm for the basic MFRL controller. First, the 

gradient of 𝐽(𝒖) is approximated by a finite difference along the direction 𝝐, where 𝝐 ∈ ℝ𝑚×𝑇 is a 

random vector consisting of 0 or 1. Then, we can write the gradient of 𝐽(𝒖) as: 

∇𝒖𝐽(𝒖) =
𝐽(𝒖+𝜄𝝐)−𝐽(𝒖−𝜄𝝐)

2𝜄
𝝐,                                                    (4) 

where 𝜄 → 0 and 𝒖 ∓ 𝜄𝝐 denote the neighborhood of the control strategy 𝒖. Second, the control recipe 

moves along the gradient descent direction with step size 𝛼. If 𝒖[𝑘] is used to denote the value of 

control recipes in the 𝑘th iteration, we have  

𝒖[𝑘+1] = 𝒖[𝑘] − 𝛼∇𝒖𝐽(𝒖
[𝑘]).                                                  (5) 

These two steps are executed alternately until 𝒖 converges (i.e., the difference between successive 

iterated values of 𝒖[𝑘+1] and 𝒖[𝑘] is smaller than a pre-defined threshold 𝜂).  

Following the SGD algorithm, Algorithm 1 presents the aforementioned control search procedure 

to minimize the unknown function 𝐽(∙). 

Algorithm 1. MFRL with PRS Algorithm 

Function: MFRL_PRS(∙) 

Input: hyper-parameters 𝝐, 𝜄, 𝛼, 𝜂 

Initialize: 𝑘 = 0, control recipe 𝒖[0] 

Repeat: 

        Execute two initial control strategies 𝒖[𝑘] + 𝜄𝝐 and 𝒖[𝑘] − 𝜄𝝐  

        ∇𝒖𝐽(𝒖
[𝑘]) =

𝐽(𝒖[𝑘]+𝜄𝝐)−𝐽(𝒖[𝑘]−𝜄𝝐)

2𝜄
𝝐  

𝒖[𝑘+1] = 𝒖[𝑘] − 𝛼∇𝒖𝐽(𝒖
[𝑘])  

𝑘 ← 𝑘 + 1  

Until ‖𝒖[𝑘] − 𝒖[𝑘−1]‖ < 𝜂 

�̂� = 𝒖[𝑘]  

Output: �̂� 

According to the asymptotic analysis of SGD algorithm in Kiefer and Wolfowitz (1952), if 

disturbances satisfy the condition 𝐄(𝒅𝑡) = 𝟎 , the control recipe searched in Algorithm 1 will 

converge to the optimal value. However, in practice, the disturbance process is not stable, its 

fluctuations and drifts are inevitable and may even increase as time goes by. For example, in CMP 

process in Figure 1, the basic MFRL controller encounters large variations, as it focuses on 
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minimizing the expected control cost 𝐽(𝒖) but ignores the variations and drifts of disturbance 𝒅𝑡. To 

overcome this limitation, we propose the MFRL-BI controller to further reduce the variations of 

system outputs by dynamically updating the distribution of disturbances in Section 3. 

 

3. The MFRL-BI controller 

In this section, the MFRL-BI controller is proposed to improve the performance of basic MFRL by 

updating the distribution of disturbance via Bayesian inference. Following Figure 2, we introduce 

methodologies of the proposed MFRL-BI controller in two phases in Sections 3.1 and 3.2 

respectively. As shown in Figure 3, in Phase I, control recipes are searched in the inner loop using the 

MFRL algorithm with PRS. After taking the convergent control recipe, the distribution of disturbance 

is updated in the outer loop. Meanwhile, the control recipes, system outputs, and estimated 

disturbances are collected, which are used for real-time control optimization in Phase II. 

As introduced in Section 2.2, disturbances are unobservable, we define the prior distribution of 

𝒅𝑡 condition on its trajectory as  

𝒅𝑡|𝑫𝑡−1~𝑝(𝝁𝑡 , 𝚺𝑡),                                                        (6) 

where 𝑝(∙) is the probability distribution function. The observations of system output 𝒚𝑡 can reflect 

the disturbance process and be used to update the posterior distribution of 𝒅𝑡. However, 𝒚𝑡 is also 

affected by the control recipe 𝒖𝑡, which brings challenges for disturbance inference. Therefore, in 

Figure 3, we separate the effects of 𝒅𝑡  and 𝒖𝑡 , make inference of 𝒅𝑡  in the outer loop, and 

optimization of 𝒖𝑡 in the inner loop. 

Specifically, to separate the effects of 𝒅𝑡 and 𝒖𝑡, we reformulate the process model in Equation 

(3) as 𝒚𝑡 = 𝑔(𝒖𝑡) + 𝒅𝑡 = 𝑔(𝒖𝑡) + 𝝁𝑡 + 𝜹𝑡, where 𝝁𝑡  is the mean vector of 𝒅𝑡 and 𝜹𝑡 = 𝒅𝑡 − 𝝁𝑡  is a 

random vector with 𝐸(𝜹𝑡) = 𝟎 . Since the process model 𝑔(𝒖𝑡)  is unknown, the variability of 

searched control recipe via Algorithm 1 using PRS is unavoidable, especially when the number of 

iterations is limited and the step size is fixed (Kiefer and Wolfowitz, 1952). We use 𝒗𝑡 = �̂�𝑡 − 𝒖𝑡
∗ to 

denote this variability, where �̂�𝑡 is control recipe searched by PRS and 𝒖𝑡
∗ is the underlying optimal 

control recipe. In summary, we reformulate the optimization problem in Equation (2) as follows at 

each run 𝑡: 
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min
𝒖𝑡

𝐄𝜹𝑡,𝒗𝑡[𝐶𝑡(𝒚𝑡, 𝒖𝑡)] 

s.t. 𝒚𝑡 = 𝑔(𝒖𝑡) + 𝝁𝑡 + 𝜹𝑡.                                                  (7) 

By incorporating the constraints into the objective function, we have: 

𝐄𝜹𝑡,𝒗𝑡[𝐶𝑡(𝒚𝑡, 𝒖𝑡)] = tr(𝑸𝚺𝑡) +𝑀(𝒖𝑡|𝝁𝑡),                                           (8) 

where tr(∙) denotes the trace of a matrix, and  

𝑀(𝒖𝑡|𝝁𝑡) ≔ 𝐄𝒗𝑡[(𝑔(𝒖𝑡) + 𝝁𝑡 − 𝒚
∗)𝑇𝑸(𝑔(𝒖𝑡) + 𝝁𝑡 − 𝒚

∗)] + 𝒖𝑡
𝑇𝑹𝒖𝑡.                 (9) 

Detailed derivations are presented in Appendix A.1. Then the total cost can be divided into two parts: 

𝑀(𝒖𝑡|𝝁𝑡) and tr(𝑸𝚺𝑡). As shown in Equation (9), the control optimization depends on the mean 

vector of the disturbances. However, due to the dynamics of disturbance, it is necessary to 

continuously infer its current distribution based on real-time outputs to guarantee the accuracy of 

control optimization. As a result, the separation in Equation (8) allows us to optimize 𝑀(𝒖𝑡|𝝁𝑡) by 

MFRL algorithm with PRS and update the value of tr(𝑸𝚺𝑡) and 𝝁𝑡  by Bayesian inference. The 

methodology and corresponding algorithms of control optimization and disturbance inference in 

Phase I will be elaborated in Section 3.1. 

3.1 Control optimization in Phase I 

To separate the effects of 𝒖𝑡 and 𝒅𝑡, we divide the control process at each run into two steps: (i) at the 

beginning of run 𝑡, given the prior distribution of 𝒅𝑡, control recipe 𝒖𝑡 is searched to minimize the 

control cost 𝑀(𝒖𝑡|𝝁𝑡); (ii) the posterior distribution of 𝒅𝑡 is updated when the system output 𝒚𝑡 is 

observed and the prior distribution of 𝒅𝑡+1 is inferred according to the posterior distribution of 𝒅𝑡. 

These two steps correspond to the inner and outer loops in Figure 3, respectively, and are presented as 

follows. 

A. Inner loop: search for control recipes 

In this part, we design an experiment searching for control recipes to minimize the expected control 

cost 𝑀(𝒖𝑡|𝝁𝑡). According to its definition in Equation (9), we can separate 𝑀(𝒖𝑡|𝝁𝑡) as: 

𝑀(𝒖𝑡|𝝁𝑡) ≔ 𝐻(𝒖𝑡|𝝁𝑡) + 𝒖𝑡
𝑻𝑹𝒖𝑡,                                          (10) 

where 𝐻(𝒖𝑡|𝝁𝑡) = [(𝑔(𝒖𝑡) + 𝝁𝑡 − 𝒚
∗)𝑇𝑸(𝑔(𝒖𝑡) + 𝝁𝑡 − 𝒚

∗)]. As 𝒖𝑡
𝑇𝑹𝒖𝑡  is a deterministic convex 

function of 𝒖𝑡 , it is necessary to search the gradient of 𝐻(∙) , and we have ∇𝒖𝑡𝑀(𝒖𝑡|𝝁𝑡) =

∇𝒖𝑡𝐻(𝒖𝑡|𝝁𝑡) + 2𝑹𝒖𝑡. Before searching for 𝒖𝑡, we suppose that 𝐻(∙) also satisfies Assumption 2.2, 

i.e., 𝐻(∙)  is an unknown function that has a minimum at an unknown point �̃�𝑡 
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(�̃�𝑡 = 𝑎𝑟𝑔min𝒖𝑡 𝐻(𝒖𝑡|𝝁𝑡)). Then, similar to the basic MFRL controller, we implement Algorithm 1 

to optimize the unknown function 𝑀(∙) using PRS. Particularly, to further guarantee the stability of 

control recipes and reduce the variability of 𝒗𝑡, after the convergence of 𝒖𝑡 based on Algorithm 1, we 

execute another 𝑁 iterations of control recipes, which are denoted as �̂�𝑡(1) to �̂�𝑡(𝑁). The final recipe 

is chosen as the mean of control recipes after convergence (i.e., �̅�𝑡 =
1

𝑁
∑ �̂�𝑡(𝑖)
𝑁
𝑖=1 ). Algorithm 2 

presents the details of the control optimization in the MFRL-BI controller.  

Algorithm 2 has two procedures: first, control recipes are searched to minimize the cost function 

𝑀(∙) given the distribution of disturbances. Second, after the convergence of control recipes, we use 

another 𝑁 samples to reduce the variations of control resulting from stochastic gradient approximation 

for the unknown function  𝐻(∙) . Before examining the properties of searched control recipes in 

Algorithm 2, we introduce two assumptions about function 𝐻(∙) as in Mandt et al. (2017). 

Algorithm 2. Control optimization given disturbance distribution  

Function: Control_Search 

Input: parameter 𝝁𝑡, hyper-parameters 𝝐 ∈ ℝ𝑚×1, 𝛼, 𝑁, 𝜄 

Output: �̅�𝑡 

Initialize: control recipe 𝒖𝑡
[0]

 

Calculate �̂�𝑡(1) using Algorithm 1 based on function 𝑀(∙ |𝝁𝑡) 

For 𝑖 = 1 to 𝑁 − 1 do 

Execute control strategies �̂�𝑡(𝑖) + 𝜄𝝐 and �̂�𝑡(𝑖) − 𝜄𝝐  

        ∇𝒖𝑡𝑀(�̂�𝑡(𝑖)|𝝁𝑡) =
𝐻(�̂�𝑡(𝑖)+𝜄𝝐|𝝁𝑡)+𝐻(�̂�𝑡(𝑖)−𝜄𝝐|𝝁𝑡)

2𝜄
𝝐 + 2𝑹�̂�𝑡(𝑖)  

         �̂�𝑡(𝑖 + 1) = �̂�𝑡(𝑖) − 𝛼∇𝒖𝑡𝑀(�̂�𝑡(𝑖)|𝝁𝑡) 

End for 

�̅�𝑡 =
1

𝑁
∑ �̂�𝑡(𝑖)

𝑁

𝑖=1
 

Assumption 3.1: The stochastic gradient in Algorithm 2 can be expressed as the underlying truth 

gradient value plus a random gradient noise. The noise can be approximated as Gaussian, whose 

variance is independent of control recipes. i.e.,  ∇𝒖𝑡𝐻(𝒖𝑡|𝝁𝑡) ≈ ∇𝒖𝑡𝐻
∗(𝒖𝑡|𝝁𝑡) + 𝜺  and 

∇𝒖𝑡𝑀(𝒖𝑡|𝝁𝑡) ≈ ∇𝒖𝑡𝑀
∗(𝒖𝑡|𝝁𝑡) + 𝜺, where ∇𝒖𝑡𝐻

∗(𝒖𝑡|𝝁𝑡) and ∇𝒖𝑡𝑀
∗(𝒖𝑡|𝝁𝑡) denote the underlying 
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truth gradients of functions 𝐻(∙)  and 𝑀(∙) , respectively. It is obvious that ∇𝒖𝑡𝑀
∗(𝒖𝑡|𝝁𝑡) =

∇𝒖𝑡𝐻
∗(𝒖𝑡|𝝁𝑡) + 2𝑹𝒖𝑡 according to their definition. 𝜺 follows a multi-normal distribution with zero 

mean vector and covariance matrix 𝚺𝜺. 

Assumption 3.2: The finite-difference equation of control iterations can be approximated by the 

stochastic differential equation. Specifically, the difference equation between two successive control 

iterations searched by Algorithm 2 ( ∆𝒖𝑡 = −𝛼∇𝒖𝑡𝑀(𝒖𝑡|𝝁𝑡) ) can be approximated by d𝒖𝑡 =

−𝛼∇𝒖𝑡𝑀(𝒖𝑡|𝝁𝑡)d𝑡. Combining with Assumption 3.1, we have d𝒖𝑡 = −𝛼∇𝒖𝑡𝑀
∗(𝒖𝑡|𝝁𝑡)d𝑡 + 𝛼𝑩d𝑊𝑡, 

where 𝑩𝑻𝑩 = 𝚺𝜺 and 𝑊𝑡 is a standard Wiener process.  

Assumption 3.1 indicates that the gradient calculated by the SGD algorithm can approximate the 

truth gradient well with a normal error. This assumption is generally adopted in deep learning or 

large-scale model optimization (Stephan et al., 2017; Bottou et al., 2018; Wu et al., 2020), and we 

also numerically verify it in our CMP case study in Appendix B.1. Assumption 3.2 holds when the 

step size in the control iteration approaches 0, where discrete differences can be approximated by 

continuous differentials. According to Assumptions 3.1 and 3.2 on the unknown functions 𝐻(∙) , 

Theorem 1 shows the theoretical property of the searched control recipes in Algorithm 2. 

Theorem 1: The control recipes obtained using Algorithm 2 converge to the optimal recipes. 

The proof is provided in Appendix A.2. 

Theorem 1 guarantees the optimality of Algorithm 2 when process models are unknown for 

complex manufacturing processes in general. In practical applications, Algorithm 2 can be further 

improved to reduce the number of iterations. Two main aspects can be considered. First, finding a 

better initialization of control recipes (i.e., 𝒖𝑡
[0]

) based on historical runs. When 𝑡 > 1, the distribution 

of disturbances from historical runs can provide information for current disturbance prediction, and 

the initial control recipe is chosen as the optimized control at the last run (i.e., 𝒖𝑡−1
∗ ) especially when 

disturbances are highly correlated. Second, choosing a dynamic step size (𝛼) can also accelerate the 

convergent rate. For example, according to Castera et al. (2022), if the unknown function 𝑀(∙) is 

twice-differentiable, a dynamic step size can be chosen as: 

𝛼𝑘(𝒖𝑡) =

{
 

 
𝛼0 ∙

‖∆𝒖𝑡
[𝑘]
‖
2

〈∆𝒖𝑡
[𝑘]
, ∆𝒈𝑀

[𝑘]〉
if 〈∆𝑢𝑡, ∆𝑔𝑘〉 > 0

𝜈 otherwise,
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where ∆𝒖𝑡
[𝑘]
= 𝒖𝑡

[𝑘]
− 𝒖𝑡

[𝑘−1]
, ∆𝒈𝑀

[𝑘]
= ∇𝑀(𝒖𝑡

[𝑘]
) − ∇𝑀(𝒖𝑡

[𝑘−1]
) , and 𝛼0, 𝜈 > 0  are constant hyper-

parameters in the algorithm that represent the scaling factor and large step-size used in locally 

concave regions, respectively. We also present more discussions on the improvement of Algorithm 2 

in Appendix B.2.  

Specifically, if the function 𝐻(𝒖𝑡|𝝁𝑡) can also be approximated by its second-order Taylor 

expansion, which implies that the process model 𝑔(𝒖𝑡) can be approximated by linear, piecewise-

linear or local linear functions, more theoretical properties are obtained related to the closed-form 

solution (Proposition 1), the stochastic searching process (Theorem 2), and the stationary distribution 

(Theorem 3) of the control recipes.  

Proposition 1: If function 𝐻(𝒖𝑡|𝝁𝑡)  has a minimum at an unknown point 

�̃�𝑡 ,i.e., �̃�𝑡 ≔ 𝑎𝑟𝑔min𝒖𝑡 𝐻(𝒖𝑡|𝝁𝑡) , the optimal control recipe to minimize the cost 𝐶𝑡  is  𝒖𝑡
∗ =

(𝑮𝑻𝑸𝑮+ 𝑹)−𝟏𝑮𝑻𝑸𝑮�̃�𝑡, where 𝑮 =

[
 
 
 
𝜕𝑔1

𝜕�̃�1
⋯

𝜕𝑔1

𝜕�̃�𝑚

⋮ ⋱ ⋮
𝜕𝑔𝑛

𝜕�̃�1
⋯

𝜕𝑔𝑛

𝜕�̃�𝑚]
 
 
 

𝑛×𝑚

 is the gradient matrix of function 𝑔(∙). 

The proof is provided in Appendix A.3. 

Theorem 2: The control search process for 𝒖𝑡
∗ in Algorithm 2 can be approximated by an Ornstein-

Uhlenbeck process, i.e., d𝒖𝑡 = 𝜳(𝒖𝑡
∗ − 𝒖𝑡)d𝑡 + 𝝈d𝑊𝑡 , where 𝜳 = 2𝛼[𝑮𝑻𝑸𝑮+ 𝑹] , 𝝈 = 𝛼𝑩  and 

𝑩𝑻𝑩 = 𝚺𝜺.  

The proof is provided in Appendix A.4. 

Theorem 3: The stationary distribution of the control recipe searched in Algorithm 2 can be 

approximated by a multi-normal distribution, which is expressed as 

𝒖𝑡~𝑀𝑁(𝒖𝑡
∗,
1

2
𝝈𝑇𝜳−1𝝈),                                                  (11) 

where 𝜳 = 2𝛼[𝑮𝑻𝑸𝑮+ 𝑹] and 𝝈 = 𝛼𝑩. 

The proof is provided in Appendix A.5. 

In summary, Theorem 1 guarantees the control searched in Algorithm 2 can converge to the 

underlying optimal one in general. Specifically, if the unknown function 𝐻(∙) can be approximated by 

its second-order Taylor expansion, Theorems 2 and 3 propose the explicit formulations of the search 

process and stationary distribution of control recipes, respectively. Furthermore, from the distribution 

of control recipes in Equation (11), we find that smaller step sizes can reduce the variations of 𝒖𝑡. 
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B. Outer loop: Bayesian inference of disturbances 

In Section 2.1, the prior probability of disturbance 𝒅𝑡  is defined as 𝑝(𝒅𝑡|𝑫𝑡−1) depending on its 

trajectory 𝑫𝑡−1 = [𝒅1, 𝒅2, … , 𝒅𝑡−1]. After making control decisions and observing the system output 

𝒚𝑡, we can update the posterior probability of disturbance 𝒅𝑡 using Bayesian inference as follows: 

𝑝(𝒅𝑡|𝒚𝑡) =
𝑝(𝒅𝑡|𝑫𝑡−1)𝑝(𝒚𝑡|𝒅𝑡)

𝑝(𝒚𝑡)
∝ 𝑝(𝒅𝑡|𝑫𝑡−1)𝑝(𝒚𝑡|𝒅𝑡),                               (12) 

where the prior distribution 𝑝(𝒅𝑡|𝑫𝑡−1) is typically determined based on prior domain knowledge 

with a known formulation. In theory, any type of distribution can be used based on the amount of 

available information, while in practice, uniform and normal distributions are most commonly 

adopted (Lye et al, 2021). However, if the probability density function is too complicated to be 

analytically derived or directly simulated, Monte Carlo methods can be used in disturbance 

simulation. The conditional probability 𝑝(𝒚𝑡|𝒅𝑡) is obtained based on the system outputs after the 

convergence of control recipes in Algorithm 2. If the existing known distributions can be used to 

approximate the data, maximum likelihood estimation is used to estimate parameters in the 

distribution. Otherwise, if the probability density function is not easily parametrizable by an explicit 

formulation, other nonparametric methods such as kernel density or orthogonal series density 

estimation can be used to approximate 𝑝(𝒚𝑡|𝒅𝑡) (Agarwal et al., 2016). 

In semiconductor manufacturing processes, the disturbance 𝒅𝑡  is generally supposed to be 

normally distributed given its historical trajectory (Teng et al, 2007; Wang and Han, 2013; Tseng et 

al, 2019). Specifically, if 𝑝(𝒚𝑡|𝒅𝑡) can also be approximated by a normal distribution, we have 

Proposition 2 for the posterior distribution of the disturbance using Bayesian inference theory as 

follows.  

Proposition 2: If the prior distribution of the disturbance follows multi-normal distribution as 

𝒅𝑡|𝑫𝑡−1~𝑀𝑁(𝝁𝑡 , 𝚺𝑡) , the explicit expression of the posterior distribution disturbances after 

observing the system output 𝒚𝑡 is given by:  

𝑝(𝒅𝑡|𝒚𝑡) ∝ exp {−
1

2
((𝒚𝑡 −

1

𝑁
∑ �̂�𝑡(�̂�𝑡(𝑖))
𝑁
𝑖=1 )

𝑇 1

𝑁
𝚺𝑦
−1 (𝒚𝑡 −

1

𝑁
∑ �̂�𝑡(�̂�𝑡(𝑖))
𝑁
𝑖=1 ) +

(𝒅𝑡 − 𝝁𝑡)
𝑇𝚺𝑡

−1(𝒅𝑡 − 𝝁𝑡))}, 

where 𝚺𝑦 is the sample variance matrix of system output after the convergence of control recipes. 
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Notably, other distributions of disturbances can also be updated by Bayesian inference methods 

using Monte Carlo methods. By analyzing the posterior probability of disturbances, we obtain a more 

reliable prior distribution to reduce variations of disturbances in the next run. Algorithm 3 presents the 

Bayesian update procedure of disturbance as follows. 

Algorithm 3. Update distributions of disturbances 

Initialize 𝑡, 𝒖1
[0]

, the prior distribution of disturbance 𝑝(∙), initial disturbance 𝒅0. 

For 𝑡 = 1: 𝑇 

𝝁𝑡 = ∫ 𝒅𝑡 ∙ 𝑝(𝒅𝑡|𝑫𝑡−1)d𝒅𝑡
+∞

−∞
  

�̅�𝑡 ← Control_Search(𝝁𝑡)                                                                   /*Algorithm 2*/ 

Take control �̅�𝑡, and record the system output 𝒚𝑡. 

Update the disturbance according to: 

𝑝(𝒅𝑡|𝒚𝑡) =
𝑝(𝒅𝑡|𝑫𝑡−1)𝑝(𝒚𝑡|𝒅𝑡)

𝑝(𝒚𝑡)
∝ 𝑝(𝒅𝑡|𝑫𝑡−1)𝑝(𝒚𝑡|𝒅𝑡) 

Update 𝑝(𝒅𝑡+1|𝑫𝑡). 

End for 

 

3.2 Real-time control in Phase II 

In real applications of semiconductor manufacturing processes, after control optimization by VM 

systems in Phase I, real-time control recipes need to be directly determined in practical manufacturing 

processes. Therefore, in this section, we propose a real-time control algorithm used in Phase II. 

Suppose that manufacturing environments and process models keep stable in Phases I and II, and 

it is reasonable that the control recipes searched in Phase I can be applied in Phase II. We denote the 

offline experimental database collected in Phase I as {𝐷_𝑜𝑓𝑓}. Each sample in {𝐷_𝑜𝑓𝑓} consists of 

the control recipes, system output, and the distribution of disturbances, i.e., [𝒖𝑡 , 𝒚𝑡, 𝒅𝑡] ∈ {𝐷_𝑜𝑓𝑓}. 

Due to the optimality of searched control recipes in the offline database {𝐷_𝑜𝑓𝑓}, it can be used 

as a “memory buffer” for online real-time control. Since the key hidden variables in manufacturing 

processes are disturbances, real-time control decisions can be implemented by matching the closest 

offline disturbance in { 𝐷_𝑜𝑓𝑓 } with the real-time inferred disturbance and choosing the 

corresponding control recipe as the real-time recipe. Specifically, we can divide the real-time control 
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process into three steps: (a) update the real-time distribution of the online disturbance. (b) Match 

closest offline disturbance 𝒅𝑠 by: 

𝒅𝑠 ≔ 𝑎𝑟𝑔min𝒅∈{𝐷_𝑜𝑓𝑓}𝔻𝐾𝐿(𝑝(𝒅)‖𝑞(𝒅𝑡
𝑜𝑛|𝑫𝑡−1

𝑜𝑛 )),                                   (13) 

where 𝒅𝑡
𝑜𝑛  is online real-time disturbance and 𝔻𝐾𝐿(∙ || ∙)  is Kullback-Leibler divergence. To 

distinguish the online disturbance, we use 𝑞(∙) to denote its prior distribution. (c) Choose the control 

recipe 𝒖𝑠  corresponding to 𝒅𝑠  as the real-time control strategy. Figure 4 illustrates this real-time 

decision process in detail. Notably, as the size of database {𝐷_𝑜𝑓𝑓} increases, the divergence between 

the online and offline disturbance becomes smaller, and the control performs better. Further numerical 

discussions on the size of {𝐷_𝑜𝑓𝑓} are provided in Section 4.2 and a detailed algorithm for the real-

time control scheme is presented in Algorithm 4. 

 

Algorithm 4. Real-time control in Phase II 

Input: Historical offline database {𝐷_𝑜𝑓𝑓}, initial system output 𝑦0, prior distribution of 

online disturbance 𝑞(∙) 

For 𝑡 = 1: 𝑇 

𝒅𝑠 ≔ 𝑎𝑟𝑔min𝒅∈{𝐷_𝑜𝑓𝑓}}𝔻𝐾𝐿[𝑝(𝒅)||𝑞(𝒅𝑡
𝑜𝑛|𝑫𝑡−1

𝑜𝑛 )]  

Take the control recipe 𝒖𝑠 corresponding to 𝒅𝑠, and collect the output 𝒚𝑡.  

Update the disturbance according to 

𝑞(𝒅𝑡
𝑜𝑛|𝒚𝑡) =

𝑞(𝒅𝑡
𝑜𝑛|𝑫𝑡−1

𝑜𝑛 )𝑝(𝒚𝑡|𝒅𝑡
𝑜𝑛)

𝑝(𝒚𝑡)
∝ 𝑞(𝒅𝑡

𝑜𝑛|𝑫𝑡−1
𝑜𝑛 )𝑝(𝒚𝑡|𝒅𝑡

𝑜𝑛). 

Calculate 𝑞(𝒅𝑡+1
𝑜𝑛 |𝑫𝑡

𝑜𝑛). 

End for 

 

4. Numerical study and comparison 

To show the performance of the proposed MFRL-BI control scheme, we propose numerical studies 

based on a nonlinear chemical mechanical planarization (CMP) process in semiconductor 

manufacturing. Section 4.1 numerically verifies the improvement by using Bayesian inference in the 

MFRL-BI controller compared with the basic MFRL controller. More sensitivity analysis of the 

control performance for the MFRL-BI controller is conducted in Section 4.2. In Section 4.3, we focus 

on performance comparisons between the MFRL-BI controller and other control benchmarks. 
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4.1 Improvement of MFRL-BI controller 

Due to the privacy of real CMP data, Khuri (1996) proposed an experiment tool and designed a 

nonlinear process model to describe the CMP process, which is widely used in CMP data simulation 

(Del Castillo and Yeh, 1998). In this section, we also follow their simulation for data generation. The 

control recipe 𝒖𝑡  consists of three dimensions (i.e., 𝒖𝑡 = [𝑢𝑡
(1)
, 𝑢𝑡
(2)
, 𝑢𝑡
(3)
]
𝑇

), which represent the 

backpressure downforce, platen speed, and slurry concentration, respectively. The two dimensions of 

the system outputs (𝒚𝑡 = [𝑦𝑡
(1)
, 𝑦𝑡
(2)
]
𝑇

) to reflect the manufacturing quality are removal rate and 

within-wafer standard deviation with target levels as 𝒚∗ = [2200,400]𝑇. Without loss of generality, 

the initial system output is set as the target levels.  

Specifically, following the nonlinear model proposed by Del Castillo and Yeh (1998), we use the 

following formulation to simulate data in the CMP process at each run 𝑡 

𝒚𝑡 = 𝑪𝑿𝑡 + 𝒅𝒕,                                                          (14) 

where 𝑪 is the parameter matrix defined as 

𝑪 = [
2756.5 547.6 616.3 −126.7 −1109.5 −286.1 989.1 −52.9 −156.9 −550.3 −10
746.3 62.3 128.6 −152.1 −289.7 −32.1 237.7 −28.9 −122.1 −140.6 1.5

], 

𝑿𝑡 consists of constant, linear, and quadratic terms of control recipes at run 𝑡 

𝑿𝑡 = [1, 𝑢𝑡
(1)
, 𝑢𝑡

(2)
, 𝑢𝑡

(3)
, [𝑢𝑡

(1)
]
2

, [𝑢𝑡
(2)
]
2

, [𝑢𝑡
(3)
]
2

, 𝑢𝑡
(1)
𝑢𝑡
(2)
, 𝑢𝑡

(1)
𝑢𝑡
(3)
, 𝑢𝑡

(2)
𝑢𝑡
(3)
, 𝑡]

𝑇

. 

𝒅𝑡 = [𝑑𝑡
(1), 𝑑𝑡

(2)
]
𝑇

 are two dimensions of disturbances that follow two independent IMA(1,1) 

processes, and the total number of runs 𝑇 is 50. Based on this setting, we analyze the performance of 

the proposed MFRL-BI controller and compare it with the basic MFRL controller. 

We first consider a special case where there is no extra cost associated with control actions, i.e., 

𝑹 = 𝟎, the control cost is 𝐶𝑡(𝒖𝑡) = (𝒚𝑡 − 𝒚
∗)𝑇𝑸(𝒚𝑡 − 𝒚

∗). Under this setting, the basic MFRL and 

MFRL-BI controllers are applied for real-time control, and the corresponding system outputs are used 

to evaluate the performances of these two controllers. To make a fair comparison, we search control 

recipes for 2000 iterations at each run in both Algorithms 1 and 2 in the basic MFRL and MFRL-BI 

controllers, respectively. After collecting data from 1000 production cycles in {𝐷_𝑜𝑓𝑓}, we make the 

online real-time control by matching the disturbances in {𝐷_𝑜𝑓𝑓} with the real-time one using 

Algorithm 4. Figure 5 illustrates the boxplot of system outputs in Phase II with 100 replications. The 

two panels in Figures 5(a) and 5(b) correspond to the two dimensions of 𝒚𝑡 . As shown, system 
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outputs based on the basic MFRL controller have relatively large variations and significant deviations 

when dealing with system drifts, while the proposed MFRL-BI controller can keep the system outputs 

well close to their desired targets, even though the process model is unknown.  

Generally, executing control has extra control cost during the manufacturing process, the total 

cost is: 𝐶𝑡(𝒖𝑡) = (𝒚𝑡 − 𝒚
∗)𝑇𝑸(𝒚𝑡 − 𝒚

∗) + 𝒖𝑡
𝑇𝑹𝒖𝑡, where 𝑹 ≠ 𝟎. For example, we set 𝑸 = [

1 0
0 1

] 

and 𝑹 = [
10

10
5

]. The mean control cost (MCC) at each run (defined as ∑ 𝐶𝑡(𝒚𝑡, 𝒖𝑡)
𝑇
𝑡=1 /𝑇) is 

used as performance criteria. Table 1 summarizes the mean and standard deviation of MCC in basic 

MFRL, MFRL-BI controllers, and without control under 100 replications.  

As shown in Table 1, in comparison to without control, the basic MFRL controller presented in 

Algorithm 1 substantially reduces the control cost. Nonetheless, the performance of the basic MFRL 

does not fulfill the accuracy specifications for semiconductor manufacturing. Upon updating the 

distribution of disturbances by Algorithms 2 to 4, it is observed that the mean of control cost reduces 

by 97% in comparison to the basic MFRL controller. Table 1 demonstrates the efficient performance 

of the MFRL-BI controller in further reducing the control cost during the manufacturing process. 

4.2 Sensitivity analysis of MFRL-BI controller 

To further analyze the sensitivity of the performance of the MFRL-BI controller and verify its 

stability, in this section, we mainly focus on two factors that can affect the control performance, i.e., 

parameters in the process model and the size of offline data required for online real-time control. 

As described in Equation (14), the coefficient matrix 𝑪 is used to clarify the impact of linear and 

quadratic forms. We divided the coefficient matrix 𝑪 into three segments corresponding to linear 

terms, quadratic terms and others, which are defined as 𝑪1, 𝑪2 and 𝑪0 respectively. Therefore, we 

have:  

𝑪1 = [
547.6 616.2 −126.7
62.3 128.6 −152.1

], 

𝑪2 = [
−1109.5 −286.1 989.1 −52.9 −156.9 −550.3
−289.7 −32.1 237.7 −28.9 −122.1 −140.6

], 

𝑪0 = [
2756.5 −10
746.3 1.5

]. 

With this segmentation, our primary focus lies in examining the performance sensitivity of the 

proposed MFRL-BI model under various values of 𝑪1 and 𝑪2. An additional scale coefficient (i.e., 
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𝜌 = 0.5, 1, and 1.5) is applied to 𝑪1 and 𝑪2, respectively to modify their values. We take the case 

w h e r e  

𝑹 = [
10

10
5

] as an example, to summarize the corresponding performance of the MFRL-BI 

controller in Table 2. 

Table 2 presents the mean and standard deviations of the real-time control costs in 100 

replications. It is evident that the MFRL-BI controller demonstrates inevitable variability with 

parameter modifications. Nevertheless, it consistently achieves superior performance than the basic 

MFRL controller with substantially much lower control cost, which is acceptable in practical 

applications. 

Another important factor influencing the MFRL-BI method is the size of offline database, which 

is defined as {𝐷_𝑜𝑓𝑓} and used to collect the experimental data related to control recipes, system 

output, and disturbances. {𝐷_𝑜𝑓𝑓}  serves as a crucial foundation for the data-driven control 

optimization in phase II. Therefore, the data size of {𝐷_𝑜𝑓𝑓} has significant impacts on the accuracy 

of real-time control. To further validate the effects of {𝐷_𝑜𝑓𝑓}, we conduct a sensitivity analysis on 

the size of {𝐷_𝑜𝑓𝑓}. The accuracy is evaluated by the results of real-time control in Phase II, which 

consists of the mean and standard error of MCC. Additionally, the efficiency of data collection is 

evaluated by computation time in Phase I. Table 3 provides more details on the effects of sample size 

of {𝐷_𝑜𝑓𝑓}. 

As shown in Table 3, the accuracy of online real-time control converges when the size of 

{𝐷_𝑜𝑓𝑓} exceeds 500. While the computation time gets larger with the increase of data size. We can 

conclude from Table 3 that although performance convergence is not attained until the size of offline 

database {𝐷_𝑜𝑓𝑓} reaches 500, satisfactory results are already observed when the size equals 100. 

4.3 Comparison with other controllers 

As the MFRL-BI addresses the control optimization when process models are unknown, we primarily 

consider a nonparametric-based benchmark, which can approximate the process model and optimize 

the control recipes. In this CMP process, due to the multiple dimensions of control recipes, we first 

apply the multivariate adaptive regression spline (MARS) method for the process model 

Acc
ep

te
d 

M
an

us
cr

ipt



21 

 

approximation and control optimization. Secondly, to demonstrate the superiority of the proposed 

MFRL-BI controller, we also introduce other benchmarks, i.e., process model-based and theoretical 

optimal controllers for further performance comparison. 

A. MARS-based controller 

MARS is one of the nonparametric regression methods proposed by Friedman (1991) for multivariate 

independent variables, which is used to approximate the unknown CMP process model with multiple 

control variables. Similar to the real-time control in MFRL-BI, we use 1000  production cycles 

(𝑁 = 1000 ) of offline data with 50 runs ( 𝑇 = 50 ) in each cycle to train the MARS-based 

approximate process model.  

Specifically, MARS uses basis functions based on addition and multiplication operations of 

piecewise linear hinge functions formulated as (𝑥 − 𝑡)+ ≔ max (𝑥 − 𝑡, 0) and (𝑥 − 𝑡)− ≔ max (𝑡 −

𝑥, 0)  to approximate the unknown function. Therefore, the approximated process model can be 

formulated as: 

𝑓(𝒙) =∑𝑎𝑖𝐵𝑖(𝒙)

𝑝

𝑖=1

, 

where 𝑎𝑖 is constant coefficient, 𝐵𝑖(𝒙) is a basis function that can be formulated as a constant, a hinge 

function or a product of two or more hinge functions, and 𝑝 is the total number of basis searched by 

MARS. To emphasize the dynamics of the process model, we specify the independent multivariate 𝒙 

as 𝒙𝑛,𝑡 = [𝒖𝑛,𝑡 , 𝑡], where 𝑡 is the index of runs, 𝒖𝑛,𝑡 ∈ ℝ
3 is the control recipe and 𝑛 is the index of 

production cycles. 

MARS aims to search basis functions that give the maximum reduction in sum-of-squares 

residual errors calculated by ∑ ∑ (𝒚𝑛,𝑡 − 𝑓(𝒙𝑛,𝑡))
2

𝑇
𝑡=1

𝑁
𝑛=1 . The total number of basis functions are 

determined by general cross validation (GCV) to avoid overfitting, which is calculated by 

∑ ∑ (𝒚𝑛,𝑡−�̂�(𝒙𝑛,𝑡))
2

𝑇
𝑡=1

𝑁
𝑛=1

(1−
Κ(𝜆)

𝑁∗𝑇
)
2 , and Κ(𝜆) is the effective number of parameters. As a result, training by offline 

data, we obtain the basis functions in Table 4, where 𝑢(1), 𝑢(2) and 𝑢(3) denote the three dimensions 

of 𝒖𝑛,𝑡, respectively.  

 

Based on basis functions in Table 4, the corresponding approximated process model is 

formulated as:  
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𝑦(1) = 2573.8 − 1217.8 ∗ 𝐵𝐹1_1 − 57.908 ∗ 𝐵𝐹1_2 + 2643.4 ∗ 𝐵𝐹1_3 − 976.59 ∗ 𝐵𝐹1_4 − 639.01

∗ 𝐵𝐹1_5 − 274.38 ∗ 𝐵𝐹1_6 + 628.37 ∗ 𝐵𝐹1_7 + 907.16 ∗ 𝐵𝐹1_8 − 9.9129 ∗ 𝐵𝐹1_9 

+ 9.9731 ∗ 𝐵𝐹1_10 − 467.05 ∗ 𝐵𝐹1_11 + 1670.4 ∗ 𝐵𝐹1_12 − 1445.5 ∗ 𝐵𝐹1_13 

− 101.07 ∗ 𝐵𝐹1_14 + 180.35 ∗ 𝐵𝐹1_15 − 1117.5 ∗ 𝐵𝐹1_16 + 648.27 ∗ 𝐵𝐹1_17, 

𝑦(2) = 533.62 − 1154.8 ∗ 𝐵𝐹2_1 + 823.85 ∗ 𝐵𝐹2_2 + 418.12 ∗ 𝐵𝐹2_3 + 66.818 ∗ 𝐵𝐹2_4 − 147.51

∗ 𝐵𝐹2_5 + 136.74 ∗ 𝐵𝐹2_6 − 127.45 ∗ 𝐵𝐹2_7 + 37.34 ∗ 𝐵𝐹2_8 − 134.2 ∗ 𝐵𝐹2_9 + 77.12

∗ 𝐵𝐹2_10 + 1.4915 ∗ 𝐵𝐹2_11 − 1.5282 ∗ 𝐵𝐹2_12 + 137.54 ∗ 𝐵𝐹2_13 − 205.18

∗ 𝐵𝐹2_14 + 115.55 ∗ 𝐵𝐹2_15 − 200.39 ∗ 𝐵𝐹2_16 − 312.22 ∗ 𝐵𝐹2_17 − 240.83

∗ 𝐵𝐹2_18. 

(15) 

Then the online control recipe is optimized based on Equation (15) to minimize the mean control cost 

(MCC): ∑ 𝐶𝑡(𝒚𝑡, 𝒖𝑡)
𝑇
𝑡=1 /𝑇. Following the aforementioned setting, we have the system outputs in 

Figure 6. It is apparent that the MARS-based controller may experience challenges with local 

performance due to its piecewise basis. Therefore, the nonparametric method may also have 

difficulties in estimating the approximate model, thereby it may not be suitable for dealing with 

unstable and unobservable disturbances. 

To further improve the performance of MARS controllers, we add an EWMA scheme to predict 

disturbances. The control recipe is calculated by:  

{
�̂�𝑡+1 = 𝜔�̂�𝑡 + (1 − 𝜔)(𝒚𝑡 − 𝒚

∗)

𝒖𝑡+1 = min
𝒖
(𝑓(𝒖) + �̂�𝑡+1 − 𝒚

∗)
2
.
 

The online control process is replicated 100 times, and the MCC of the MARS, MARS-EWMA, and 

the proposed MFRL-BI controllers are compared in Table 5. As shown, although the MARS-EWMA 

improves the performances of the MARS controller significantly, the MCC is still much larger than 

MFRL-BI.  

B. Process model-based controller 

Due to the effect of hidden and unstable disturbances, MARS-based nonparametric method cannot 

approximate the process model accurately, thereby leading limited control performance. To further 

clarify the effects of the model accuracy and disturbance variation, we propose a nonlinear process 

model-based controller as another benchmark. Specifically, the process model is supposed to be 
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known in this setting. We generate the same offline data with MARS-based controllers, which are 

used to estimate the parameters (𝜣) in the process model, and the control recipes are optimized by: 

𝒖𝑡 = min
𝒖
(𝑓(𝒖|�̂�) − 𝒚∗)

2
. 

Actually, in Section 4.1, the nonlinear CMP process is simulated by a multivariate quadratic 

model with linear drift and IMA disturbances, which has an underlying optimal control strategy. 

According to Sachs et al. (1995), if the drift can be approximated by a known model, the IMA 

disturbances can be effectively compensated for by an optimal EWMA controller with the 

corresponding coefficient. To demonstrate the performance of different control methods, we also 

propose the theoretical optimal controller for comparison. Table 5 presents the results of different 

control methods. 

From Table 5, we find that the performance of MARS-related (i.e., MARS and MARS-EWMA) 

controllers is limited due to the accuracy of the approximate process model trained by offline data. 

Furthermore, even if the formulation of the process model is known, it remains challenging to predict 

the unobservable disturbances. Therefore, by integrating the MFRL with Bayesian inference, the 

advantages of the MFRL-BI controller are sufficiently verified, whose performance approaches to the 

theoretical optimal controller. 

 

5. Conclusion 

This work designs a new process control scheme by model-free reinforcement learning to reduce the 

system variations in semiconductor manufacturing when the process model is unknown and complex. 

Due to unstable and unobservable disturbances, the basic MFRL controller usually suffers from large 

variations. To overcome this challenge, we update the distribution of disturbances during 

manufacturing processes using Bayesian inference. The algorithms of control recipe optimization and 

real-time control implementation are presented, and corresponding theoretical properties are also 

guaranteed. Through performance comparisons of the proposed MFRL-BI with basic MFRL, MARS-

based and process model-based controllers, we observe that the MFRL-BI controller exhibits superior 

performance, particularly when underlying process models are unknown, nonlinear and complex. 
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Along with our research direction, several extensions can be further investigated. First, how to 

develop an RL-based process control model when the effects of control recipes and disturbances are 

correlated and not additive. Second, the constraints of control recipes can also be considered in 

process control optimization in future studies. 
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Figure 1. An example of basic MFRL controller in a CMP process 

 

 

Figure 2. Difference between existing R2R and MFRL-BI control schemes 
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Figure 3. The methodology of the MFRL-BI controller 

 

 
Figure 4. Illustration of the real-time control in Phase II 
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Figure 5(a). Real-time control results based on the basic MFRL controller 

 
Figure 5(b). Real-time control results based on the MFRL-BI controller 
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Figure 6. The performance of the MARS-based controller 
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Table 1. Comparisons of basic MFRL and MFRL-BI controllers 

Different cases MCC Without control 
Basic MFRL 

controller in Algo.1 

MFRL-BI controller 

in Algo.2-4 

𝑹 = 𝟎 
Mean 2.5989 × 105 3.7054 × 103 116.4702 

Std. 6.9650 × 103 382.4001 21.3797 

𝑹 ≠ 𝟎 
Mean 2.5989 × 105 5.1766 × 103 135.8367 

Std. 6.9650 × 103 386.9175 22.2550 

 

Table 2 Sensitivity analysis on the MFRL-BI controller 

Different coefficient parts 𝝆 Mean of MCC Std. of MCC 

𝑪𝟏 

50% 251.2846 26.6052 

100% 135.8367 22.2550 

150% 128.8154 20.2492 

𝑪𝟐 

50% 190.5863 23.9526 

100% 135.8367 22.2550 

150% 133.1384 20.9100 

 

Table 3. Effects on offline data size 

Data size of {𝑫_𝒐𝒇𝒇} 
Accuracy Efficiency 

(computation time) Mean of MCC Std. of MCC 

100 142.0545 23.9734 148.72s 

200 139.4296 23.7201 376.34s 

500 135.2964 21.1445 908.17s 

1000 135.5655 21.4516 1696.14s 

2000 136.4871 19.4987 3579.19s 

3000 134.6417 20.4617 5518.34s 
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Table 4. Basis functions determined by MARS 

𝒚(𝟏) 

BF1_1 BF1_2 BF1_3 BF1_4 BF1_5 

(𝑢(1) − 1.0246)+ (1.0246 − 𝑢(1))+ (𝑢(3) − 0.9971)+ (0.9971 − 𝑢(3))+ (𝑢(2) − 1.0124)+ 

BF1_6 BF1_7 BF1_8 BF1_9 BF1_10 

(1.0124 − 𝑢(2))+ BF1_6× 

(𝑢(3) − 0.2748)+ 

BF1_6× 

(0.2748 − 𝑢(3))+ 

(𝑡 − 49)+ (49 − 𝑡)+ 

BF1_11 BF1_12 BF1_13 BF1_14 BF1_15 

BF1_5× 

(𝑢(3) − 0.3324)+ 

BF1_5× 

(0.3324 − 𝑢(3))+ 

(𝑢(1) − 0.4223)+ BF1_13× 

(𝑢(3) − 1.6594)+ 

BF1_13× 

(1.6594 − 𝑢(3))+ 

BF1_16 BF1_17    

(𝑢(1) − 1.5321)+ (1.5528 − 𝑢(3))+    

𝒚(𝟐) 

BF2_1 BF2_2 BF2_3 BF2_4 BF2_5 

(𝑢(1) − 1.0267)+ (1.0267 − 𝑢(1))+ (𝑢(3) − 0.9971)+ (0.9971 − 𝑢(3))+ BF2_3× 

(𝑢(2) − 1.1789)+ 

BF2_6 BF2_7 BF2_8 BF2_9 BF2_10 

BF2_3× 

(1.1789 − 𝑢(2))+ 

BF2_3× 

(𝑢(1) − 0.3227)+ 

BF2_3× 

(0.3227 − 𝑢(1))+ 

(𝑢(2) − 1.0496)+ (1.0496 − 𝑢(2))+ 

BF2_11 BF2_12 BF2_13 BF2_14 BF2_15 

(𝑡 − 22)+ (22 − 𝑡)+ BF2_4× 

(𝑢(2) − 0.2556)+ 

BF2_4× 

(0.2556 − 𝑢(2))+ 

BF2_4× 

(𝑢(1) − 0.3524)+ 

BF2_16 BF2_17 BF2_18   

BF2_4× 

(0.3524 − 𝑢(1))+ 

(1.5760 − 𝑢(1))+ (0.5331 − 𝑢(1))+   

 

Table 5. MCC of different controllers 

Controllers Mean of MCC Std. of MCC 

MFRL-BI controller 116.4702 21.3797 

MARS controller  1.6108 × 105 3.2499 × 103 

MARS-EWMA controller 6.4886 × 104 1.9897 × 103 

Process model-based controller 246.6173 221.1187 

Theoretical optimal controller 93.0040 58.6906 
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