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Advanced three-dimensional (3D) scanning technology has been widely used in many
industries to collect the massive point cloud data of artifacts for part dimension measure-
ment and shape analysis. Though point cloud data has product surface quality information,
it is challenging to conduct effective surface anomaly classification due to the complex data
representation, high-dimensionality, and inconsistent size of the 3D point cloud data within
each sample. To deal with these challenges, this paper proposes a tensor voting-based
approach for anomaly classification of artifact surfaces. A case study based on 3D
scanned data obtained from a manufacturing plant shows the effectiveness of the proposed
method. [DOI: 10.1115/1.4052660]
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1 Introduction
The forming process, such as stamping, forging, or rolling, is a

complex manufacturing process where anomalies may occur on sur-
faces of manufactured artifacts. Here, we define the anomaly as the
quality anomaly on manufactured artifacts that is anything unaccep-
table by quality standards or by industrial practices. Many types of
anomalies can be generated in a forming process at different stages
[1]. Different anomalies may have different potential root causes,
and classification of surface anomalies helps diagnosis of root
causes. Thus, surface anomaly classification is very critical in a
forming process for better decision-making to address anomaly or
defective products. In addition, modeling and analysis of each
class of anomalies can help understand the defect formation and
develop actions to reduce or eliminate the anomalies. Therefore,
the ability to successfully perform surface anomaly classification
for fault diagnosis is one of the key tasks to improve the manufac-
turing process.
The rapid development of three-dimensional (3D) measurement

technologies has created unprecedented opportunities for surface
anomaly classification in manufacturing processes. Those advanced
3D scan or metrology systems generate massive data from product
surface measurements and are typically referred to as 3D point
cloud data. Contrasted to image data, 3D point cloud data, with
the extra dimension of information, is able to provide the entire
external surface geometry of the manufactured artifacts, making it
a promising tool for surface anomaly classification. Figure 1
shows three scanning examples of surface anomalies on steel prod-
ucts, including a depression, a pinhole, and a debris patch. As
shown in Fig. 1, 3D point cloud data exhibit different patterns for
different surface anomalies. For example, compared with pinhole
and debris patch, there are a relatively larger number of points

that deviate from the original surface with a significant coordinate
shift in depression, which are within the dash line in Fig. 1(a).
Therefore, 3D point cloud data have the potential for effectively
identifying the anomalies on surfaces of manufactured artifacts.
Depending on the 3D metrology system, 3D point cloud data can

be further classified into two categories: structured point cloud data
and unstructured point cloud data. Structured point cloud data can
be collected from coordinate measuring machines (CMMs) [2,3]
or structure highlight scanners [4], where points are measured on
a pre-specified grid. Thus, structured point cloud data can be
treated as matrix data or tensor data that can be further modeled
by the tensor decomposition or tensor regression methods [5,6].
Unstructured point cloud data with coordinates at random measure-
ment locations can be collected from laser scanners, which have
become more and more popular in many 3D scanning systems.
Compared with CMMs with partial measurements, laser scanners
can capture the entire geometry of an artifact. Additionally, the
manufacturing industries begin to use laser scanners for surface
inspection, where millions of data points on random coordinates
are collected to represent the entire surface of the artifacts [7]. As
a result, the data representation of unstructured 3D point cloud
data is complicated, and the dimensionality of 3D point cloud
data is high. The goal of this paper is to propose an effective
method for anomaly classification on surfaces of manufactured arti-
facts by using unstructured point cloud data.
Although there is extensive research on surface anomaly detec-

tion or classification by using images, limited research exists on
anomaly classification using point cloud data in the literature. Fur-
thermore, there are significant differences in terms of data character-
istics between point cloud data and image data. Image data are well
structured and can be easily represented. However, unstructured
point cloud data have the following four key characteristics: (1)
Complicated representation: compared with the structured point
cloud (with μνω coordinates) that the measurement grid is pre-
defined (usually specify μν), the points in the unstructured point
cloud are not measured at a pre-defined grid, which is often
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challenging to represent effectively in a data matrix that is com-
monly used for other machine learning applications. Here, one
sample is one point cloud. (2) High-dimensionality: one typical
point cloud sample often has millions of data points, posing a sig-
nificant challenge for statistical modeling. We call the number of
points within one point cloud as point size. (3) Unequal point
sizes within different point cloud samples: the number of measure-
ment points is often different from one point cloud sample to
another. For example, in our case study, this number ranges from
3564 to 96,266, which is challenging to extract the same dimension
of features. (4) Localized sparse anomaly: the surface anomaly
points usually form a localized, contiguous group in the entire 3D
point cloud data. Compared with the normal points, most
anomaly cases are with a small number of anomaly points, which
is sparse. Thus, the development of an approach that can distinguish
different anomaly samples is challenging. In short, those four data
characteristics make the development of the surface anomaly clas-
sification method by using unstructured 3D point cloud data
extremely challenging.
To address the aforementioned challenges of anomaly classifica-

tion based on the unstructured point cloud, this paper proposes a
tensor voting-based approach to analyze the 3D point cloud data
directly for surface anomaly classification. The framework of the
proposed methodology is shown in Fig. 2. Tensor voting is able
to extract useful local geometry information by aggregation of the
spatial information from the neighborhood, which helps localize
the surface anomaly points. Thus, tensor voting has been used to
characterize the local geometry of artifact surfaces. Based on the
tensor voting method, a surface region can be segmented into differ-
ent sub-regions and several points that represent the local anomaly
can be selected for feature extraction. To deal with the challenges of
3D data representation and unequal point sizes among point cloud

data samples, we propose to use descriptive statistics to extract
useful features from the selected points by considering the
domain knowledge from the forming process. Finally, the multi-
class sparse support vector machine (SVM) classifier is applied
for anomaly classifications on the artifact surfaces.
The key contributions of the paper are as follows: (1) propose a

systematic framework to deal with the unstructured 3D point cloud
data directly; (2) develop a point selection method to localize the
anomaly; and (3) propose a descriptive feature extraction method
to deal with the unequal point size within each point cloud
sample for further classification.
The remainder of this paper is organized as follows. We review

the related work in Sec. 2. Section 3 provides a basic introduction
to tensor voting. Then, Sec. 4 presents the proposed tensor voting-
based approach for anomaly classification of the artifact surfaces. A
real case study using data from a steel plant is provided to exemplify
the performance of our method in Sec. 5. Finally, Sec. 6 concludes
this paper.

2 Literature Review
This section reviews the current literature on monitoring and clas-

sification using 3D point cloud data. Due to the different data char-
acteristics between structured and unstructured 3D point cloud data,
the methodologies developed for process modeling, monitoring,
and classification by using these two types of data differ in the lit-
erature. We review the related literature based on this perspective
and classify the literature into the following two categories: struc-
tured and unstructured 3D point cloud data, with an emphasis on
the literature review by using unstructured 3D point cloud data.
The first category mainly deals with structured point cloud data.

For example, a spatial autoregressive regression model-based pro-
cedure, which aims to represent both the large-scale and small-scale
spatial correlation characteristics of flat cylindrical surfaces, is pro-
posed for cylindrical surface monitoring [8]. To consider the 3D
curved surface monitoring, Huang et al. [9] proposed a curved
surface monitoring procedure that includes region division,
feature evaluation, and quality parameter calculation and monitor-
ing. However, this method does not consider the nonstationary rela-
tionship between surface covariate and surface height. Then, a
transfer learning framework is developed to fuse multi-resolution
data for surface variation modeling with consideration of the non-
stationary relationship [10]. However, in their work, most surface
data are low resolution. To analyze the high-resolution 3D point
cloud data, a regularized tensor regression method is proposed to
quantify the relationship between structured point clouds and
scalar predictors with consideration of dimension reduction in
Ref. [5]. However, the aforementioned methods cannot be applied
for the unstructured point cloud data due to their random measure-
ment grids of point coordinates.
The second category mainly deals with unstructured point cloud

data. For example, Wells et al. [7] proposed to use the linear profile
monitoring technique to deal with the unstructured point cloud data

Fig. 1 Illustrations of three types of anomalies on steel surfaces: (a) depression, (b) pinhole, and (c) debris patch

Fig. 2 The framework of the tensor voting-based surface
anomaly classification approach
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by transforming the point cloud data to the distribution of deviations
from the nominal surface. Based on this work, Wells et al. [11]
further proposed an adaptive generalized likelihood ratio (AGLR)
technique to automate the surface anomaly inspection by transform-
ing the 3D point cloud data to a 2D matrix. Dastoorian et al. [4] then
extended this work by relaxing the assumption of identically distrib-
uted deviations and tested the AGLR method by a real case study.
All these three methods aimed to monitor the process by using an
unstructured point cloud via transforming the 3D point cloud to a
profile or 2D image data, thereby resulting in the loss of the advan-
tageous information of the extra dimension of the 3D point cloud
data. Recently, Zhao and Del Castillo [12] also proposed an intrin-
sic geometrical approach for process monitoring by using the
surface and manifold data. They need in-control dataset for
setting up the in-control limits and cannot identify the surface
anomaly type.
In addition to process monitoring, there are also research works

focusing on classification by using unstructured point cloud data
in manufacturing applications. For example, targeting on the dimen-
sional variation classification of additive manufactured parts, Samie
Tootooni et al. [13] developed a spectral-graph based approach by
using the deviations of 3D cloud data from computer-aided design
models of the corresponding part. Yacob et al. [14] proposed the use
of the histogram of deviations to represent the 3D point cloud data
of skin model shapes from the nominal model and classified the
random and systematic deviations using the histogram features
for anomaly detection of manufactured artifacts. Nonetheless, all
these methods assume the nominal model is known so that the devi-
ations can be calculated.
Since this paper aims at surface anomaly classification by using

unstructured point cloud data, we would like to briefly introduce
other literature on the classification problem by using unstructured
point cloud data in the field of computer vision. The current
research literature in computer vision mainly focuses on 3D
object classification, which classifies the object category from 3D
data. For example, Himmelsbach et al. [15] proposed using
feature histograms to realize real-time object classification in 3D
point clouds. Wohlkinger and Vincze [16] proposed an ensemble
of shape functions for 3D shape-based object class recognition by
using a partial point cloud surface. Recently, deep learning-based
methods are also popular for point cloud data analysis. For
example, Qi et al. [17] proposed to use a deep learning-based
model (called PointNet) for 3D cloud data classification and seg-
mentation. All these classification methods focus on the global
object classification, such as “mug,” “table,” and “car” [17], or
the object classification/recognition within one point cloud based
on the segmentation [18]. Based on this work, Qi et al. [19]
further proposed PointNet++ to learn local features, and Zhao
et al. [20] proposed PointWeb to enhance the neighborhood features
based on PointNet++. However, deep learning-based features are
usually challenging to interpret and require a large sample size to
learn good features. But the sample size with anomalies is relatively
small in manufacturing applications, which cannot meet the sample
size requirements of deep learning methods.
In summary, there is very limited work on surface anomaly clas-

sification in dealing with unstructured point cloud data. This paper

aims to fill these research gaps and proposes a method for surface
anomaly classification by using unstructured point cloud data.

3 Introduction to Tensor Voting
To better illustrate the proposed tensor voting-based approach,

we first provide a basic introduction to tensor voting in this
section. Tensor voting, which makes inference on the geometry
information such as surface, curve, and junction via a voting
scheme over the neighborhood, is originated from Guy and
Medioni [21]. Based on this work, the tensor voting method is for-
mally proposed in Ref. [22], in which a unified computational
framework is illustrated to extract the geometric descriptions from
2D and 3D data. The tensor voting approach mainly depends on
tensor calculus for point data representation and the voting
scheme for point data communication.
In tensor voting, for each data point xi ∈ R3, a structure-aware

tensor Ki is encoded via the vote collection from its neighborhood
N(xi). Figure 3 shows a simple case with only two points xi and
xj exist. We will start with a special case where the unit norm
vector nj at xj is known. vi is the normal vote received at xi by
using osculating arc connection; rij is a unit vector at xj pointing
to xi. Then, the second-order symmetric tensor vote Sij is then
given by vivTi multiplied by η(xi, xj, nj), defined as

η(xi, xj, nj) = cij(1 − (rTijnj)
2
), cij = exp(−∥xi − xj ∥2 /σd) (1)

where σd is a scale parameter; rij is a unit vector at xj pointing to xi.
The unit direction vi can be derived by fitting an arc of the osculat-
ing circle between the two points.
Then, we will look at a general case, where the unit normal nj at

xj is not known. Let Kj is any second-order symmetric tensor at xj,
which is typically initialized as an identity matrix if nj is not avail-
able. Then all possible unit normals {nθj} with the corresponding
length {τθj} are considered with all possible directions θ. Then,
the tensor vote Sij for xi from xj can be obtained as

Sij =
∫
Nθj∈v

vθ(xi, xj)vθ(xi, xj)Tη(xi, xj, nθj)dNθj (2)

where Nθj = nθjnTθj, and v is the space that contains all
possible Nθj. By using the osculating arc connection, vθ(xi, xj)=
(nθj − 2rij(rTijnθj))τθj. The integral is typically numerically computed
by the voting field [22] until Wu et al. [23] proposed the closed-form
solution in 2012,whichmakes the tensor votingmethod easier to cal-
culate and implement.
In this paper, the closed-form solution in Ref. [23] is briefly intro-

duced and adopted to perform tensor voting. The structure-aware
tensor Ki at point xi can be calculated as

Ki =
∑
j

Sij, Sij = cijRijKj I −
1
2
rijrTij

( )
RT
ij (3)

where Sij is the tensor vote cast by xj with respect to xi;
Rij = I − 2rijrTij , where I is the identity matrix; rij = (xi − xj)/
∥xi − xj ∥, i.e., a unit vector pointing from xj to xi; xj is in the neigh-
borhood of xi, i.e., xj ∈ N(xi); Kj encodes the information of the
local geometry around point xj.
The resulting structure-aware tensor Ki can be visualized as an

ellipsoid, where the shape of the ellipsoid provides local geometri-
cal information carried in a 3D point cloud. Generally, a
second-order symmetric tensor can be represented by the corre-
sponding three eigenvectors and eigenvalues via spectral decompo-
sition [24], which is shown as follows:

Ki = (λ1 − λ2)Tstick + (λ2 − λ3)T plate + λ3Tball (4)

where Tstick, Tplate, and Tball are stick tensor, plate tensor, and ball
tensor, respectively; λ1, λ2, and λ3 (λ1≥ λ2≥ λ3) are the eigenvalues
associated with eigenvectors e1, e2, and e3 of a second-orderFig. 3 Illustration of the normal vote vi received at xi from xj
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symmetric tensor Ki; and Tstick, Tplate, Tball can be further repre-
sented as

Tstick = e1eT1 , T plate = e1eT1 + e2eT2 , Tball = e1eT1 + e2eT2 + e3eT3
(5)

Notably, such a decomposition also validates on generic tensor
according to spectral decomposition [24]. Figure 4 shows a
generic tensor that can be decomposed into the stick, plate, and
ball components.
In tensor voting, the decomposed eigenvalues and eigenvectors

from the structure-aware tensor Ki are used to extract the geometric
information of a surface, curve, or junction. λ1− λ2, λ2− λ3, and λ3
are the surface, curve, and junction saliency, which characterizes
the local geometric information according to stick, plate, and ball
components, respectively. The local structure inference can be
obtained from the maximizer of these three saliency features. For
example, if λ1− λ2 is the largest, i.e., λ1− λ2 > λ2− λ3, and λ2− λ3
> λ3, the local structure of the corresponding point is more likely
to be part of a surface (i.e., surface-ness). On the other hand, if
λ2− λ3 is the largest, it indicates the local structure of the corre-
sponding point is more likely being part of a curve (i.e., curve-ness).
Figure 5 further illustrates the inference of local structures and

related dominant tensor components. The black dots are the
points that are the neighbors around the red point within one
point cloud. As shown in Fig. 5(a), the resulting tensor ellipsoid
is more like a stick with a direction of the surface normal if the
point is on a smooth surface. If a point belongs to a curve, the result-
ing tensor ellipsoid is more like a plate, shown in Fig. 5(b). Finally,
if a point is a surface intersection point, i.e., junction point, the
resulting tensor ellipsoid will be more like a ball, shown in
Fig. 5(c). With such inferences, the application of the tensor
voting method provides valuable information about the local

geometry on artifact surfaces to facilitate anomaly classification.
Finally, e1 denotes the surface normal or direction of the stick com-
ponent, e1, e2 denote the direction of the curve component, the ball
does not have a specific direction and therefore is spanned on all
directions, denoted as e1, e2, and e3. The corresponding interpreta-
tions are summarized in Table 1.

4 The Tensor Voting-Based Approach for Surface
Anomaly Classification
Based on the tensor voting theory, this paper proposes a novel

approach for surface anomaly classification by using unstructured
3D point cloud data. The main goal of this paper is to classify the
anomaly type on the artifact surface by using the unstructured 3D
point cloud data obtained from the artifact even though the data
have inconsistent point sizes. Notably, this approach directly
deals with 3D point cloud data without transforming the 3D repre-
sentation to 2D.
To begin with, we will first introduce our notations and the

problem setup. The problem to be solved is to predict the type of
anomaly carried in a new point cloud sample given the historical
point cloud samples with different types of anomalies. Assume
that we have n samples (i.e., n different point cloud sets), and that
each sample may contain a different number of measurement
points. We will use mk to denote the number of points in the kth
point cloud sample. In addition, each point xi = (μi, νi, ωi) ∈ R3

is defined in the three-dimensional μ, ν, ω coordinates. Let M
denote the number of neighbors that will be used for local aggrega-
tion in the tensor voting process.
Given the problem setup, our overall approach is illustrated in

Fig. 6, which consists of the following steps for each point cloud
sample: (1) Tensor voting for saliency feature extraction: for all
the mk points of the point cloud sample k, tensor voting is first

Fig. 4 Illustration of 3D generic tensor decomposition

Fig. 5 The illustration of local structures and related dominant tensor components: (a) a stick tensor Tstick for a surface,
(b) a plate tensor Tplate for a curve, and (c) a ball tensor Tball for a junction
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applied to extract the geometry saliencies as the point-level features,
such as surface saliency αi= λi,1− λi,2, curve saliency βi= λi,2− λi,3,
and junction saliency γi= λi,3, of each point xi, i, i= 1,…,mk, where
λi,1, λi,2, and λi,3 are the decomposed eigenvalues of structure-aware
tensor as introduced in Sec. 2. (2) Sharp points selection: given
these point-level features, we can achieve the point selection
according to saliency segmentation. More specifically, we aim to
select important points that include potential anomalies based on
the geometry information in the point cloud sample. These selected
points are defined as the “sharp points.” (3) Descriptive features
aggregation: since the number of sharp points can be different for
each point cloud sample, we propose to use the aggregated descrip-
tive features of each point cloud sample for further surface anomaly

classification. The aggregated descriptive features will be of the
same size for all point cloud samples. (4) Anomaly classification:
These aggregated features will be passed to the sparse multiclass
SVM classifier for surface anomaly classification and feature selec-
tion. These steps will be introduced in Secs. 4.1–4.3. Notably, we
do not need any registrations between different point cloud
samples since we deal with each point cloud sample independently.

4.1 Saliency Segmentation. Notably, the points with similar
saliency values may have similar local information, which will
facilitate further feature extraction. Thus, we group the points
according to the saliency values. One simple way is to first sort
the saliencies and then segment the sorted saliency values to
group points. Specifically, for the kth point cloud sample, we first
sort each type of the saliencies αi, βi, γi associated with each
point, xi, i, i= 1,…,mk, respectively. Let α(i) denote the ith
sorted surface saliency, i.e., α(1) ≥ α(2) ≥ . . . ≥ α(mk ). Similarly,
β(i) and γ(i) denote the sorted curve and junction saliencies, respec-
tively. The segmentation is then desired to segment the sorted sal-
iency values with the point index. Here, we use the
piecewise-linear spline with q free knots [25] to fit the relationship
between the sorted saliencies, i.e., α(i), β(i), or γ(i), and the point
index (i.e., 1,2, . . . ,mk), respectively, for simplicity. The fitted loca-
tions of the knots provide the natural segmentation points of the sal-
iency feature, and the sharp points can be determined from the first
segmentation of the junction saliency along with the overlapping
points between the second segments of the junction and surface sal-
iencies. LetHk denote the set of sharp points for the kth point cloud
sample, and Rk denote the regular points, i.e., the points in the kth
point cloud sample excluding the sharp points.

4.2 Feature Extraction. In general, different types of surface
anomalies may have different types of patterns and associated
causes [1,26]. For example, the surface anomalies on steel surfaces
may have various patterns. Figure 7 shows three different types of
steel surface anomalies, i.e., deviations from the supposed flat.
Contrasted to depression, a pinhole usually has a very sharp
local pattern, which means few sharp points would be the key fea-
tures for classification. As another example, depression is typically
concentrated while the oscillation marks seem to spread on the
steel surface. Thus, a large set of distinct features for different
types of surface anomalies need to be defined for point cloud clas-
sification in a manufacturing process. Furthermore, feature extrac-
tion is important since each point cloud sample may be of different
point sizes. There is a need for feature generation techniques to
create the same number of features given different sizes of
surface point cloud data for further classification models. In this
section, we will build a set of common features based on the
tensor voting methodology for the manufacturing anomaly classi-
fication. The key assumption for feature extraction is that the
surface can be assumed known, such as a plane. However, the
tensor voting method is not restricted to such an assumption, so
the proposed framework can also be useful for other cases that
the normal surface has the explicit model. Finally, the set of fea-
tures we defined are suitable for a variety of anomalies, which we
believe could also be useful for other surface anomaly classifica-
tion tasks.
First, we propose to define a set of features as the percentage of

sharp points in a point cloud sample with mk points. Let sk denote
the number of sharp points in the kth point cloud sample. Then

f1,k = sk/mk (6)

where f1,k is the first feature for the kth point cloud sample. In addi-
tion, the location distribution of sharp points also indicates different
types of surface anomalies.Fig. 6 Flowchart of the proposed approach

Table 1 The interpretations of structure-aware tensor
decomposition around a point

Saliency Tensor component Normal

Surface-ness λ1 − λ2 Tstick e1
Curve-ness λ2 − λ3 T plate e1, e2
Point-ness λ3 Tball e1, e2, and e3
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Second, we propose the standard deviations of sharp points as the
features, i.e.

f2,k = σμ(xi), f3,k = σν(xi), f4,k = σω(xi), xi ∈ Hk (7)

where σμ(·), σν(·), and σω(·) are the functions of calculating standard
deviations in the axial directions of the μ, ν, ω coordinates, respec-
tively. These features are useful for the depression and oscillation
mark type of surface anomalies. To avoid the impact on different
sizes between different point cloud samples and noises, we also
extract the standard deviations of the regular points Rk as the fea-
tures to provide more information, i.e.

f5,k = σμ(xi), f6,k = σν(xi), f7,k = σω(xi), xi ∈ Rk (8)

Notably, although the feature extractions from Eqs. (7) and (8)
are based on the absolute coordinates of points in a point cloud,
the features we extracted only rely on the relative distance
between the points within the point cloud. All the descriptive fea-
tures (including the percentage of sharp points, standard deviations,
or pairwise distance quantiles in the following ((9)–(11)) are rigid
transformation-invariant. Thus, there is no registration issue in
this paper.
Finally, we will deal with the surface where the original geometry

is supposed to be a plane, such as the surfaces in Fig. 1. To further
characterize the anomaly that deviates from such surfaces, we first
use the points in Rk to fit a plane given the kth point cloud sample
via the singular value decomposition (SVD) based method [27].
Then, the distance di to the plane at each point xi, xi ∈ Rk , can
be obtained. The distribution of di shows the point distribution
around the plane, which helps identify the type of surface
anomaly. Thus, we extract quantiles of di distribution as features,
i.e.,

f j,k = F−1
Rk
( pj), j = 8,9, . . . , 13 (9)

where F−1
Rk
(·) is the inverse cumulative distribution function of di at

point xi (xi ∈ Rk), and fj,k is the quantile feature corresponding to
the probability pj. We use the quantile features to fully explore
the distance distribution. The detailed quantile values are illustrated
in the case study.

To capture different types of anomalies on the surface, the dis-
tances of the sharp points to the plane are also considered. As
shown in Fig. 8, the pattern with the sharp points located on one
side of the plane is different from that of the sharp points located
on both sides of the plane for surface anomaly classification.
Thus, we distinguish these two cases using the distance calculation.
Specifically, we use the angle between the normal vector of the
plane and the point vector from the plane to distinguish the sharp
points located on either side of the plane, thereby indicating two
groups of sharp points. For each group, we can obtain the
maximum distance within the group and define the group with the
larger maximum distance as the first group, i.e., H1

k . The other
group is denoted as H2

k . We also calculate the distances to the
plane of these two groups. Similarly, quantile features of distances
for each group are also extracted for the surface anomaly:

f j,k = F−1
H1

k
(pj) , j = 14,15, . . . , 19 (10)

f j,k = F−1
H2

k
( pj) , j = 20,21, . . . , 25 (11)

where F−1
H1

k
(·) and F−1

H2
k
(·) are the inverse cumulative distribution

functions of di and dj at point xi (xi ∈ H1
k ) and xj (xj ∈ H2

k ), respec-
tively; and fj,k is the quantile feature corresponding to the probabil-
ity pj.
Given the feature set fi,k, i= 1,…, 25; k= 1,…, n, different types

of surface anomalies can be classified via a multiclass classifier. We
also listed a table to summarize these features, which is shown in
Table 2. These features are derived from the manufacturing
domain knowledge regarding surface anomalies, so the related
physical interpretations can be provided. Next, these extracted fea-
tures will be used in a classification model to indicate the anomaly
types of the artifact surfaces. We would like to mention that addi-
tional features may be defined for specific problems. However,
we find that these features have worked pretty well for very
diverse anomaly types as shown in the case study.

4.3 Multiclass Support Vector Machine Classifier. To iden-
tify various types of surface anomalies, a multiclass classifier is

Fig. 7 Three types of anomalies on the steel surface: (a) pinhole, (b) depression, and
(c) oscillation mark

Fig. 8 Illustrations of two surface anomaly patterns: sharp points located on both sides of the
plane (left) and sharp points mainly located on one side of the plane (right)
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used along with the features extracted in Sec. 4.2. In most manufac-
turing industries, the sample size with different manufacturing
anomalies is usually small. The SVM is initially designed for
binary classification problems and shows great success in classifica-
tion problems with a small sample size [28,29]. Later, the multiclass
extension of the binary SVM classifier is also investigated in the lit-
erature [30–32]. Therefore, a multiclass SVM classifier is adopted
in our paper. Among these methods [30–32], a sparse multiclass
SVM classifier [31] is applied for the task of surface defect classi-
fication as only a subset of extracted features may be important. The
shrinkage idea is used to shrink the unimportant features or redun-
dant features to zero. Specifically, we are using the sup-norm
penalty-based sparse multiclass SVM classifier, where the related
tuning parameter λ0 for sup-norm penalty is selected by cross vali-
dation. The selection of the sup-norm penalty is reasonable because
all the coefficients related to the unimportant feature variable should
be all zero. Mathematically, the sup-norm penalty is to penalize the
maximum absolute values of K coefficients of each feature variable
if K classes exist. More details can be referred to Ref. [31].

5 Case Study
In this section, we present a case study of anomaly classifications

on steel product surfaces based on a set of product inspection data
obtained from a steel mill. The steel manufacturing process is a
complicated manufacturing process, where many types of anoma-
lies may occur due to various factors and interactions of many
causes. Surface anomaly classification is very important for steel
production to improve the control of the manufacturing process
and produce high-quality products. In practice, anomalies on steel
products can be of many types, including cracks, depressions, pin-
holes, etc. Such surface anomalies are local and sparse, posing sig-
nificant challenges for the classification task in industrial practices.

Our proposed approach is validated for this application. We will
first introduce the data description in Sec. 5.1 and then show the
results of point selections and classification accuracies in Secs.
5.2 and 5.3, respectively. The sensitivity analysis regarding the
neighborhood size of tensor voting to the overall approach is illus-
trated in Sec. 5.4. Comparison studies with the recent existing
approach are conducted in Sec. 5.5. Finally, the discussion is pro-
vided in Sec. 5.6.

5.1 Basic Data Description. In this case study, we have col-
lected n= 228 point cloud samples with five different anomaly
types of steel surfaces from a mill. The basic information about
each anomaly type and the related point cloud samples is listed in
Table 3. Notably, the point size of each point cloud sample varies
substantially, ranging from 3564 to 96,266. Table 3 also lists the
point size range for each type of anomaly. As shown in Table 3, dif-
ferent anomaly types may have very different point size ranges.

5.2 Result of Tensor Voting and Sharp Point Selection. In
our proposed approach of surface anomaly classification, the first
step is to use tensor voting for saliency extraction. Related to the
parameter σd in the tensor voting theory, Wu et al. [33] pointed
out that a large range of σd, except the extensively large value,
would work well. In this case study, we set σd= 0.5, and M= 300
for tensor voting. Given these parameters, the surface, curve, and
junction saliencies of each point within each point cloud sample
can be obtained.
We would like to select a point cloud sample for illustration pur-

poses. Figure 9 shows the sorted saliencies of a point cloud sample
with 33,638 points. As shown in Fig. 9, the extracted saliencies
present a piecewise curve pattern, thereby indicating different
local geometries. Thus, we use a piecewise-linear spline [25] with
four free knots for the segmentation of the surface and curve salien-
cies and a spline with five free knots for the junction saliency seg-
mentation based on the observations of Fig. 9. The segmentation
results and the total number of points within this point cloud
sample are shown in Fig. 9. The vertical dash lines and their asso-
ciated numbers show the segmentation point indexes, and different
segments are in different colors. Figure 10 shows the associated
surface segmentation, and the color of the segmentation is

Table 2 Extracted features for the kth point cloud sample

Feature Definition Physical interpretations

f1,k Percentage of sharp points Characterization of anomaly
size

f2,k ∼ f4,k Standard deviations of
sharp points

Characterization of anomaly
distributions in 3D

f5,k ∼ f7,k Standard deviations of the
regular points

Characterization of
distributions of artifact surface
in 3D

f8,k ∼ f13,k Quantiles for distance
distribution of product
surface

Characterization of distance
distributions of artifact surface
in 3D

f14,k ∼ f 25,k Quantiles for distance
distribution of anomalies
along two directions

Characterization of
distributions of surface
anomalies in 3D

Table 3 Anomaly types and associated samples

Anomaly class Anomaly type Sample size Point size range

1 Debris patch 30 [6480: 86,784]
2 Oscillation mark 18 [14,317: 63,308]
3 Depression 18 [17,767: 96,266]
4 Slag 92 [3828: 9202]
5 Pinhole 70 [3564: 12,535]

Fig. 9 (a) Surface, (b) curve, and (c) junction saliencies of one sample (Color version online.)
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consistent with that in Fig. 9. As shown in Fig. 10, these three types
of geometry saliencies indicate similar local structure information
on the steel surface. For example, the first segment of the surface
saliency indicates the regular surface points, i.e., the points in the
third segment of the junction saliency. Besides, we find the points
in the first segment of the junction saliency indicate the sharp
profile where surface anomalies may exist. Here, we regard the
points in the first segment of the junction saliency as the sharp
points. Finally, we also select the overlapping points between the
second segments of the junction and surface saliencies as sharp
points to provide more local structure information. Figure 11
shows the selected sharp points (marked in red) in different types
of surface anomalies, where sharp points are often located along
the edges of the anomalies.

5.3 Multiclass Surface Anomaly Classification. Given the
sharp point set Hk and the regular point set Rk, the features can be
extracted for anomaly classification via a multiclass sparse SVM
classifier. Fivefold cross validation is used to select λ0 in the multi-
class SVM classifier. In this case study, we set the six quantiles as
[0.025, 0.25, 0.50, 0.75, 0.975, 1] to capture one distance distribu-
tion, i.e., [p8, p9, p10, p11, p12, p13]= [p14, p15, p16, p17, p18, p19]=
[p20, p21, p22, p23, p24, p25]= [0.025, 0.25, 0.50, 0.75, 0.975, 1] . We
will use 80% of the samples as the training data and the remaining
20% as the testing data. To ensure the robustness of the proposed
method, we will conduct 100 replications with different splits of
the training and testing data from the original mill dataset. For
each replication, the training and testing datasets are split in the
way of approximately the same proportion of original samples of
each class by stratified sampling. Thus, each random split has
approximately the same number of training and testing samples
for different classes, thereby indicating all the replications have
approximately the same number of training and testing samples
for each class.
We randomly select ten replications and show the confusion

matrix of classification results in Fig. 12. The x-axis shows the pre-
dicted class label, and the y-axis shows the true class label. The
number in the blue box along the diagonal is the accurate percentage

of correct predictions, while the number in the red box shows the
misclassifications. As shown in Fig. 12, the testing results are
highly dependent on the split testing samples. For example, all
the testing samples can be accurately classified in some splits for
Class 2 and Class 3, while some testing samples can be misclassi-
fied in some other splits. Thus, we use 100 random splits to show
the overall classification accuracy, where the evaluation index is
defined as

Accuracy =
1
n

∑n
l=1

I (̂zl = zl) (12)

where zl is the given label and ẑl is the predicted label on the testing
dataset. To calculate the classification accuracy of the anomaly class
i, the accuracy can be similarly defined as

Accuracyi =
1
ni

∑ni
l=1

I (̂zl = i), i = 1,2, . . . , 5 (13)

where ẑl is the predicted label on the testing dataset with the given
label i. ni is the number of the testing samples with the given label i.
The mean accuracy, median accuracy, and standard deviation of

the classification accuracy through 100 replications are shown in
Table 4. The first five rows show the classification results of five dif-
ferent types of surface anomalies, and the last row shows the clas-
sification results of the overall data.
As shown in Table 4, the mean or median classification accura-

cies of Class 2 and Class 3 are lower than those of the other
classes. This is because the sample sizes of Class 2 and Class 3,
both 18, are much less than those of Class 4 and Class 5. Such a
small sample size will also influence the standard deviation of the
classification accuracy. As shown in the last column of Table 4,
the standard deviation decreases if the sample size increases.
However, the overall performance of the proposed approach is satis-
factory, with 0.8627 mean accuracy and 0.8667 median accuracy.
Notably, although Class 2 and Class 3 have the same sample size,

Class 2 has a lower mean and median accuracy than Class 3. This is
because the oscillation mark type of anomaly is more like other

Fig. 10 Surface segmentation of one sample associated with the segmentation of (a) surface, (b) curve, and (c) junction sal-
iencies (Color version online.)

Fig. 11 Sharp points and different types of surface anomalies such as (a) a pinhole, (b) a depression, and (c) oscillation marks
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anomaly patterns, such as depression and debris patch. Figure 13
shows the confusion matrix that presents the accurate and misclas-
sified percentage of predictions on the testing dataset from overall
100 splits. As shown in Fig. 13, the oscillation mark type of anom-
alies can be misclassified as debris patch or depression in several
cases. In comparison, the depression type of anomaly is less
likely to be misclassified as other types of anomalies (especially
the pinhole and slag).

To further check the effective features that are selected for clas-
sification, we discuss the features that have nonzero coefficients.
First, if one feature is not important, then all the related coefficients
of K-class functions will be zero, implemented by the sup-norm
penalty [31]. Thus, the selection frequencies count only except
the feature that all the related coefficients of K-class functions are
zero. The results of selection frequencies on these 100 random
splits are reported in Table 5.
As shown in Table 5, features f2 ∼ f7 are usually selected for

most random splits, which are the standard deviations of location
coordinates of sharp points and regular points. These features
provide more information, so the percentage of sharp points, i.e.,
feature f1, is not commonly selected due to less additional informa-
tion. In addition, f12, f13, f19, f25 are selected in each split, which are
the large quantiles of distance distribution from the artifact surface
in 3D for regular surface points and anomaly points. This is because
the large quantile of distance distribution can show the depth of the
anomaly for the anomaly points and the large noise for the regular
surface. The middle quantiles are also sometimes selected to repre-
sent more information about the regular surface points and the sharp
anomaly points. In comparison, the small quantile features f8, f14, f20
are never selected in the 100 random splits.
To further check the effective features of each anomaly class, we

also list the frequency of nonzero coefficients of the K-class func-
tions in Table 6. We also show the frequency of selected features
for different classes and overall classification in Fig. 14. As
shown in Table 6 and Fig. 14, most classes use features f2 ∼
f7, f12, f13, f19, f25, to identify the related anomaly. But we can
find that Class 1 (debris patch) less uses f4, i.e., the standard devia-
tion of the z coordinate, compared with other classes. In addition,
Class 2 (oscillation mark) less uses f16, i.e., the middle quantile of
distances of sharp points to distinguish the oscillation mark
anomaly. However, these features are overall very important to
identify the different types of anomalies.

5.4 Sensitivity Analysis. In this section, sensitivity analysis is
performed in terms of the neighborhood sizeM in tensor voting. We
set M as 100, 200, 300, 400, 500, respectively, to test the perfor-
mance of the overall approach. The 100 random splits and other

Table 4 Classification results of 100 random splits on the
testing dataset

Anomaly
class

Anomaly
type

Sample
size

Mean
accuracy

Median
accuracy

Standard
deviation

1 Debris
patch

30 0.8350 0.8333 0.1629

2 Oscillation
mark

18 0.6283 0.6667 0.2849

3 Depression 18 0.7983 0.8750 0.2361
4 Slag 92 0.9154 0.9444 0.0617
5 Pinhole 70 0.8755 0.8667 0.0845
Overall – 228 0.8627 0.8667 0.0507

Fig. 12 Confusion matrix of classification results for ten random splits

Fig. 13 The confusion matrix of classification results for the
summation of 100 random splits

Table 5 Selection frequencies of each feature over 100 random splits

Feature f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

Frequency 8 100 100 95 100 100 95 0 2 5 85 100 100

Feature f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25

Frequency 0 3 52 88 75 100 0 4 4 46 91 100
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parameter settings are the same as above. Figure 15 shows results of
sensitivity analysis results from Class 1 to Class 5 and overall accu-
racy results. The detailed results are listed in Table 7. As shown in
Fig. 15, the mean and median classification accuracy of Class 3 has
been improved for the neighborhood size M= 400. However, such
improvement is very limited in terms of overall accuracy. Notably,
tensor voting is mainly used to extract the local geometry informa-
tion for sharp point selection, and the features are extracted globally
given the sharp points and regular points. Thus, the classification
results are not sensitive to the neighborhood size.

5.5 Comparison Studies. To further show the effectiveness of
our extracted features and the proposed approach overall, we
compare our features with the histogram features from Ref. [14].
The deviations between point cloud data and the nominal model
are used for feature extraction and further classification in
Ref. [14]. In this paper, we do not have a typical nominal model
for forming process, so we assume the nominal model is the fitted
plane to make comparisons. We mainly focus on the comparison
between our extracted features and the features in Ref. [14], so
we use the same type of sparse multiclass SVM classifier for com-
parison to demonstrate the effectiveness of tensor voting-based
feature extractions and the accuracy of the proposed approach
overall.
The histogram features of deviation distance from point cloud

data to the nominal model, such as the mean, mode, and width,
are used as features in Ref. [14]. In addition, the Mahalanobis dis-
tance values between the computed histogram and baseline histo-
gram are also used as features in Ref. [14]. Thus, there are four

types of features used in Ref. [14] to classify the anomalies. The
baseline histogram is assumed with N(0, σ2) distribution, where
the variance is set to be an ideal variation. We set the parameter
σ = 0.002, which is the same as Ref. [14]. In addition, we do not
have the observed random deviation or systematic deviation, so
we only use the overall distance deviations of points to establish
the observation histogram to calculate the distance as the feature.
We also use 20 bins to establish the histogram, which is the same
as Ref. [14]. Notably, the covariance matrix between different
bins is meaningless if we use all the anomaly datasets to estimate,
so we use the Euclidean distance values as the features. We also
consider the frequency of the deviation per bin and bin-edge
values as the variables that define histograms in Ref. [14]. We

Table 7 Sensitivity analysis results of 100 random splits on the
testing dataset

Anomaly
class

Anomaly
type

Neighborhood
size

Mean
accuracy

Median
accuracy

Standard
deviation

1 Debris
patch

100 0.8333 0.8333 0.1704
200 0.8207 0.8333 0.1763
300 0.8350 0.8333 0.1629
400 0.8336 0.8333 0.1650
500 0.8290 0.8333 0.1715

2 Oscillation
mark

100 0.6425 0.6667 0.3044
200 0.6158 0.6667 0.2879
300 0.6283 0.6667 0.2849
400 0.6225 0.6667 0.2967
500 0.6150 0.6667 0.2987

3 Depression 100 0.8042 0.8750 0.2220
200 0.8017 0.8750 0.2332
300 0.7983 0.8750 0.2361
400 0.8192 1.0000 0.2238
500 0.8092 1.0000 0.2328

4 Slag 100 0.9131 0.9444 0.0626
200 0.9153 0.9444 0.0594
300 0.9154 0.9444 0.0617
400 0.9137 0.9444 0.0608
500 0.9153 0.9444 0.0582

5 Pinhole 100 0.8776 0.8667 0.0800
200 0.8817 0.8976 0.0764
300 0.8755 0.8667 0.0845
400 0.8739 0.8667 0.0826
500 0.8797 0.9286 0.0750

Overall – 100 0.8636 0.8667 0.0492
200 0.8618 0.8667 0.0493
300 0.8627 0.8667 0.0507
400 0.8624 0.8667 0.0501
500 0.8629 0.8667 0.0476Fig. 14 Illustration of frequencies of selected features in differ-

ent classes and overall classification

Table 6 Nonzero coefficient frequencies of each feature over 100 random splits

Feature f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

Class 1 2 100 100 60 100 100 68 0 2 5 85 100 99
Class 2 7 100 100 95 100 100 77 0 2 5 72 87 98
Class 3 8 100 100 93 100 99 94 0 2 1 71 100 97
Class 4 8 100 100 94 100 100 95 0 2 5 77 100 100
Class 5 8 100 100 95 100 100 94 0 2 5 82 100 100

Feature f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25

Class 1 0 3 52 88 72 99 0 4 4 36 45 100
Class 2 0 3 7 81 69 99 0 3 3 41 83 99
Class 3 0 0 51 59 46 96 0 3 3 46 90 100
Class 4 0 3 52 84 71 100 0 4 4 44 89 100
Class 5 0 3 51 87 66 99 0 4 4 36 91 100
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use the same 100 splits of training and testing dataset, and the same
type of sparse multiclass SVM classifier for a fair comparison.
The classification results are listed in Table 8, where the method

of extracted histogram features is denoted as “histogram” and our
method of tensor voting-based features is denoted as “ours.” As
shown in Table 8, our tensor voting-based features are more effec-
tive than histogram features, resulting in a significant improvement
in the classification accuracy. To illustrate the classification results
more comprehensively, Fig. 16 shows the boxplots of the classifica-
tion accuracies for all five classes of anomalies in Table 8. Our fea-
tures outperform histogram features in all types of anomalies in
terms of mean accuracy and have a smaller standard deviation
except for depression type of anomalies. However, histogram fea-
tures perform badly on depression anomalies, which leads to 0
median accuracy. Therefore, our tensor voting-based feature extrac-
tions are more effective overall.

5.6 Discussion. Several limitations can be further improved in
future work. Currently, we assume the surface is a plane, and use
SVD to fit the plane. When the point size is large, this step will
be very computationally intensive. Downsampling techniques can
be adopted for plane fit. In the above case study, when the
regular point size is over 40,000, half the number of points are uni-
formly sampled along the x-axis for plane fit. How to relax the plane
assumption of surface to make the proposed methodology more
applicable to a free-form surface will be a potential direction for
future work. Another limitation of this work is that only one type
of anomaly is predicted. In practice, one surface may have several
types of anomalies, but only one label is given per surface in the
training dataset. How to predict multiple anomalies on one
surface under a noisy label is also worth investigations. In addition,
the approach documented in this paper can predict the anomaly
types carried on the surface of a manufactured artifact. Both the

Fig. 15 Classification results of the testing dataset from 100 random splits given different neighborhood sizes

Table 8 Comparison results of 100 random splits on the testing dataset

Anomaly class Anomaly type Sample size Method Mean accuracy Median accuracy Standard deviation

1 Debris patch 30 Ours 0.8350 0.8333 0.1629
Histogram 0.7514 0.8333 0.1819

2 Oscillation mark 18 Ours 0.6283 0.6667 0.2849
Histogram 0.4867 0.5000 0.2941

3 Depression 18 Ours 0.7983 0.8750 0.2361
Histogram 0.1508 0.0000 0.2071

4 Slag 92 Ours 0.9154 0.9444 0.0617
Histogram 0.8489 0.8333 0.0803

5 Pinhole 70 Ours 0.8755 0.8667 0.0845
Histogram 0.8462 0.8571 0.0939

Overall – 228 Ours 0.8627 0.8667 0.0507
Histogram 0.7589 0.7556 0.0471

Note: Bold signifies our results compared to the benchmark methods.

Fig. 16 Boxplots of classification accuracy on the testing dataset from 100 random splits:
(a) our method and (b) histogram method [14]
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detection and classification of multiple types of surface anomalies
are also worth investigation.

6 Conclusion
A novel tensor voting-based classification approach for surface

anomaly classification using 3D point cloud data is proposed.
This approach directly extracts useful features by way of saliency
derivation, sharp point selection, and aggregate data statistics
from the massive 3D unstructured point cloud data without any
transforming or dimensional reduction in data. The features can
be used in a sparse multiclass SVM classifier for surface anomaly
classification. A case study illustrates the effectiveness of the pro-
posed approach, despite some limits due to the sample sizes of
two subsets. Comparison studies are also performed to further
demonstrate the effectiveness of the proposed approach.
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