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Pairwise Critical Point Detection
Using Torque Signals in
Threaded Pipe Connection
Processes
The quality of threaded pipe connections is one of the key quality characteristics of drill
pipes, risers, and pipelines. This quality characteristic is evaluated mainly by a pair of
critical points, which are corresponding to the mechanical deformations formed in the
pipe connection process. However, these points are difficult to detect because of nonlin-
ear patterns generated by latent process factors in torque signals, which conceal the true
critical points. To address this problem, we propose a novel three-phase state-space
model that incorporates physical interpretations of connection process to detect pairwise
critical points. We also develop a two-stage recursive particle filter to estimate the loca-
tions of the underlying critical points. Results of a real threaded pipe connection case
show that the detection performance of the proposed method is more powerful than that
of other existing methods. [DOI: 10.1115/1.4036992]

1 Introduction

Threaded pipes are pipes with screw-threaded ends for assem-
bly. Such pipes are extensively used in petroleum wells and long-
distance petroleum transportation. Ensuring the fastness of
threaded pipe connections is crucial because of the extremely
high-safety requirements during well drilling and oil transporta-
tion. Two-thirds of oil well drilling failures, which lead to a loss
of approximately half a billion dollars each year, are caused by
faulty connections of oil pipes [1]. Typically, pipe casings are pre-
connected to one end of the oil pipes in the workshop prior to their
delivery to oil well sites. As such, examining the connection qual-
ity is the most important procedure in assuring the quality of
threaded pipes. In practice, connection quality is evaluated by per-
forming offline testing methods. For example, guided wave
testing-based nondestructive methods are used for testing defects
and detecting changes in the cross section and stiffness of the pipe
[2,3]. Other examples, such as detecting pipe leaks, are also per-
formed in the offline testing [4]. These offline methods are usually
conducted after all processes have been completed, after which
ineligible pipes would be reworked or discarded if they do not
pass these tests, leading to a series of nonvalue-added activities
and wastes. Therefore, it is essential to develop an intermediate
reliable method that can examine threaded pipe connections dur-
ing the connection process.

The rapid development of sensing and computing technologies
has created unprecedented opportunities for product quality assur-
ance in manufacturing processes. By installing multiple sensors
on connection machines, process signals can be automatically col-
lected over time for condition monitoring and diagnosis. As an
example, Fig. 1 shows a typical threaded pipe connection process,
wherein the master tong and backup tong are used to clip coupling
and pipe, respectively. Torque signals, as shown in Fig. 2, are col-
lected by the sensor mounted on the backup tong. The changes of
torque signal signatures and patterns can be related to some (not
all) quality concerns of the connections. Thus, analyzing the tor-
que signals can be used to detect some failures and quality con-
cerns occurred in the connection process. In general, a connection
consists of three key mechanical phases: thread engagement,

metal surface sealing, and shoulder contact. As shown in Fig. 3,
the pairwise critical points (A and B) refer to the sealing and
shoulder points, which divide the connection into these three key
mechanical phases. According to American Petroleum Institute
standards [5,6], torque values at sealing and shoulder points
(marked by diamonds in Fig. 2) in torque signals are recom-
mended to be used for in-process quality measures for screening
potential ineligible threaded pipe connections during the threaded
pipe connection process. In practice, these pairwise points are
empirically detected by visual inspection, which is usually time
consuming and ineffective for identifying point location. There-
fore, an automatic precise detection of pairwise critical points
should be established for the quality assurance of pipe connections
by using torque signals.

The development of a precise pairwise critical point detection
method is challenging because of three reasons:

(1) The locations of the true pairwise critical points are con-
cealed by various nonlinear and nonstationary profiles
caused by different latent process factors in torque signals.
Nonlinear patterns can be generated by noises and factors
in the systems and the processes, such as measurement
errors, assembling misalignments, and pipe unstraightness.
In engineering practice, change points are defined at the
change of linear segment. Among these change points, only
a pair comprises critical points in the pipe connection pro-
cess, and the others are considered as fake critical points.

Fig. 1 Coupling screw-on-machine
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As shown in Fig. 2, multiple points, including true critical
points (marked by diamonds) and several fake points
(marked in dots), can be observed from empirical engineer-
ing practices. The fake points coexist with the potential
critical points, thereby increasing the difficulty of detecting
the true critical points.

(2) The simultaneous detection of pairwise critical points is a
challenging task. The locations of pairwise critical points
are mutable but constrained by the connection mechanism,
and pure data-driven methods and physics-driven seg-
mented methods would fail to detect these pairwise points.
Thus, a method that can simultaneously detect pairwise
critical points should be designed.

(3) Lateral oscillations in torque signals violate the sequential
occurrence of the operation process. This kind of signal
oscillation, which is mainly caused by the mechanical
return difference, appears in the original torque signal (Fig.
2). Such a signal cannot be viewed as functional data, caus-
ing the traditional time series analysis and the functional
data analysis fail in detecting the pairwise critical points.

The majority of existing studies on the process monitoring of
threaded pipe connection focuses mainly on shoulder point detec-
tion, implying that only a single point is examined during the pro-
cess. Such examples can be found in Refs. [7] and [8], wherein
empirical engineering methods are used to identify the shoulder
point from torque signals. However, empirical engineering meth-
ods are devised on an ad hoc basis and, therefore, cannot directly
identify multiple critical points when various nonlinear patterns
appear in torque signals. In our previous study of the shoulder
point detection, we considered the torque signal profile regarding
the material deformation during the traditional connection pro-
cess. However, because it lacks of systematic physical study on
premium threaded pipe connection, this method could not be
extensively used for the pairwise critical point identification. To
further conduct the pairwise point detection, we first proposed a
sequential piecewise linear (SPL) model [9]. This method works
when minor noises exist in the torque signals; however, it is inca-
pable of detecting sealing points when multiple nonlinear patterns
(shown in Fig. 2) exist in the torque signals. Therefore, the present
study aims to develop a generic method that can accurately distin-
guish pairwise critical points from false points by systematically
investigating the mechanisms of connection process.

Specifically, a three-phase state-space model considering physi-
cal interpretations is proposed to characterize the connection
phases. In addition, an improved particle filter algorithm is devel-
oped for the three-phase state-space model to efficiently estimate
the parameters, especially including the locations of critical
points. The advantages of the proposed approach are twofold: (1)
the proposed three-phase state-space model considers the physical
interpretations underlying the threaded pipe connection process,
which is easily understood by connection operators; and (2) the
developed particle filter can accurately capture true critical points

in torque signals under various nonlinear patterns and noises,
simultaneously.

The remainder of this paper is organized as follows: Section 2
provides a literature review on the critical point detection. After
that, the proposed methodology is described in Sec. 3. A case
study is presented in Sec. 4 to demonstrate the performance of the
proposed methodology. Finally, Sec. 5 draws some conclusions
and remarks.

2 Review of Related Research on the Critical Point

Detection

Existing critical point detection methods can be grouped into
two categories, namely, data-driven and engineering-driven meth-
ods. Data-driven methods use collected data to establish statistical
models that can characterize different types of manufacturing
processes and detect condition changes by identifying the changes
of structures and parameters in the models. These methods can be
further classified into three categories. The first consists of statisti-
cal models that detect critical points on the basis of distribution
changes in the signals. For example, the cumulative sum proce-
dure [10], which is a traditional statistical process control method,
detects the mean shift or variance changes. Other researchers have
proposed detecting change points from the spectrum [11,12] or by
conducting likelihood ratio tests [13,14]. For example, an adaptive
generalized likelihood ratio technique is developed to automate
the surface defect inspection process using high-density data [15].
These methods are applicable when the signals meet the assump-
tions of the model; however, torque signals in threaded pipe con-
nection processes usually contain various nonlinear profiles and
lateral oscillations, thus violating the assumptions of the model.
Therefore, methods based on distribution change are unsuitable
for pairwise point detection in the pipe connection process. The
second consists of statistical models that consider the changes in
latent process variables in a time series. A typical model in this
category is the hidden Markov model. Examples can be found in

Fig. 3 Cross section of the threaded pipe connection

Fig. 2 Torque signals collected in the threaded pipe connection process
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the field of advanced manufacturing, such as the ultrasonic-
cavitation-based nanoparticle dispersion process [16–18]. This
model is effective if the latent process variables and the states
transition mechanisms are known. However, existing state-based
models may fail to identify the true pairwise points among the
false points because numerous potential false points are presented
in the torque signal. The third consists of statistical models that
define change points as segmented parameters to divide signals
and estimate these parameters on the basis of the observed data. A
segmented signal can be modeled as a piecewise constant model
[19], a piecewise linear model [20], or a generalized nonlinear
model [21]. However, segmented approaches are not suitable for
pipe connection processes, because multiple types of nonlinear
profiles exist in the torque signals, and the locations of the critical
points tend to move to-and-fro for each torque signal due to vari-
ous noises and unequal lengths of signals. Therefore, existing pure
data-driven methods cannot be readily applied to address the pair-
wise critical point detection issues of pipe connection processes,
because these methods are likely to detect false points without
considering prior engineering knowledge.

Engineering-driven methods consider the engineering knowl-
edge from manufacturing processes and establish process monitor-
ing and point detection methods by incorporating physics into
signal-based modeling. In Refs. [7] and [8], a threshold is con-
structed based on the cut-off slope of torques and turns in pipe
connection processes, and detected points are used to identify
ineligible connections. These methods can be used to identify spe-
cific pipe connections; however, for this approach to be effective,
the threshold must be updated to adapt to new connections, which
is infeasible in a multicategory manufacturing scenario in steel
plants. Moreover, unavoidable noises and latent process factors
can also significantly affect the calculated slope, thereby leading
to an incorrect point detection. For this reason, modeling techni-
ques that consider physical mechanisms from manufacturing proc-
esses are gaining considerable research attention as alternatives to
these ad hoc methods. For example, Mehrabi and Kannatey-Asibu
constructed a hidden Markov model based on wavelet features
extracted from vibration signals to detect the condition of tool
wear [22]. Shao et al. developed a quadratic classifier and
extracted space and frequency domain features of cross-sectional
profiles on tool surfaces for tool wear monitoring in the battery
manufacturing process [23]. Rao et al. used a recurrent predictor
neural network to compactly capture heterogeneous vibration sig-
nals to detect changes induced by surface variations in ultrapreci-
sion machining process monitoring [24]. Wu et al. developed an
acoustic monitoring method based on two kinds of cavitation
noises to monitor the micro/nanoparticle dispersion status in aque-
ous liquid [25]. Rao et al. proposed a method that integrates the
Bayesian Dirichlet process mixture model with evidence theory to
identify fused filament fabrication process failures with the use of
multiple sensor signals [26]. However, the characteristics and
physical mechanisms of other manufacturing processes are not the
same as that of pipe connection processes, implying that the afore-
mentioned models cannot be physically interpreted for pipe con-
nection processes.

To our best knowledge, few studies have explored pairwise crit-
ical point detection in pipe connection processes. To fill this
research gap, this paper proposes a three-phase model and associ-
ated parameter estimation method. In this method, torque signal
data are used as an analytical tool for automatically detecting pair-
wise critical points in pipe connection processes. Connection
quality is subsequently assessed based on the detected points.

3 Methodology for Pairwise Critical Point Detection

This paper develops an automatic pairwise critical point detec-
tion approach by conceptually incorporating physical interpreta-
tions into a state-space model. The locations of the pairwise
critical points can be accurately determined by updating the
state variables in this model through an improved particle filter.

Figure 4 shows the flowchart of the two main modules of the pro-
posed approach.

(1) Model formulation (Sec. 3.1): To better understand the tor-
que signal profile from a connection mechanism perspec-
tive, mechanical interpretation was borrowed on a threaded
pipe connection process to support the established three-
phase state-space model. The state variables introduced in
the state-space model are used to characterize both the
locations of the pairwise critical points and the connection
status (i.e., the slope and intercept of torque curves).
Further details of the model formulation are provided in
Sec. 3.1.

(2) Two-stage recursive particle filter (Sec. 3.2): A two-stage
recursive particle filter algorithm is developed to efficiently
estimate the parameters in the three-phase state-space
model. At the first stage, the state variables, including the
slope and intercept of torque curves, are estimated to pro-
vide the possibility of state transition of the pipe connec-
tion. At the second stage, the pairwise critical point
locations can be inferred on the basis of the information of
the state transition of the slope and the intercept. Both
stages are recursively updated until the detected pairwise
critical points converge to the specified thresholds.

3.1 A Three-Phase State-Space Model Based on Physical
Analysis. According to the theoretical physical model [27–29],
the torque profile during the pipe connection process can be repre-
sented with three-piecewise curves: (1) the curve before the seal-
ing point, which represents the thread engagement phase; (2) the
curve between the sealing point and the shoulder point, which rep-
resents the metal sealing phase; and (3) the curve after the
shoulder point, which represents the shoulder contact phase.
Figure 5 shows a nominal curve during the connection process.
The first dramatic increase in the slope occurs because of the com-
pressional deformation in the sealing phase; that is, the slope
increases when the external sealing surface of the pipe edge starts
to touch the sealing surface of the casing; the second dramatic
increase in the slope occurs once the end surface of the pipe edge
starts to hit the inner edge of the casing in the shoulder contact
phase. These sequential three-phase connection phases directly
correspond to the three-piecewise curves and can be specifically
characterized by the pairwise critical points in torque signals. In
practice, an eligible threaded pipe connection can be affirmed
when the pairwise points are simultaneously within the specified
limits via American Petroleum Institute standards [5,6] during the
pipe connection process.

In view of the physical interpretation in the pipe connection, we
consider the geometric structure in this process and discuss those
three sequential phases of the connection process by using the
canonical principle of elastic mechanics.

Phase 1: In the thread engagement phase shown in Fig. 6(a),
the structure parameters P and ct are the pitch and the half conical
angle of the thread, respectively. Based on the canonical geomet-
ric analysis of thread engagement, the thread interference dth is
proportional to the screwing turns Nth of the casing engaged into
the pipe, which can be represented by

dth ¼ NthP tan ct / Nth (1)

Based on the analysis of elastic mechanics [27], the torque Tth due
to the thread engagement is proportional to dth, which means
Tth / dth; hence, the relationship of Tth / dth / Nth can be finally
concluded. Therefore, the torque due to thread engagement can be
formulated through a linear function of screwing turns before the
sealing point.

Phase 2: The sealing phase follows the thread engagement
phase. The torque Tse in this phase comprises two parts, that is,

Tse ¼ Tth þ Ts (2)
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Based on the elastic mechanics and geometric structure shown in
Fig. 6(b), we can obtain

ds ¼ NsP tan cs / Ns (3)

where ds, Ns, and cs are the seal interference, the turns of the seal,
and the half conical angle of the seal, respectively. Once the
design of pipe and casing is finalized, P and cs are the fixed struc-
ture parameters; we can further obtain that Ts is proportional to
Ns, which concludes that torque signal in the sealing phase is
another linear function of screwing turns. Meanwhile, the slope of
the torque in this component is larger than the slope in the thread
engagement phase based on Eq. (2).

Phase 3: In this phase, the torque Tsh generally comprises three
parts, which are represented by

Tsh ¼ Tth þ Ts þ Th (4)

dh ¼ NhP / Nh (5)

where the first two components Tth and Ts are similarly generated
as phase 2 and the third part Th is generated through the shoulder
contact. Similarly, Th is proportional to the shoulder interference
dh and is further proportional to the screwing turns of the shoulder
contact Nh based on Eq. (5). Therefore, torque signal should also
be a linear function of screwing turns, where the slope is larger
than it in phase 2 based on Eq. (4).

In summary, the torque during the pipe connection process can
be finalized as

Tsh ¼ kthdth þ ksds þ khdh (6)

where kth, ks, and kh are the associated torque coefficients upon
the interference in each component. Based on the mechanical
study in Ref. [30], the torque coefficient increment between
phases 3 and 2 is larger than the increment between 2 and 1.

Fig. 4 Overview of the proposed approach

Fig. 5 Nominal torque curve during the pipe connection process
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According to the preceding interpretation on connection mecha-
nism, the following model assumptions can be established:

(1) Pairwise critical points in the torque signal exist, segment-
ing the torque into three piecewise linear segments with an
ascending slope;

(2) The second increment of the torque slope after the shoulder
point is larger than the first increment of the torque slope
after the sealing point.

Given that various noises and latent process factors, such as
pipe unstraightness and assembling misalignments, exist in the
torque signal, directly using Eqs. (1)–(6) could not precisely
identify the pairwise critical points due to these uncertainties.
The following three-phase state-space model is, thus, proposed
to fully consider the physical interpretations as well as
these uncertainties. Here, the description “three-phase” is
used to emphasize the fact that this is from an engineering
perspective.

yk ¼

a0k þ b0ktk þ ek tk < c1

a1k þ b1k tk � c1ð Þ þ ek

a0 þ b0c1 þ b1 c2 � c1ð Þ þ b2k tk � c2ð Þ þ ek

c1 � tk < c2

tk � c2

8>>><
>>>:

(7)

a0k; b0kð Þ ¼
a0; k�1; b0; k�1

� �
with probability 1� p1

a0 þ b0c1; b0;k�1 þ d1

� �
with probability p1

tk < c1

(
(8a)

a1k; b1kð Þ ¼
a1;k�1;;b1;k�1

� �
with probability 1� p2

a0 þ b0c1 þ b1 c2 � c1ð Þ; b1;k�1 þ d2Þ with probability p2
c1 � tk < c2

(
(8b)

where yk; tk; and ek represent the torque observation, turn observa-
tion, and noise at time k; respectively. c1 and c2 are indicator vari-
ables which denote the locations of the sealing point and the
shoulder point in the x -axis. a0k, b0k, a1k, and b1k are state varia-
bles that represent the associated pretorque and torque coefficients
with regards the turns at time k in the thread engagement phase
and the sealing phase, respectively. In addition, a0 and b0 are the
pretorque and torque coefficients in the thread engagement phase,
respectively; and b1 and b2 are the torque coefficients in the seal-
ing and shoulder phases, respectively. The initial value of state
a1k;b1kð Þ is the last value of state a0k; b0kð Þ: p1 and p2 are the state

transition probabilities between the current states and the new
states. d1 and d2 are the increments of the associated torque coeffi-
cients at the sealing point and the shoulder point, respectively.
d1 < d2 is constrained based on the assumption (2).

Generally, Bayesian inference, which is one of the most effec-
tive approaches, is conducted to estimate the parameters in this
model. Specifically, the prior distributions are first placed over the
model parameters; thereafter, the posterior distributions of the
parameters can be estimated based on prior distributions and
observation data [16]. However, posterior estimation is difficult to
obtain if the model structure is nonlinear. Particle filter, which is
one of the nonlinear estimation tools to approximate the distribu-
tions of state variables, can solve this problem [31]. Two indicator
variables, which hinder the direct estimations of the state variables

by a regular particle filter algorithm, exist in the three-phase state-
space model. In Sec. 3.2, a two-stage recursive particle filter algo-
rithm is proposed to deal with this problem.

3.2 Two-Stage Recursive Particle Filter. In a state-space
model, state xk transits over time and can be realized as a0k;ð
b0k; a1k; b1k; b2kÞ in this pipe connection process. Therefore, the
probability of the state and associated observations at time k can
be obtained by using Bayesian representations from Eqs. (7) and
(8). Generally, the update step and the prediction step are involved
in the state estimation. The state update can be generalized as

p xkjy1:k; c1; c2ð Þ ¼ p ykjxk; c1; c2ð Þ
p ykjy1:k�1; c1; c2ð Þ p xkjy1:k�1; c1; c2ð Þ (9)

where p xkjy1:k; c1; c2ð Þ is the posterior distribution estimation of
state xk at time k, provided with a sequence of observations y1 to
yk and initial prior distributions of c1 and c2. p ykjxk; c1; c2ð Þ is the
probability of observation yk, provided with the state prior xk at
time k and initial prior distributions of c1 and c2, which can be cal-
culated from Eq. (7). Once the posterior distribution of state xk is
obtained via Eq. (9), the distribution of the state variable at the
incoming time step can be obtained. In the state prediction step,
the state prediction can be conducted by

Fig. 6 The structure schematic of the connection: (a) the schematic of the thread engage-
ment and (b) the schematic of sealing structure
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p xkþ1jy1:k; c1; c2ð Þ ¼
ð

p xkþ1jxk; c1; c2ð Þp xkjy1:k; c1; c2ð Þdxk (10)

This formula provides the prior probability of the state variable
xkþ1, provided with the observations from y1 to yk. p xkþ1jxk;ð
c1; c2Þ is the state transition probability which can be obtained
from Eq. (8). Consequently, Eq. (9) provides the state posterior
estimation for Eq. (10), whereas Eq. (10) provides the state prior
information for Eq. (9).

The particle filter is a powerful tool to approximate the solution.
The main idea of a particle filter is to use a large number of par-
ticles (samples) generated from sequential Monte Carlo sampling
to obtain the posterior probability distributions of state variables
via importance sampling technique. More specifically, the approx-
imation integral calculation under Borel set A of a probability dis-
tribution function g xð Þ by using Monte Carlo sampling is

1

M

XM

m¼1

I x m½ � 2 A
� �
!M!þ1

ð
A

g xð Þdx (11)

where x m½ � is the mth sample drawn from g xð Þ and I x m½ � 2 A
� �

is
the indicator function. As the total number of samples M proceeds
to infinity, the estimation converges to the real integral of g xð Þ
under Borel set A. Let f xð Þ denote the state posterior distribution
function of p x0:kjy1:k; c1; c2ð Þ. The same way of computing the
integral of f xð Þ can be used. However, directly sampling particles
from f xð Þ may be challenging because f xð Þ can be any arbitrary
complex distribution, such as non-Gaussian and multimodal distri-
butions. Importance sampling is an effective way to sample par-
ticles from a known probability distribution function g xð Þ (also
called the proposal distribution) to approximate the integral of
f xð Þ [32]. The approximation integral of f xð Þ by using samples
from g xð Þ is

XM

m¼1

w
m½ �

k

" #�1XM

m¼1

I x m½ � 2 A
� �

w
m½ �

k!M!þ1
ð

A

f xð Þdx (12)

where w
m½ �

k ¼ f x m½ �ð Þ=g x m½ �ð Þ is the importance sampling weight.
Practically, we choose the proposal distribution as p x0:kjy1:k�1;ð
c1; c2Þ, which is also the state prior distribution for time step k.
Thereafter, the importance sampling weight wk is proportional to
p ykjxkð Þ [32]; hence, the integral in Eq. (10) is calculated by using
importance sampling and Monte Carlo sampling via Eq. (11).
Therefore, state posterior distributions at any time k can be
obtained by recursively solving Eqs. (9) and (10). However, tradi-
tional particle filter has a main degeneracy problem due to the
approximation nature [33], which shows that only a few particles
possess dominant weights, whereas most of the other particles
have small weights after several iterations.

In literature, two types of approaches are mainly used to
address the particle degeneracy problem in particle filter. One
type is to improve importance sampling procedure, and the other
type is to improve resampling procedure. The key idea of both
these two types of approaches is to use sampling methods to
reduce the variances of the importance weights. The first type of
methods can be found in Torma and Szepesvari’s work [34]. In
this paper, we focus on the second type of methods to address the
particle degeneracy problem.

Resampling technique, which eliminates the particles with
small weights and focuses on particles with significant weights, is
an effective way to tackle the particle degeneracy issue [35]. By
using this technique, accurate approximations of the state distribu-
tion function f xð Þ from distribution function g xð Þ can be achieved.
However, independent resampling also shows imperfection and
loses the diversities of particles in most cases, further increasing
the estimation variance of state parameters. Thus, an improved
resampling procedure to reduce the estimation variance in particle

filter should be carefully designed. A two-stage recursive particle
filter is proposed in this paper to estimate the state variables
a0k;b0k; a1k; b1k; b2kð Þ in the first stage, whereas c1 and c2 are esti-

mated in the second stage based on the states obtained from the
first stage. Notably, a0k;b0k; a1k; b1k; b2k; c1, and c2 are not simul-
taneously estimated in order to reduce estimation variance.

Sampling techniques are integrated into the two-stage recursive
particle filter to tackle the resampling issue in the three-phase
state-space model. Specifically, because the transition probability
p1;2 exist in the prediction model, stratified sampling [36] is used
to sample the state prior distribution p xkjy1:k�1; c1; c2ð Þ at time k
from the state posterior distribution p xk�1jy1:k�1; c1; c2ð Þ with
probability 1� p1;2 and the alternative state distribution h1;2 xð Þ
with probability p1;2. Afterward, a low variance sampling tech-
nique [32] is used in the resampling step to obtain the particles
with large weights, which can reduce the particle impoverishment
in the original particle filter. It can be learned that both the low-
variance sampling technique and stratified sampling technique are
designed to reduce the variance of the particle set as an estimator
of the true state. In addition, the low-variance sampling technique
has a computational complexity of O Mð Þ, whereas regular inde-
pendent sampling has a complexity of O M log Mð Þ [32]. It should
be noted that an efficient sampling method with a low complexity
in particle filter will significantly improve computations in prac-
tice. More details regarding stratified sampling technique and low
variance sampling technique can be referred to Refs. [32] and [36].

In practice, because uncertainties including nonlinear patterns
and lateral oscillations exist in the third phase, qM (0 < q < 1)
particles are sampled from another new distribution m xð Þ to avoid
the particle impoverishment and inappropriate estimations of
slope b2k. Here, m xð Þ is a zero-truncated distribution with a posi-
tive mean value.

Prior information should be investigated first before implement-
ing the particle filter algorithm. Several priors of model parame-
ters should be carefully designed by reviewing the proposed
three-phase state-space model. From historical data observations,
xk is assumed to be a joint Gaussian prior N l;Rð Þ. In addition,
pairwise critical points are more likely concentrated in the second
half of the torque signal because the physical distances of sealing
and shouldering contact are far smaller than that of threaded
engagement. Thus, assuming that c1 and c2 follow a skewed distri-
bution is reasonable (e.g., beta distribution). Meanwhile, the
screwing turn of the sealing point c1 must be smaller than c2

because the pipe connection process sequentially comes across the
sealing and shouldering points. Thus, we set a conditional distri-
bution given c2 as the initial distribution of c1. d1 and d2 are the
provided positive increments of torque coefficients. Herein, d1

and d2 are assumed to follow a truncated Gaussian distribution, in
which the maximum value of d1 is smaller than the minimum
value of d2 based on the model assumption (2). ek is the model
error, which follows Gaussian distribution N 0; r2

� �
. For simplic-

ity, the distribution of ek does not change as time evolves.
Provided with the information of these priors, the first stage

particle filter algorithm can be implemented by following seven
steps, and Fig. 7 shows the flow chart of the first stage particle fil-
ter algorithm.

At time k ¼ 1:

(1) Sample M particles of xk from prior distribution N l;Rð Þ,
calculate the weights of M particles.

(2) Implement the low variance sampling technique to resam-
ple the particles to obtain posterior distributions of state
xk.

At time k � 2:

(3) Predict state particles at time k by using the stratified sam-
pling approach, wherein 1� p1ð ÞM particles are generated
from p xk�1jy1:k�1; c1; c2ð Þ and p1M new state particles are
generated from h1 xð Þ (refer to formula (8a)), and calculate
the weights of M particles.
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(4) Resample particles to obtain the state posterior distribu-
tion p xkjy1:k; c1; c2ð Þ by low variance sampling. Let
k ¼ k þ 1. If tk < c1, return to step (3), otherwise go to
step (5).

(5) Predict state particles at time k by using the stratified sam-
pling approach, wherein 1� p2ð ÞM particles are generated
from p xk�1jy1:k�1; c1; c2ð Þ and p2M new state particles are
generated from h2 xð Þ (refer to formula (8b)), and calculate
the weights of M particles again.

(6) Resample particles to obtain the state posterior distribu-
tion p xkjy1:k; c1; c2ð Þ by low variance sampling. Let
k ¼ k þ 1. If tk < c2, return to step (5), otherwise go to
step (7).

(7) Predict state particles at time k by stratified sampling,
wherein 1� qð ÞM particles are generated from p xk�1jð
y1:k�1; c1; c2Þ and qM new particles are generated from
m xð Þ, and calculate the weights of M particles again.

(8) Resample particles to obtain the state posterior distribu-
tion p xkjy1:k; c1; c2ð Þ by low variance sampling.

(9) Let k ¼ k þ 1, return to step (7) until all the torque signal
points are examined.

From the first stage estimation, the posterior distributions of
state variables xk at any time are obtained. Therefore, the esti-
mated locations of pairwise critical points (s1 and s2) in the sec-
ond stage are obtained because of the significant change of the
state variables, which is based on the model assumption (2). Spe-
cifically, s1 and s2 are the time points in terms of the first and sec-
ond significant increases of slope. A recursive procedure is
designed to consolidate the estimations of c1 and c2 because mul-
tiple nonlinear patterns in torque signals may cause multiple
changes of the estimated state variables. Herein, the weight func-
tions wc1 and wc2 of c1 and c2 can be updated through a radial
basis function, which indicates that the relationships between s1ð ,
s2Þ and wc1ð , wc2Þ can be formulated as follows:

wci ¼ exp si � kð Þ2=2

� �
k ¼ 2si � T; …;T; i ¼ 1; 2 (13)

Fig. 7 The flowchart of the first stage particle filter algorithm
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where T is the end time point of the torque signal. The new resam-
pling particles with updated critical point locations can be gener-
ated once the weights wc1 and wc2 are obtained. Thereafter, the
first stage of the developed algorithm is implemented again, pro-
vided with the new resampling particles of c1 and c2 from the pre-
vious second stage estimation. The two-stage estimation
procedure is recursively implemented until the differences of two
successive estimated c1 and c2 (i.e., jc iterð Þ

i � c iter�1ð Þ
i j) are within

the required precision thresholds (wi, i ¼ 1; 2). The two-stage
recursive particle filter algorithm is provided in the Appendix.

4 Case Study

4.1 Data Description. The method is validated through a tor-
que signal dataset collected from a real pipe connection process.
Twenty-one samples are obtained from a thread pipe connection
machine in the tubular production line. The sampling time is 50
ms. The signal lengths range from 2.132 to 2.850 with regard to
screwing turns. The torque profile has a great deal of variety and
presents diverse patterns. The lateral oscillations exist in each tor-
que signals.

4.2 Results. The specific prior distributions should be initial-
ized to implement the proposed approach on the torque signals.

The associated parameters in the prior distributions are estimated
from the original torque signals. For example, the parameter l of
the normal distribution from state vector x can be estimated from
the piecewise linear regression (PLR) coefficients. Parameter R of

the normal distribution is reasonably assumed to be
r2

0 0

0 r2
1

� �
,

where r2
1 > r2

0, because the dispersion of the associated torque

coefficient is larger than that in the pretorque. The variance r2 of
Gaussian noise ek can be estimated from the variance of the tor-
ques. d1 and d2 can be viewed as two truncated Gaussian random
variables, where the ranges are x1;x2½ � and x2;þ1½ Þ
(x1;x2 > 0). The same rule in Ref. [16] is applied and p1¼ p2¼
0.3 is chosen for transition probabilities to make a fair compari-
son. For simplicity, q is also chosen to be 0.3. Thresholds w1 and
w2 are set to 0.044 and 0.006, respectively, to guarantee the preci-
sions of the detection because the torque change at the sealing
point is much smaller than that at the shoulder point.

In the real case implementations, the number of particles should
be determined at first. To the best of our knowledge, no specific
rules exist to guide how to choose the number of particles for
change point detection through torque signals. When the number
of particles M goes infinity, particles would depict the posterior
distribution of states perfectly; when M is too large, the approxi-
mation is more accurate but the computational time may be very

Fig. 8 A demonstration of pairwise point detection and slope change in the pipe connection
process

Fig. 9 Examples of pairwise point detection in torque signals with common nonlinear profiles

Table 1 Pairwise point detection results of the proposed method and other existing methods on the real pipe connection dataset

First critical point Second critical point Pairwise critical points

Methods SDR (%) RMSET1 SDR (%) RMSET2 SDR (%)

Our method 100.0 283.3 90.48 479.5 90.48
VAM [8] — — 9.52 515.3 —
PLR [20] 33.33 1530.2 90.48 719.8 28.57
Wu’s method [16] 52.38 2408.0 28.57 2460.1 4.76
SPL [9] 76.19 634.0 95.24 1218.3 71.43
SDM [37] 23.81 2956.8 57.14 2424.9 9.52
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long, and vice versa. To fully consider both in-process detection
time of plants and detection accuracy, our strategy is to use as
many particles as possible under the constraints of the in-process
detection time. Thus, the number of the particles M ¼ 1000 is
finally chosen in this case study.

Figure 8 shows one example of pairwise point detection result
from the proposed methodology. As shown in the left panel of
Fig. 8, the torque signal has a cyclic wave due to pipe misalign-
ment or unstraightness of steel pipes, which is common in pipe
connection processes. The proposed method accurately detects the
sealing point (marked in round) and shoulder point (marked by
diamond). The right panel of Fig. 8 shows the slope trend of the
torque signal. The magnitude of the slope is almost unchanged in
each of those three segments and exhibits a significant increment
once the condition of pipe connection process changes, thereby
indicating that the proposed methodology can efficiently filter out
the nonlinear and nonstationary profiles. Figure 9 shows several
examples of detection results of torque signals with an unequal
signal length in the pipe connection process, in which the pro-
posed methodology successfully detects the pairwise critical
points from different signal patterns.

The successful detection rate (SDR) based on this real dataset,
wherein the true points were labeled by the experienced techni-
cians, was calculated to better illustrate the performances of the
proposed method. Owing to the high sampling rate of the torque
signal, a range of turns [�0.3, 0.3] for the sealing point and
[�0.04, 0.03] for the shoulder point was defined as the criteria for
the detection power to meet the engineering requirements, that is,
the tolerances of the successful detections of the critical points
should be within the provided ranges. The detection results for
this test dataset are listed in Table 1. Root-mean-square error tor-
que (RMSET) was used to further measure the differences
between the detected torque values and the label torque values,
because the torque values at the pairwise critical points are impor-
tant quality measures of the connection.

RMSETl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

q¼1

T̂ ql � Tql

� �2

vuut l ¼ 1; 2 (14)

where Tql l ¼ 1; 2ð Þ and T̂ ql l ¼ 1; 2ð Þ are the labeled torque and
estimated torque by the method of the qth torque signal, respec-
tively. Table 1 shows the results, in which the proposed method
achieves 100% accuracy rate for the sealing point, 90.48% accuracy
rate for the shoulder point, and 90.48% accuracy rate for the pair-
wise critical points. Moreover, the proposed method achieved small
RMSET1 and RMSET2, which are 283.3 and 479.5, respectively.

To further demonstrate the sensitivity of our proposed method, we
can define different ranges to validate the successful detection rate of
our proposed method. Given that the engineering specified turn
ranges for sealing point and shoulder point are [�0.3, 0.3] and
[�0.04, 0.03], respectively, we cannot enlarge the ranges but, instead,
shrink the ranges for safety considerations. Table 2 shows the results
of the successful detection rate of our proposed method under
different specified ranges. As can be seen, the proposed method
performs well even if we shrink the engineering specified ranges.

4.3 Comparisons

4.3.1 Comparison With Empirical Method. The empirical
method was developed by VAM [8], which is a leading company

in threaded pipe connection manufacturing. This empirical
method is now extensively used in numerous pipe connection
plants. The proposed method is compared with the empirical
method by using the same dataset and evaluation criteria. The
detection results of the empirical method are listed in Table 1, in
which the accurate shoulder point detection rate of our proposed
method is much higher than the empirical method. A systematic
bias exists in the empirical method based on the results because
all the incorrectly detected torque values of the shoulder points
are lower than the real torque values, which indicates that the
incorrect torque values will not trigger an alarm even if the true
value of the torques is higher than the upper specification limit of
the torque at the shoulder point (see Fig. 5). This is risky because
this nonconforming connected pipe may be passed if no alarm is
triggered. The empirical method performed poorly because it does
not consider the various uncertainties in the pipe connection pro-
cess and only establishes the model based on the nominal torque
curve.

4.3.2 Comparison With Piecewise Linear Regression Model.
Comparisons are also conducted between the proposed method
and a PLR model based on Fmax test [20]. As shown in Table 1,
the accuracy rate of the shoulder point detection of the piecewise
linear regression approach is the same with the proposed method;
however, the RMSET2 is 50% higher than the proposed method.
The accuracy rate of the sealing point detection of the PLR is
66.67% lower than the proposed method. In addition, PLR method
takes longer computational time than our method. On average, the
PLR model takes 29.67% longer time than the proposed method
to complete one sample detection. Figure 10 shows the compari-
son of examples between the proposed methodology and the
PLRs. The left column shows the detection results of the PLR and
the right column shows the detection results of the proposed
method. The PLR approach fails to detect the sealing point from
the torque signals with multiple nonlinear profiles.

4.3.3 Comparison With the Method From Wu’s Paper. The
proposed method is compared with the recent method from Wu’s
paper [16]. Wu et al. proposed a piecewise linear state-space
model to formulate the multiple change point detection problems
and used particle filter to estimate the latest change point. The last
two change points of their method are used for comparison with
the proposed method. Table 1 shows the results of the Wu’s
method. The successful detection rate of the method is much
lower than the proposed method because their method is more
sensitive to multiple nonlinear patterns in torque signals and can
identify a few false change points, thus making the detection inef-
fective in the problem context.

4.3.4 Comparison With the Sequential Piecewise Linear
Approach. The proposed methodology is also compared with the
two-stage SPL approach [9]. This method first detects the poten-
tial change points sequentially by utilizing the two-phase regres-
sion model based on Fmax test and thereafter selects pairwise
critical points through a backward selection method. The detec-
tion results of the sequential piecewise linear approach are also
shown in Table 1. The accurate sealing point detection rate of the
proposed method is 31.25% higher than the sequential piecewise
linear approach. Although the accurate shoulder point detection
rate of the proposed method is lower than the sequential piecewise
linear approach, the proposed method shows a smaller RMSET2.
In addition, the accuracy rate for pairwise critical points of the

Table 2 Sensitivities of successful detection rate of our proposed method

c1 range [�0.3, 0.3] [�0.27, 0.27] [�0.25, 0.25] [�0.23, 0.23] [�0.20, 0.20]
c2 range [�0.04, 0.03] [�0.035, 0.03] [�0.03, 0.03] [�0.03, 0.025] [�0.025, 0.025]
c1 SDR 100.00% 100.00% 100.00% 100.00% 95.24%
c2 SDR 90.48% 90.48% 90.48% 80.95% 80.95%
Pair SDR 90.48% 90.48% 90.48% 80.95% 80.95%
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proposed method is 26.67% higher than sequential piecewise lin-
ear approach.

4.3.5 Comparison With the Slope Detection Method (SDM).
The proposed method is also compared with the slope detection
method (SDM) [37], which estimates slope with a moving win-
dow by ordinary least squares. On the basis of the physical analy-
sis, we identified the locations of the first and second largest
increases of slope as the shoulder and the sealing points, respec-
tively. Here, we chose window size ten to meet the precision of
estimation. The results of the pairwise change point detection are
listed in Table 1. As can be seen, the successful detection rate of
SDM is much lower than our proposed method, and
RMSETi i ¼ 1; 2ð Þ is higher than our proposed method. This is
mainly because multiple nonlinear profiles and literal oscillations
exist in torque sensing signals, which leads to the ineffectiveness
of SDM in our problem context.

5 Conclusion

Detecting the pairwise critical point in threaded pipe connec-
tion process requires the integration of engineering domain
knowledge with the appropriate statistical analysis. A pairwise
critical point detection approach is proposed in this paper by using
torque signals to ensure an accurate quality examination in pipe
connection processes. A three-phase piecewise linear model was

established by integrating the engineering domain knowledge and
mechanical interpretation of the underlying processes. To solve
this three-phase state-space model, an improved two-stage particle
filter algorithm is proposed to estimate the slope change and pair-
wise critical points. In the first stage, state variables are estimated
which integrates stratified sampling and low variance sampling
strategies. In the second stage, the indicator variables of the pair-
wise critical points are estimated based on the state variables in
the first stage with the relevant engineering knowledge.

By comparing the proposed method with the currently used
empirical method and other underlying methods on a real pipe
connection case, the proposed method was found to perform satis-
factorily on pairwise critical point detection. The pairwise critical
point detection procedures provide a better automatic monitoring
method to threaded pipe plants for quality examination of the con-
nection because the quality of the connections is highly relevant
to the locations of the pairwise critical points. The accurate detec-
tion rate of the proposed method provides an effective and reliable
technical support for the quality examination of pipe connection
process.
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Appendix: Two-Stage Recursive Particle Filter

Algorithm

Two-stage recursive particle filter algorithm

Stage 1:
At time k ¼ 1,

(1) For m ¼ 1 to M
Sample x

m½ �
1 � N l;Rð Þ;

Compute w
m½ �

1 ¼ p y1jx m½ �
1 ; c

m½ �
1 ; c

m½ �
2

� �
.

End

(2) Resample w
m½ �

k ; x
m½ �

k

n o
by low variance sampling

At time step k ¼ k þ 1,

If tk < c1

(3) For m ¼ 1 to p1M
Sample x

m½ �
k � h1 xð Þ;

Compute w
m½ �

k ¼ p ykjx m½ �
k ; c

m½ �
1 ; c

m½ �
2

� �
.

End

(4) For m ¼ 1þ p1M to M
Randomly sample x

m½ �
k from p xk�1jy1:k�1; c1; c2ð Þ;

Compute w
m½ �

k ¼ p ykjx m½ �
k ; c

m½ �
1 ; c

m½ �
2

� �
.

End

(5) Back to (2) for resampling

Else if tk < c2

(6) For m ¼ 1 to p2M
Sample x

m½ �
k � h2 xð Þ;

Compute w
m½ �

k ¼ p ykjx m½ �
k ; c

m½ �
1 ; c

m½ �
2

� �
.

End

(7) For m ¼ 1þ p2M to M
Randomly sample x

m½ �
k from p xk�1jy1:k�1; c1; c2ð Þ;

Compute w
m½ �

k ¼ p ykjx m½ �
k ; c

m½ �
1 ; c

m½ �
2

� �
.

End

(8) Back to (2) for resampling

Else if k � T

(9) For m ¼ 1 to qM
Sample x

m½ �
k � m xð Þ;

Compute w
m½ �

k ¼ p ykjx m½ �
k ; c

m½ �
1 ; c

m½ �
2

� �
.

End

(10) For m ¼ 1þ qM to M

Randomly sample x
m½ �

k from p xk�1jy1:k�1; c1; c2ð Þ;
Compute w

m½ �
k ¼ p ykjx m½ �

k ; c
m½ �

1 ; c
m½ �

2

� �
.

End

(11) Back to (2) for resampling

End

Stage 2: Update c1and c2

(1) wci ¼ exp si � kð Þ2=2

� �
k ¼ 2si � T;…;T, i ¼ 1; 2

(2) Resample particles via weights wci and obtain empirical distributions
of ci

(3) ci¼ mean values of the resampled distributions of ci, i ¼ 1; 2

(4) Back to stage 1 to estimate state variables x i½ �
k again (i ¼ 1 to M)

Repeat the aforementioned two stages until jc iterð Þ
i � c iter�1ð Þ

i j<wi,
i ¼ 1; 2
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