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Abstract

Natural dimensional variabilities of incoming fuselages affect the assembly speed and
quality of fuselage joins in composite fuselage assembly processes. Shape control is critical
to ensure the quality of composite fuselage assembly. In current practice, the structures are
adjusted to the design shape in terms of the `2 loss for further assembly without considering
the existing dimensional gap between two structures. Such practice has two limitations: (1)
the design shape may not be the optimal shape in terms of a pair of incoming fuselages
with different incoming dimensions; (2) the maximum gap is the key concern during the
fuselage assembly process, so the `∞ loss of gap after control oughts to be considered. This
paper proposes an optimal shape control methodology via the `∞ loss for composite fuselage
assembly process by considering the existing dimensional gap between the incoming pair of
fuselages. On the other hand, due to the limitation on the number of available actuators in
practice, we face an important problem of finding the best locations for the actuators among
many potential locations, which makes the problem a sparse estimation problem. We are
the first to solve the optimal shape control in fuselage assembly process using the `∞ model
under the framework of sparse estimation, where we use the `1 penalty to control the sparsity
of the resulting estimator. From statistical point of view, this can be formulated as the `∞
loss based linear regression, and under some standard assumptions, such as the restricted
eigenvalue (RE) conditions, and the light tailed noise, the non-asymptotic estimation error

of the `1 regularized `∞ linear model is derived to be the order of O(σ
√

S log p
n

), which

meets the upper-bound in the existing literature. Compared to the current practice, the
case study shows that our proposed method significantly reduces the maximum gap between
two fuselages after shape adjustments.
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1 Introduction

Recently, composite materials are widely used in large space structures due to its superior prop-

erties such as high strength-to-weight ratio. For example, an airplane of Boeing 787 comprises

more than 50% composite parts by weight, and the fuselage is one key composite part of an

aircraft [7]. In practice, there are natural dimensional variations in the fabrication of a fuselage

due to different manufacturing batches or different suppliers [11]. When two fuselages assemble

together, there is a gap, as shown in Figure 1. Such gap will infuence the assembly quality

and productivity of fuselage assembly. Thus, dimension variations influence the speed and the

quality of composite fuselage assembly. As a result, the interface between two fuselages requires

shape adjustments before the composite fuselage assembly process.

Figure 1: Illustrations of composite fuselage assembly.

In practice, actuators are used for shape adjustments of the interface between two composite

fuselages, as shown in Figure 2. More details about using actuators for shape adjustments of

composite fuselages can be found in [19], [20]. In this paper, we focus on the shape adjustments of

interface that are close to the edge plane of the fuselage. In the state of the art, the target shape

after control is the design shape, as shown in Figure 3. The dashed line indicates the design shape

and the solid line shows the shape of an incoming fuselage. The arrows represent the positions of

the actuators used for shape control of the interface. The current shape control strategy regards

the target shape after adjustments as the design shape in terms of the `2 loss, which has two key

limitations. (1) It is non-optimal. For a given pair of incoming fuselages with specific shapes,

adjustment to the design shape is not optimal. In other words, there is no guarantee that the

optimal shape control can be realized by shape adjustments to the design shape for two different
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incoming fuselages. Here, optimality means to achieve the minimum of maximum gap on the

interface between two fuselages after shape control. (2) For fuselage assembly, the maximum gap

between two fuselages is the key quality indicator during the fuselage assembly process. Thus,

the `∞ loss should be considered.

Figure 2: An illustration of shape adjustments by using actuators.

Figure 3: Schematics of interfaces between two fuselages.

In the literature, multiple efforts are made to achieve shape control for structures. To focus

on the research work related to this paper, we mainly introduce the literature for composite

fuselage shape control.

For the shape control of composite fuselages, Wen et al. [19] first develop a new shape

control system based on the Finite Element Analysis (FEA) to improve the dimensional quality
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and productivity. Also, they show the feasibility of shape control for composite fuselages by

using the proposed FEA platform. Based on this FEA platform, Yue et al. [20] propose a

surrogate model-based control strategy by considering the uncertainties for composite fuselage

assembly. By minimizing the `2 loss of dimensional errors in relative to the design shape, they

calculate the optimal forces applied from actuators for single fuselage shape control. Based on

the surrogate model, Du et al. [10] propose an optimal actuator placement strategy for the shape

adjustment of composite fuselages; their strategy reduces the forces applied from actuators and

also dimensional deviations after shape control. However, all these works only consider shape

adjustments of a single fuselage, and aim to adjust the incoming fuselages to the design shapes in

terms of the `2 loss, which meets the requirement of a single shape adjustment. However, when

two fuselages assemble together, the maximum gap, i.e., the `∞ norm of the gap, is one of the

most important quality indicator in a fuselage assembly process. In terms of the maximum gap

reduction for composite fuselage assembly, adjusting incoming fuselages to design shapes cannot

guarantee the optimality given a specific pair of fuselages with different dimensional variations.

Hence, a better shape control strategy is needed in the composite fuselage assembly process.

To fill the aforementioned gap, this paper proposes an optimal shape control strategy for

composite fuselage assembly. We consider minimizing the maximum of dimensional gap between

a pair of incoming fuselages. Instead of adjusting each fuselage into the design shape, we consider

the initial gap between the pair of fuselages and optimize the adjustment into an intermediate

shape.

As shown in [10], one other direct result is that the optimal placement of actuators can

also lead to the improvement of the performance in shape control. In the current paper, as a

part of the optimal shape control strategy for the composite fuselage assembly, we also consider

the optimal placement of actuators for two fuselage assembly. Given the dimensions of the

pair of incoming fuselages, a sparse learning model is proposed to link actuator forces with the

weighted maximum gap deviation of a pair of fuselages. From a statistical point of view, the

proposed sparse learning model is the `1 sparsity penalized `∞ loss linear regression. We also

contribute to analyze the properties of the resulting estimator under a light-tailed sub-Gaussian

errors assumption. Specifically, we provide the non-asymptotic upper-bound of the estimation

error and prediction error in the sparse estimation problem. An alternating direction method
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of multipliers (ADMM)-based algorithm is derived to solve the optimization problem. The

nonzero components of the force vector correspond to the optimal actuator locations. Often

in practice, the last step is to refit the model with only the selected locations and get a more

accurate estimation on the unknown forces. Consequently, the optimal forces applied to the

pair of fuselages can be obtained by minimizing the weighted maximum gap deviation. Finally,

case studies of composite fuselage assembly process are used to verify the effectiveness of our

proposed method.

1.1 Notations

Throughout this work, we will need the following notations. We will denote vectors/matrix as Y ,

X, β, ε, etc, and all the vectors are the column vectors by default. For a matrix A ∈ Rm×n, Aij

denotes the element of A at the (i, j)th location, and Ai denotes the ith column of A. Similarly,

for a vector β ∈ Rm, βi denotes the ith element of β. For a subset S ⊂ {1, · · · ,m}, AS denotes

sub-matrix of A containing the columns whose indices are in S, and βS denotes a sub-vector of

β that contains the elements whose indices are in S. We will use ‖ · ‖p to denote the `p norm.

Specifically, for a vector x ∈ Rn, the `p norm of x is defined as: ‖x‖p := (
∑n
i=1 |xi|p)

1
p . According

to this definition, the `∞ norm of x is simply ‖x‖∞ = maxni=1 |xi|. In the case of the Euclidean

norm, which is also known as the `2 norm, we will simply omit the subscript p (p = 2), i.e., ‖ · ‖.

We will denote the entrywise max norm of a matrix A ∈ Rm×n as ‖A‖∞ = max1≤i≤m,1≤j≤n |Aij |.

Throughout this work, we use the sign(·) function to indicate the sign of a vector or scalar. For

x ∈ R, sign(x) = 1 if x > 0 and sign(x) = −1 otherwise. For a vector β ∈ Rm, sign(β) is a

vector with the ith element equal to sign(βi). For a vector β ∈ Rm, the support of β is defined

as supp(β) = {i : βi 6= 0}. And |supp(β)| denote the cardinality of the set supp(β).

1.2 Outline

In this work, we first provide a detailed description of the physical model that is of concern,

including our justifications of using a linear model with the `∞ loss function in Section 2. Then,

we investigate the theoretical properties of the proposed method, and provide main theoretical

results in Section 3. In Section 4, we propose an efficient algorithm to solve the proposed `∞

optimization problem. Our method is based on ADMM. A case study on fuselage assembly
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process using the FEA generated data is studied in Section 5, which validates the effectiveness

of our proposed approach in this type of engineering problems. Finally, we conclude our work

in Section 6. All the proofs of our main theorems are provided in the Appendix.

2 Physical model

In this section, before going to the statistical analysis, we provide necessary background of our

physical model. For the composite fuselage shape control, only elastic deformation is allowed

during the shape adjustment. In this paper, we assume linear mechanical behavior of fuselage

deformation that corresponds to the actuator forces. Consequently, the adjusted shape deviations

can be formulated as

δi = ψi + UiFi, i = 1, 2. (1)

where i indicates the ith fuselage, δi ∈ R2n
i is the error in Y and Z directions after shape

control and n denotes the number of measurement points for each fuselage; ψi and Ui ∈ R2n×mi

represent dimension deviations and displacement matrix of incoming fuselage i, respectively, and

mi denotes the number of feasible positions (e.g., candidate positions where an actuator may

be placed) for actuators in the ith fuselage edge plane; Fi is the applied force during shape

control of the fuselage i. The physical interpretation of the displacement matrix Ui is that Ui

is the deformation of all the measurement points correspond to the unit force on the structure.

Without loss of generality, we assume that the locations of measurement points are the same.

Therefore, the dimensional gap between two fuselages after shape adjustment can be written as

∆ = δ2 − δ1 = ψ2 + U2F2 − (ψ1 + U1F1). (2)

Similar to [10], Ui, i = 1, 2, can be obtained from the surrogate model. Notably, the registration

between two fuselages is needed if the number of measurement points for the pair of fuselages is

not the same, which can be easily solved through a method that is proposed in [8].

For the composite fuselage assembly process, the main concern before assembly is the max-

imum gap and its location along the interface between the two fuselages. In this paper, our

objective is to minimize the weighted maximum gap between the pair of fuselages in both Y and
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Z directions, i.e., ∆max, which is defined as

∆max = ‖B∆‖∞, (3)

where B ∈ Rn×n is a diagonal matrix of weights, which represent the importance of the gaps

in different measurement points. Such weight matrix is determined based on some engineering

knowledge. For example, if we emphasize the dimensional gap on the upper fuselage, we can add

more weight in the part of the B matrix that correspond to the upper fuselage.

Usually in practice, we only have a limited number of actuators available. Thus, among

many potential choices of positions of actuators, we want to find the most effective ones, which

may correspond to a sparse solution. Recall that the optimal actuator locations are the nonzero

locations in the solution. Let m1 and m2 denote the numbers of all feasible locations for actuators

along the pair of fuselages, while only a total number of M actuators are available for the shape

control process in practice. In order to encourage the sparsity in the resulting solution, we add

a sparsity-induced penalty, namely, the `1 penalty, on the unknown forces at different locations:

min
F1,F2

J := ‖B∆‖∞ + λ‖F1‖1 + λ‖F2‖1, (4)

where λ is the tuning parameter, which controls the sparsity of the resulting estimation.

From the solution of Problem (4), the optimal actuator placement is obtained from the

support of F1 and F2 for the shape adjustments of the pair of fuselages. In order to reduce the

bias on the estimation of the forces,which are denoted by F1 and F2, we refit the model using

the optimal positions and the optimal forces can be obtained by solving the following problem:

min
F1,F2

J := ‖B(ψ2 − ψ1 + (U2)S2(F2)S2 − (U1)S1(F1)S1)‖∞ (5)

where S1 = supp(F1), S2 = supp(F2).

In order to make the above physical model more evident to the statisticans without engineer-

ing background, we rewrite the physical model as follows:

min
β
‖Y −Xβ‖∞ + λ‖β‖1, (6)

where Y = B(ψ2 − ψ1), X = [BU1,−BU2], and β = [F ′1, F
′
2]′. More details of rewriting the

physical model as a statistical problem will be provided in Section 3.
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From the statistical perspective, the above formulations can be viewed as the linear regression

problem with `∞ loss and `1 regularization, and then refitting the model using only the nonzero

locations, which helps reduce the bias on the estimation of the forces, i.e., F1 and F2. In this

way, we can have a better estimation in practice.

In the statistical literature, the parameter estimation based on the `∞ loss has been studied

since 1980, such as applications in the physical and environmental sciences [13, 21, 17], signal

processing and systems engineering [16, 1, 6], and so on. However, the theoretical guarantee is

very limited, especially in the sparse estimation framework.

There are two main directions studying regression analysis in the statistical literature. The

first one focuses on the asymptotic distribution in linear regression in a well-posed setting,

where we have many more observations than the number of feature variables, and there is no

assumption on the sparsity of the unknown signals. Reference [15] studies the problem of `∞

(or Chebyshev) estimator, which minimizes the maximum absolute residual under the condition

where the noise distribution is known to have bounded support or light tails. They derived the

asymptotic distribution of the estimator in the low dimension setting.

The second one focuses on problems in the ill-posed settings, or settings where the unknown

signal is sparse. In other words, there are far more feature variables than the number of obser-

vations or there are a lot of zero components in the coefficients. The Dantzig selector proposed

in [5] solves the following problem:

min
β∈Rp

‖β‖1,

s.t. ‖XT (Y −Xβ)‖∞ ≤ λσ,
(7)

where the constrained optimization problem seeks to minimize the `1 sparsity objective function

within the feasible region, where ‖XT (Y − Xβ)‖∞ ≤ λσ. It can be easily seen that the term

XT (Y − Xβ) is simply the first order derivative of the least square loss. Thus, the constraint

‖XT (Y − Xβ)‖∞ ≤ λσ will ensure that the scale of the first order derivative of the least

square loss is very small. Essentially, Dantzig selector solves a similar problem as the lasso, i.e.,

minimizing the least square loss [14].

However, theories to the previous models do not apply to our problem, where we have the

incentive to minimize ‖Y − Xβ‖∞ loss. In Section 3, we rewrite the above sparse estimation

problem using the `∞ loss in the statistical language in details, and provide theoretical results on
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the non-asymptotic upper-bounds of the estimation error and prediction error under the linear

model setting with light tailed sub-Gaussian errors.

3 Theoretical Results

In this section, we rewrite the above physics model in statistical language to make the prob-

lem clearer with reader with no engineering background. Specifically, we give the statistical

formulation in Subsection 3.1. Then we present our main theoretical results in Subsection 3.2.

3.1 Model in statistical language

We will consider the linear model throughout this work:

Y = XTβ + ε. (8)

For all observations, it is assumed that all elements in the vector ε, i.e., εi, for i = 1, · · · , n,

are independent sub-Gaussian random variables with common variance σ2 and mean 0. As in

our motivated example, we want to estimate the forces, which will minimize the `∞ norm of the

gap between fuselages along the interface. Thus, we propose the following formulation of the

estimation problem:

min
β
‖Y −Xβ‖∞, (9)

where Y − Xβ is the estimated gap between two fuselages after control. In our motivated

application, we believe the underlying forces are sparse to find the optimal locations of the

actuators, i.e., the β vector is sparse. Thus, in this work, we mainly focus on the scenario where

the β vector is sparse. However, our results also applies for the high-dimensional scenario where

p � n, and the signal (i.e., the coefficient vector) is sparse to guarantee the feasibility of the

system. In order to derive the sparsity of the resulting solution, we will consider the regularized

version of Problem (9) with `1 penalty on the unknown parameter, which is the Problem (6) .

Notably, the Problem (6) is equivalent to the formulation as follows [18],

min
β∈Rp

‖β‖1,

s.t.
1√
n
‖Y −Xβ‖∞ ≤ λ0,

(10)
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where λ0 > 0 is a tuning parameter to control the sparsity of the resulting estimation. Also, λ0

and λ has the one-to-one correspondence. It can be easily checked that Problem (10) is a convex

system and can be recast as a linear programming (LP) problem:

min
γ∈R+p

p∑
i=1

γi

s.t. − γi ≤ βi ≤ γi, for i = 1, · · · , p

− λ0 ≤
1√
n

(Y −Xβ)j ≤ λ0, for j − 1, · · · , n.

(11)

For the interest of our proof, we use the constrained version as shown in Problem (10) in our

theoretical analysis.

3.2 Main results

In this section, we present our main theoretical results on the estimation error of the resulting

estimator that is proposed in Formulation (10). The proofs are postponed to the Appendix.

3.2.1 Restricted strong convexity assumption

In this subsection, we will summarize the assumptions we need for deriving the main results.

These are standard assumptions used in the statistical literature on recovering the sparse signals.

Definition 3.1. The restricted strong convexity (RSC) condition on model matrix X with respect

to a set C is the following, there exists some constant γ > 0 such that:

1
nνX

TXν

‖ν‖22
≥ γ for all nonzero ν ∈ C,

where γ is called the restricted eigenvalue bound with regard to C.

Assumption 3.2. The restricted strong convexity (RSC) condition holds on the following set:

C = {ν ∈ Rp |‖νSC‖1 ≤ ‖νS‖1 } .

We have C ⊂ Rp strictly since it is of the form of a cone.

The RSC (Assumption 3.2) is a standard assumption in the literature for proving the con-

sistency results of regularized high-dimensional sparse estimation problems. According to [4, 5],
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the assumption on restricted strong convexity condition will hold with high probability for ran-

dom design matrices X, such as a random matrix with i.i.d. Gaussican entries, or Rademacher

entries.

3.2.2 Estimation error upper-bound

Before we give the estimation error upper-bound, we first prove a lemma, which states that the

unknown ground truth β∗, is feasible to Problem (10) with high probability.

Lemma 3.3. Let λ0 = σ
√
α log p

n for some α > 2, then with probability exceeding 1− 2n
p ·(

1
p )

α−2
2 ,

the unknown ground truth β∗ is a feasible solution to Problem (10).

This lemma basically tells that, if the noise in the data generation is sub-Gaussian, when

2n
p · (

1
p )

α−2
2 → 0, the ground truth β∗ lies in the feasible region of Problem (10). Further, if the

noise has a bounded distribution within the interval [−λ0, λ0], β∗ lies in the feasible region of

Problem (10) with probability 1.

Theorem 3.4. Let β̂ denote the optimal solution to Problem (10). Suppose β∗ is any unknown

sparse ground truth with |supp(β)| ≤ S, and the restricted strong convexity assumption holds

for the observed feature matrix X with γ in C. Let λ0 = O(σ
√

log p
n ). We have the following

non-asymptotic upper-bound on the estimation error:

‖β̂ − β∗‖2 ≤ O(σ
√
S log p). (12)

According to the above result, the performance of sparse parameter estimation from Problem

(10) is guaranteed. Not only we will be able to recover the sparse unknown parameter in the

high-dimensional scenario, but also we can bound the mean squared error (MES) of the resulting

estimation in an order of O(σ
√
S log p). This upper-bound in fact is consistent with the MSE in

[5].

However, we may obtain a better bound if we add one more condition: the maximum absolute

column sum of the matrix norm of the observed feature matrix X: ‖X‖1 := maxpi=1 ‖Xi‖1 is

also in the order of
√
n. This condition usually holds with sparse matrix, where there are a lot

of 0 entries, or even matrix with columns, where the entry values decay exponentially. This is

almost the case for the fuselage shape control problem that the feature matrix X = (BU1,−BU2)
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has a lot of near zero (magnitude of 10−6) entries due to the holding fixtures of the fuselages.

Specifically, we state our conclusion in the following theorem:

Theorem 3.5. Let β̂ denote the optimal solution to Problem (10). Suppose β∗ is any unknown

sparse ground truth with |supp(β)| ≤ S, and the restricted strong convexity assumption holds

for the observed feature matrix X with γ in C. Let λ0 = O(σ
√

log p
n ). If we further have that

‖X‖1 = O(
√
n), we have the following tighter non-asymptotic upper-bound on the estimation

error:

‖β̂ − β∗‖2 ≤ O(σ

√
S log p

n
). (13)

The proofs to Theorem 3.4 and 3.5 are in Appendix A.2 and A.3, respectively. The above

Theorem 3.4 and 3.5 essentially state that with high probability, the optimal solution from our

proposed formulation in (10) is very close to the unknown ground truth, with their difference

bounded by O(σ
√

S log p
n ).

3.2.3 Prediction Error Upper-Bound

Theorem 3.6. Under the assumptions of Theorem 3.5, we have the following upper-bound for

the prediction error:

‖X(β̂ − β∗)‖2 ≤ O(σ

√
S log p

n
). (14)

The proof is simple, which is due to the by-product in the proof of Theorem 3.5 and is shown

in Appendix A.4. This theorem tells that even if we are aiming to find a sparse solution to

minimize the `∞ loss function, the resulting solution will still produce a good estimation in the

sense of the mean squared error.

4 Algorithm

In this section, we proposed an algorithm to efficiently solve the optimization problem (4) and

(5) based on the ADMM algorithm [3]. Compared to the gradient method that is sensitive to the

choice of the step-size, the ADMM algorithm is robust to the parameter selection for algorithm

convergence [12]. The ADMM algorithm is well suited to the convex optimization problem with
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separate objectives, which is the case of the optimization problem (4), so we adopt ADMM

algorithm for parameter estimation. Problem (4) can be further written as

min
y

(

2∑
i=1

fi(yi) + g(z)), (15)

where

f1(y1) = ‖B(ψ2 − ψ1 + U2F2 − U1F1)‖∞ = ‖y1‖∞,

f2(y2) = λ‖F1‖1 + λ‖F2‖1 = λ‖y2‖1,

y2 = [F ′1, F
′
2]′,

y1 = Ay2 + b, A = [−BU1, BU2], b = B(ψ2 − ψ1), y = [y′1, y
′
2]′.

g(z) =

∞, Ez 6= b,

0, otherwise,

E = (I,−A), z = y.

According to the ADMM formula, the algorithm for the above problem can be written as

yk+1
i = proxfi(z

k
i − uki ), (16)

zk+1 = proxg(y
k+1 + uk), (17)

uk+1 = yk+1 + uk − zk+1. (18)

Here, proxf (x) is the proximal operator of f , which defined as

proxf (x) = arg min
u

(
f(u) + 1/2‖u− x‖22

)
. (19)

The proximal operator proxfi and proxg can be analytically derived if we formulated the opti-

mization problem in this way. From Chapter 6 of [2], the proximal operators of functions fi(yi)

and g(z) can be derived as

proxf1(y1) = y1 − PB‖·‖1[0,1]
(y1), (20)

proxf2(y2) = Sλ/ρ(y2), (21)

proxg(z) = z − E′(EE′)−1(Ez − b), (22)
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where PB‖·‖1[0,1]
(·) is the projection onto the unit ball G = B‖·‖1[0,1] = {x ∈ Rn : ‖x1‖1 ≤ 1},

and

PB‖·‖1 [0,1](y1) =

y1, ‖y1‖1 ≤ 1,

Sλ∗(y1), ‖y1‖1 > 1,

where λ∗ is any positive root of the non-increasing function ϕ(λ) = ‖Sλ(y1)‖1− 1. Sλ is the soft

thresholding operator of ‖ · ‖1, which is

Sλ(v) = (v − λ)+ − (−v − λ)+, (23)

where (x)+ is short for max{x, 0}.

Due to the convexity of Problem (4), the convergence of the ADMM is guaranteed given

a reference point and we can obtain the global optimum of the optimization Problem (4). In

practice, Boyd et al. [3] suggested that a reasonable termination of the ADMM is that both the

primal and dual residuals should be small, i.e.,

‖rk‖2 ≤ e1, ‖sk‖2 ≤ e2, (24)

where rk = yk − zk is the primal residual, and sk = −ρ(zk − zk−1) is the dual residual. e1 > 0

and e2 > 0 are the tolerances, which can be chosen by using an absolute criterion and a relative

criterion, i.e., we have

e1 =
√
me3 + e4 max{‖zk‖2, ‖yk‖2}, (25)

e2 =
√
me3 + e4‖ρuk‖2, (26)

where m = m1 + m2, e3 > 0 and e4 > 0 are an absolute tolerance and a relative tolerance,

respectively. The following algorithm is proposed for estimations of F1 and F2, and K is the

maximum number of iterations.

Since we have the sparsity requirement of ‖F1‖0 + ‖F2‖0 ≤ M , the λ value needs some

investigations. Binary search can be used for computing for this value to meet the aforementioned

requirement. The lower bound of the search range is trival, which is 0, but the upper bound

needs some theoretical investigations. In the following Proposition 4.1, we provide an upper

bound of the search range.

Proposition 4.1. If we choose the tuning parameter λ in the Problem (4) such that λ > ‖X‖∞,

X = [BU1,−BU2], there exists one unique global minimum to (4) , with β̂ = [F ′1, F
′
2]′ = 0.
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1: Input: ρ, λ, e3, e4,m1,m2, n,B, U1, ψ1, U2, ψ2, A, b

2: Initialize z0, u0

3: loop:

4: for k = 1 : K do

5: uk1 = {uki }i=1,...,2n, u
k
2 = {uki }i=1+2n,...,2n+m1+m2

,

6: zk1 = {zki }i=1,...,2n, z
k
2 = {zki }i=1+2n,...,2n+m1+m2

,

7: yk+1
1 = zk1 − uk1 − PB‖·‖1[0,1]

(zk1 − uk1),

8: yk+1
2 = Sλ/ρ(z

k
2 − uk2),

9: yk+1 = [(yk+1
1 )′, (yk+1

2 )′]′,

10: zk+1 = yk+1 + uk − E′(EE′)−1(Ez − b),

11: uk+1 = uk + yk+1 − zk+1,

12: rk+1 = yk+1 − zk+1,

13: sk+1 = ρ(zk+1 − zk),

14: e1 =
√
me3 + e4 max{‖zk+1‖2, ‖yk+1‖2},

15: e2 =
√
me3 + e4‖ρuk+1‖2,

16: if ‖rk+1‖2 ≤ e1, and ‖sk+1‖2 ≤ e2 then

17: return y2

18: end if

19: end for
Algorithm 1: The ADMM of estimating y2 = [F ′1, F

′
2]′
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The main idea to prove this proposition is that at any point that is not the origin, we can

find a direction, along which, the objective value decreases. Due to space limit, we postpone the

proof into Appendix A.5.

According to Proposition 4.1, we can set ‖X‖∞ as the upper bound of the search range to

find the λ value that meets the requirement ‖F1‖0 + ‖F2‖0 = M . The nonzero components

of F1 and F2 correspond to the optimal locations of actuators for shape control of fuselage 1

and fuselage 2, respectively. Then, the forces from each actuator can be found by solving the

optimization problem (5). Similarly, the ADMM algorithm can also be used in (5) to get the

optimal solution by the Algorithm 2 in Appendix B.

5 Case study

In this section, we use the fuselage assembly process to validate the proposed methodology.

We present our detailed experiment setting and report our results in Subsections 5.1 and 5.2,

respectively.

5.1 Numerical setting

In this case study, we use an FEA model [19] to generate data and validate the proposed method-

ology. The FEA model used in this case study has been validated with the experimental data,

and more details about FEA model can be found in [19, 20]. For shape adjustments of single

fuselage, the method from [10] achieves the best control performance in terms of reduction of

shape deviations after adjustments and the forces applied during shape adjustments.

In order to make a fair comparison between our methods and the best result of composite

fuselage shape control in current literature, we use the same FEA data from [10]. There are 20

incoming fuselages with different dimensional variations. Based on engineering practice, in each

pair of the fuselages, m1 = m2 = 18 feasible actuators are equally placed from -12 degrees to

192 degrees in the lower part of each fuselage. More details about the data generation can be

found in [10]. M = M1 +M2 = 18 actuators are used for shape adjustments of two fuselages in

this case study. The number of measurement points along the interface of the pair of fuselages

are n1 = n2 = n = 182, weight matrix is set to be B = diag(1/n), and U1 = U2 are chosen to be
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the same with [10] for comparison purpose.

In practice, some elements of displacement matrix Ui, i = 1, 2, are very small due to the

structures of composite fuselages, such as the elements of Ui near the fixture. Specifically, we

checked our displacement matrix Ui and find that the element scales decays almost exponentially

for each column, which satisfies our column norm assumption in Theorem 3.5. To achieve

a better computational performance, such as reducing floating point errors [9], we multiply

a large constant number LN in the objective function ‖B(ψ2 + U2F2 − (ψ1 + U1F1))‖∞ and

‖B(ψ2 + U2
cF2

c − (ψ1 + U1
cF1

c))‖∞ in the optimization Problems (4) and (5), which does not

change the optimal solution. In this way, the computational problems induced by Ui matrix can

be alleviated in real implementations. In this case study, we set LN = 107. In terms of the

ADMM algorithm, we set ρ = 1, e3 = 10−6, e4 = 10−5.

5.2 Results of the proposed method

In this case study, we randomly pick up two different fuselages from 20 incoming fuselages and

have 50 replications. Consequently, we have 50 pairs of fuselages for assembly. According to the

engineering practice, we use root mean square gap (RMSG), maximum gap (MG), and maximum

force (MF) to evaluate the control results. These quantities are defined as follows:

RMSG :=
1

n

√
∆′ ·∆, (27)

MG :=
√
‖∆Y ∗∆Y + ∆Z ∗∆Z‖∞, (28)

MFi := ‖Fi‖∞, i = 1, 2, (29)

where ‘∗’ indicates the Hadamard product, and ∆Y ∈ Rn and ∆Z ∈ Rn are the first and last n

elements of ∆, respectively. Thus, MG captures the maximum gap for two fuselage assembly.

Notably, we only evaluate the MFi for the safety purpose during the fuselage shape control, since

large force may destroy the fuselage structure during fuselage shape control. The control results

of the proposed method on these 50 pairs of fuselages assembly are shown in Table 1. Since we

care more about the maximum gap after control and maximium force used for shape control in
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fuselage assebly process, we also listed the maximum (max) of RMSG, MG and MF for these

50 pairs. The results show that the proposed method perfoms well in terms of the maximum

gap by using relatively smaller forces, which is acceptable for fuselage assembly in practice. The

following Figure 4 and Figure 5 show the box-plots of the fuselage gap after control and the

maximum forces used for shape control in these 50 pairs.

RMG (inches) MG (inches) MF1 (lbs) MF2 (lbs)

Mean 0.0014 0.0034 304.73 307.42

Max 0.0023 0.0060 553.83 776.86

Std 0.0004 0.0011 101.43 131.01

Table 1: Control results of our method on 50 pairs of fuselages.

Figure 4: The boxplots of RMS gap and Max gap of 50 pairs of fuselages after control by the

proposed method.

5.2.1 Comparisons

In this subsection, we compare the proposed method with the current practice [10], which is to

force the incoming fuselage into the design shape in terms of the `2 loss, and then assemble. We
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Figure 5: The boxplots of max control forces for fuselage 1 and fuselage 2 by the proposed

method.

randomly choose one pair of fuselages to compare the performance of the proposed method with

the one in [10]. Figure 6 shows the incoming fuselage dimensions at the interface between two

fuselages and the proposed acutator locations of fuselage 1 and fuselage 2. Similarly, we also

show the incoming fuselage dimensions and the acutator locations from [10] of fuselage 1 and

fuselage 2 in Figure 7. To show the incoming dimensional variations more clearly, we magnify

the distortions 150 times since the dimensional error is much smaller than the dimension of the

fuselage. The marked round points are the locations of actuators. As shown in the Figure 6 and

Figure 7, the optimal actuator locations of the proposed method are different from [10] . This is

because our method aims to minimize the maximium gap between the pair of assembly fuselages,

while [10] aims to control single fuselage into design shape and then assembly. We also show

the shape adjustments of the proposed method and the one in [10] for this pair of fuselages in

Figure 8 and Figure 9, respectively. The black dots show the intial dimensional gap between two

fuselages in Y and Z directions; the green dots and blue dots show the adjustment from fuselage

1 and fuselage 2 in Y and Z directions; the red dots are the final adjusted gap after control in Y

and Z directions. As shown in Figure 8, the shape adjustments of our method reduces the intial

gap and successfully adjusts the shape. Compared to our method, the method from [10] adjusts

the shape of incoming fuselage seperately (shown in Figure 9) since the goal of this method is to
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adjust the shape of the fuselage into the design shape. The control performance is not as good

as the proposed method since we can see larger variations around 0 in Figure 9. This pair of

fuselages illustrates the effectiveness of the proposed method in detail.

Figure 6: Incoming fuselage dimensions and the proposed actuator locations for fuselage 1 and

fuselage 2.

Figure 7: Incoming fuselage dimensions and the actuator locations from [10] for fuselage 1 and

fuselage 2.

In order to better illustrate the improvement of the proposed method, we calculated the

improvements on the gap after shape adjustments, and use statistical t test to test the significance

of the improvement on the gap. The improvement results on mean and standard deviation (std)
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of the gap after adjustments are listed in Table 2. Notably, the improvement means the control

results via current practice [10] minus the results of the proposed method. The null hypothesis

H0: the improvement comes from a distribution with mean zero, i.e., no significant improvement.

The alternative hypothesis H1: the mean of improvement is greater than 0 (right-tailed test),

which indicates the proposed method reduces the dimensional gap after control. The p−value is

also listed in Table 2. As shown in Table 2, compared with [10], the proposed method significantly

reduces the maximum gap (MG) and RMS gap (RMSG) for two fuselage assembly. The box-plots

of MG and RMSG improvement are shown in Figure 10.

Figure 8: Incoming fuselage dimensions and the actuator locations from [10] for fuselage 1 and

fuselage 2.

MG Improvement (inches) RMSG Improvement (inches)

Mean Std P-value Mean Std P-value

0.0154 0.0074 6.19× 10−20 0.0048 0.0023 5.40× 10−20

Table 2: Gap reduction of our method compared with method from [10].

5.3 Discussions

A contribution in this paper is that we propose an optimal shape control strategy for composite

fuselage assembly. In practice, the main concern during the composite fuselage assembly process
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Figure 9: Incoming fuselage dimensions and the actuator locations from [10] for fuselage 1 and

fuselage 2.

Figure 10: The boxplots of improved max and RMS gap after control compared with method

from [10].
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is the maximum of the dimensional gap. Consequently, the objective of this paper is to minimize

the maximum gap in composite fuselage shape control instead of using the square error as in

[10]. The goal of [10] is to achieve the optimal actuator placement for shape control of single

fuselage, and the target shape after shape control is the design shape. In the case study, our

method performs much better than the method in [10] in terms of the maximum gap after the

shape control. Also, by considering the initial gap between the pair of fuselages, the resulting

RMSG is also smaller than those in [10].

6 Conclusions

This paper proposes an optimal shape control strategy for composite fuselage assembly. Due to

natural dimensional variations of fuselages, there is a gap on the interface of two fuselages before

assembly. The current practice adjusted the shape of each fuselage to the design shape in terms

of the `2 loss and then assemble, which is not optimal for the case of two fuselage assembly. Our

contribution is to consider the initial gap of the pair of incoming fuselages and propose a sparse

learning model, which aims to minimize the maximum gap (`∞ loss) after shape control. From

the statistical view, the proposed model is `1 sparsity-driven penalized `∞ loss linear regression.

Under the linear model with light tailed sub-Gaussian errors assumption, we provide the non-

asymptotic upper-bound of the estimation error, measurement error, and prediction error. The

real case studies of composite fuselage assembly validate the proposed method according to

its control performance. Compared with the current literature, the case study shows that our

method achieves significant reduction of the maximum gap after control. Notably, although our

method is demonstrated for optimal shape control in composite fuselage assembly process, the

methodology can be extended for optimal shape control of assembly process in other structures.
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Appendix

All the proofs in this paper are provided in this appendix. The proofs of main results in Section

3.2 are in Appendix A, and the Algorithm 2 in Section 4 is provided in Appendix B. Specifi-

cally, the proofs of Lemma 3.3, Theorem 3.4 and Theorem 3.5 are given in A.1, A.2 and A.3,

respectively.

A Proofs in Section 3.2

Throughout this proof, we will assume that the variance parameter in Formulation (8): σ2 = 1.

We will also assume that the observed feature matrix X is standardized with column mean as 0

and standard deviation in the order of
√
n. The general case would follow from a simple rescaling

procedure. Denote S0 := supp(β∗), the support set of the ground truth β∗.

A.1 Proof of Lemma 3.3

Proof. Given the data generation mechanism in (8), the random error vector ε is independent

sub-Gaussian random variables. We thus have the following tail inequality:

P(
εi√
n
> t) ≤ 2e−

nt2

2 .

By Bonferroni bound, we have

P(‖ εi√
n
‖∞ > t) ≤ 2ne−

nt2

2 .

Let t = O(
√

log p
n ), say λ0 = t =

√
α log p

n for some α > 2, we have with probability larger than

1− 2n
p · (

1
p )

α−2
2 ,

| εi√
n
| = 1√

n
|Yi − 〈(XT )i, β

∗〉| ≤ λ0,

for all i = 1, · · · , n.

A.2 Proof of Theorem 3.4

Proof. In order to prove the statement, we will need the following lemma.
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Lemma 1.1. Denote ν = β̂ − β∗, the difference vector of the optimal solution and the ground

truth. We have ν ∈ {x ∈ Rp : ‖xSc0‖1 ≤ ‖xS0‖1}, which is a cone in Rp.

Proof. Due to the definition of β̂, which is the optimal solution to (10), and β∗ is a feasible

solution to (10), we have

‖β̂‖1 ≤ ‖β∗‖1.

Thus, we have

‖β∗‖1 ≥ ‖β̂‖1

= ‖β∗ + ν‖1

= ‖(β∗ + ν)S0‖1 + ‖(β∗ + ν)Sc0‖1

≥ ‖β∗S0‖1 − ‖νS0‖1 + ‖νSc0‖1

≥ ‖β∗‖1 − ‖νS0‖1 + ‖νSc0‖1,

which proves the lemma.

According to the restricted eigenvalue assumption, we have the following inequality:

γ‖ν‖22 ≤
1

n
‖Xν‖22. (30)

On the other hand,

1

n
‖Xν‖22 =

1

n
νTXTXν

≤ 1

n
‖XTXν‖∞‖ν‖1.

(31)

Since ‖νSc0‖1 ≤ ‖νS0‖1, and according to Cauchy–Schwarz inequality, we have

‖νSc0‖1 ≤ ‖νS0‖1 ≤
√
S‖νS0‖2.

Thus, we have

‖ν‖1 = ‖νSc0‖1 + ‖νS0‖1

≤ 2‖νS0‖1

≤ 2
√
S‖νS0‖2

≤ 2
√
S‖ν‖2.

(32)
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For 1
n‖X

TXν‖∞, we have

1

n
‖XTXν‖∞ =

p
max
i=1
|〈 1√

n
Xi,

1√
n
Xν〉|

≤ p
max
i=1
‖ 1√

n
Xi‖1‖

1√
n
Xν‖∞

≤ ‖ 1√
n
X‖1‖

1√
n
Xν‖∞.

(33)

According to our Formulation (10), and the fact that both β̂ and β∗ are feasible to (10), we have

‖ 1√
n
Xν‖∞ ≤ 2λ0.

According to the normalization on X and Cauchy–Schwarz inequality, we have

‖ 1√
n
X‖1 ≤ O(

√
n). (34)

Combing the upper-bounds above, we have

γ‖ν‖22 ≤
1

n
‖Xν‖22 ≤

1

n
‖XTXν‖∞‖ν‖1

≤ O(λ
√
Sn)‖ν‖2.

(35)

Thus we obtain that

‖ν‖2 ≤ O(
√
S log p). (36)

A.3 Proof of Theorem 3.5

Proof. Recall the way we bound ‖ 1√
n
X‖1 in Inequality (34), if we in addition have that ‖X‖1 =

O(
√
n), we have

γ‖ν‖22 ≤
1

n
‖Xν‖22 ≤

1

n
‖XTXν‖∞‖ν‖1

≤ O(λ
√
S)‖ν‖2.

(37)

Thus we obtain that

‖ν‖2 ≤ O(

√
S log p

n
). (38)
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A.4 Proof of Theorem 3.6

Proof. The proof simply follows from the previous proofs:

1

n
‖Xν‖22 ≤

1

n
‖XTXν‖∞‖ν‖1

≤ O(λ
√
S)‖ν‖2

= O(
S log p

n
).

(39)

A.5 Proof of Proposition 4.1

Proof. In order to make the proof more clear, we use the equivalenty statistical form, i.e., Problem

(6) for the proof.

We will start with the simplest case where p = 1. In this case, we have the objective as

min ‖Y −Xβ‖∞ + λ|β|, (40)

where Y,X ∈ Rn, β ∈ R. By the definition of the `∞ norm, we can further write the objective

in (40) as

min ‖Y −Xβ‖∞ + λ|β|

= min max
i=1,··· ,n

{|Yi −Xiβ|}+ λ|β|.

It can be directly seen that this is a convex problem. For the first part maxi=1,··· ,n{|Yi−Xiβ|},

which is the maximum of a set of convex functions, the resulting function is still convex. The

second part λ|β| itself is convex. Finding the minimum to (40) is equivalent to find a stationary

solution to it.

On the one hand, for any β0 > 0, we have λ|β| = λβ. Let i ∈ I = {i : |Yi − Xiβ0| =

‖Y −Xβ0‖∞}, we have in a small neighborhood of β0, ‖Y −Xβ‖∞ = |Yi −Xiβ|. Thus in this

small neighborhood [β−, β+], where β−, β+ ≥ 0, the objective is simply

f(β) = |Yi −Xiβ|+ λβ.

By first order condition of the above function f(β), we have

∂f(β) = λ− sign(Yi −Xiβ)Xi.
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According to the assumption on λ, the function f(β) is increasing in the small neighborhood

[β−, β+].

On the other hand, for any β0 < 0, we have λ|β| = −λβ. Let i ∈ I = {i : |Yi − Xiβ0| =

‖Y −Xβ0‖∞}, we have in a small neighborhood of β0, ‖Y −Xβ‖∞ = |Yi −Xiβ|. Thus in this

small neighborhood [β−, β+], where β−, β+ ≤ 0, the objective is simply

f(β) = |Yi −Xiβ| − λβ.

By first order condition of the above function f(β), we have

∂f(β) = −λ− sign(Yi −Xiβ)Xi.

According to the assumption on λ, the function f(β) is decreasing in the small neighborhood

[β−, β+].

Using the two observations above, we can obtain that β = 0 is the unique global minimum

for the objective in (40).

Now, we will generalize the above proof in the 1D case to high-dimensional case, where we

assume β ∈ Rp, p > 1.

For any β0 ∈ Rp, let J = {j : β0j 6= 0}. Define the neighborhood of β0 as N = {β ∈

Rp : βj = 0, for j 6∈ J ;βj ∈ [β0j − ε, β0j + ε], for j ∈ J}, where ε > 0 is chosen such that

(β0j − ε)(β0j + ε) > 0 for all j ∈ J .

Let i ∈ I = {i : |Yi −Xiβ0| = ‖Y −Xβ0‖∞}, we have that in the small neighborhood N of

β0, ‖Y −Xβ‖∞ = |Yi −Xiβ|. Thus within this small neighborhood N , the objective is simply

f(β) = |Yi −Xiβ|+ λ‖β‖1.

By first order condition of the above function f(β), we have

∂f(β) = λsign(β)− sign(Yi −Xiβ)Xi,

where sign(β) ∈ Rp is the indicator vector of the signs for β. According to the assumption on

λ, (∂f(β))k > 0 for k ∈ K1 = {k : β0k > 0}; (∂f(β))k < 0 for k ∈ J/K1. Thus we conclude

that β = 0, is the unique global minimum for the objective in (10), which is [F ′1, F
′
2]′ = 0 in the

Problem (4).
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B Algorithm 2
.

1: Input: ρ, λ, e3, e4, n,M,B,U1, ψ1, U2, ψ2, A, b

2: Initialize z0, u0

3: loop:

4: for k = 1 : K do

5: uk1 = {uki }i=1,...,2n, u
k
3 = {uki }i=1+2n,...,2n+M ,

6: zk1 = {zki }i=1,...,2n, z
k
3 = {zki }i=1+2n,...,2n+M ,

7: yk+1
1 = zk1 − uk1 − PB‖·‖1[0,1]

(zk1 − uk1),

8: yk+1
3 = zk3 − uk3 ,

9: yk+1 = [(yk+1
1 )′, (yk+1

3 )′]′,

10: zk+1 = yk+1 + uk − E′(EE′)−1(Ez − b),

11: uk+1 = uk + yk+1 − zk+1,

12: rk+1 = yk+1 − zk+1,

13: sk = ρ(zk+1 − zk),

14: e1 =
√
me3 + e4 max{‖zk+1‖2, ‖yk+1‖2},

15: e2 =
√
me3 + e4‖ρuk+1‖2,

16: if ‖rk+1‖2 ≤ e1 and ‖sk+1‖2 ≤ e2 then

17: return y3

18: end if

19: end for
Algorithm 2: The ADMM for estimating y3 = (y2)S = [(F1)S1 ; (F2)S2 ]
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