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Shape control is a critical task in the composite fuselage assembly process due to the dimen-
sional variabilities of incoming fuselages. To realize fuselage shape adjustment, actuators
are used to pull or push several points on a fuselage. Given a fixed number of actuators, the
locations of actuators on a fuselage will impact on the effectiveness of shape control. Thus,
it is important to determine the optimal placement of actuators in the fuselage shape control
problem. In current practice, the actuators are placed with equal distance along the edge of
a fuselage without considering its incoming dimensional shape. Such practice has two lim-
itations: (1) it is non-optimal and (2) larger actuator forces may be applied for some loca-
tions than needed. This paper proposes an optimal actuator placement methodology for
efficient composite fuselage shape control by developing a sparse learning model and cor-
responding parameter estimation algorithm. The case study shows that our proposed
method achieves the optimal actuator placement for shape adjustments of the composite
fuselage. [DOI: 10.1115/1.4044249]
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1 Introduction
Composite materials have been widely used in the aerospace

industry due to its superior characteristics such as high strength-
to-weight ratio and low life-cycle cost. Currently, some major
structures of an airplane are made of composite materials, which
comprise more than 50% composites by weight [1]. In practice,
there are dimensional errors in the fabrication of a fuselage due to
the complexity of the composite part manufacturing [2]. As a
result, shape control has become a common practice in the compos-
ite fuselage assembly process.
In this paper, the dimensional deviations between the real manu-

factured shape and the design shape of a fuselage are denoted by the
initial shape distortions; the magnitude of shape adjustment is
denoted by the shape correction; and the dimensional deviations
between the shape after control and the design shape of a fuselage
are denoted as the adjusted shape deviations. A placement is an
arrangement of actuators’ locations on a fuselage. In addition, a
composite fuselage is called fuselage for short.
In order to achieve shape control of a fuselage, a number of actu-

ators are needed to pull or push several points of the fuselage to
change its shape distortions [3,4]. Figure 1(a) shows a feasible
10-actuator placement strategy with equal distance between two
adjacent actuators. Figure 1(b) shows corresponding shape adjust-
ment by these actuators. In the coordinate system (Fig. 1(b)), the
original point is the center of the edge circle; the X–Y plane is
defined as the intermediate horizontal plane with X-axis aligned
with the longitudinal axis of the fuselage, and the Z-axis is perpen-
dicular to the X–Y plane. After the shape adjustment by these actu-
ators, the shape correction can be obtained. In this paper, we focus
on the measurement points that are close to the edge plane of the
fuselage, as shown in Fig. 1(c). In current practice, the actuators
are placed in equal distance between two adjacent actuators,
which does not consider the initial shape distortions of the incoming

fuselage. This fixed actuator placement strategy has two limitations:
(1) it is non-optimal. The shape of the fuselage after adjustment
under the fixed placement of actuators may not be optimal for a spe-
cific incoming fuselage. In other words, there is no guarantee that
the optimal shape control can be realized by a fixed actuator place-
ment for different incoming fuselages. (2) It may provide larger
stress and strains than needed. Since the fixed placement may not
be optimal, larger actuator forces may be applied for some locations
during shape control than it needs to be. In consequence, the stress
and strain are large, which may potentially damage the fuselage.
Hence, an efficient actuator placement method is needed to apply
smaller, but sufficient forces to achieve better performance in the
fuselage shape control.
Developing an efficient and optimal actuator placement method

is a challenging task due to the following reasons: (1) The initial
shape distortions of fuselages vary from one fuselage to another,
and the optimal actuator placement should adapt to the different
initial shape distortions. It is challenging to propose an optimal
placement of actuators that works for each fuselage. (2) Multiple
actuators and fixtures are applied to a fuselage, and the shape of
the fuselage after adjustment cannot be directly derived from the
mechanics due to the compliant and anisotropic property of
complex composite structures. Instead of theoretical derivation,
approximation such as the finite element analysis (FEA) method
can be used to calculate the deformation after applying the
forces. However, the FEA simulation is time-consuming and only
available for a given, specific actuator placement. It is not feasible
to run many simulations for finding the optimal actuator placement
in practice. (3) To prevent the potential damage of a fuselage during
shape control, the forces applied from each actuator cannot exceed
the maximum force (MF) limits allowed. Under the same amount of
shape correction, smaller actuator forces are preferred. Thus, how
to place actuators efficiently given the force limits is challenging.
To overcome these three challenges, we propose an optimal actu-

ator placement method for fuselage shape control. First, we develop
a model to link shape corrections with actuator forces. Then, we
propose a constrained sparse learning model to minimize the
weighted mean square of adjusted shape deviations (WMSDs), so
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as to obtain the optimal actuator placement for a given number
of actuators. Last, we develop an efficient algorithm to estimate
parameters of the proposed model by integrating the binary
search algorithm and the Alternating Direction Method of Multipli-
ers (ADMM) algorithm.
The remainder of this paper is organized as follows. Section 2

provides a literature review of the topics on actuator placement
for shape control. Then, Sec. 3 develops a sparse learning model
and the associated parameter estimation algorithm. A case study
is provided to validate the performance of our proposed method
in Sec. 4. Finally, Sec. 5 concludes this paper.

2 Literature Review
In literature, various methods of placing actuators for large struc-

ture shape control have been developed. These methods can be clas-
sified into two categories.
The first category contains the actuator or sensor placements for

smart structures. In literature, differential equations and input
control energy were derived to achieve the optimal actuator place-
ment. This type of methods works well for dynamic systems and
piezoelectric actuators [5,6] but does not work for fuselage shape
control. The reason is that it is not feasible to obtain differential
equations of composite fuselages due to their compliant and nonlin-
ear properties.
The other category is the optimal actuator placement for the static

shape control. First, we briefly introduce this category from the
modeling perspective. An analytical investigation of shape control
for beam structure was provided by Haftka and Adelman [7]. To
analyze the correction of the initial shape distortions from a statis-
tical perspective, Burdisso and Haftka [8] further considered two
techniques: an adjoint technique and modal expansion. All these
optimal actuator placement methods are based on the objective
function of minimizing the WMSD after shape control. For some
engineering problems where the worst shape distortion among the
critical points after shape control is the focus. Hakim and Fuchs
[9] formulated the objective function of the optimal actuator place-
ment as minimizing the worst-case distortion. However, all afore-
mentioned studies focused on the beam-based structures, such as
beams, trusses, and reflectors. Compared to the beam-based struc-
ture, the fuselage structure is more complicated. The analytical deri-
vation is infeasible for the fuselage in mechanics. In addition, the
fuselage is made by the composite materials, which is compliant
and anisotropic. Thus, these methods cannot be used directly for
fuselage shape control. To address this limitation, we propose a
sparse learning model to link shape deviations with actuator

forces, and the structural parameters can be obtained from the sur-
rogate modeling.
Next, we briefly introduce the optimal actuator placement for

the static shape control from the estimation algorithm perspective.
Haftka and Adelman [10] proposed the optimal placement of
actuators for shape control by formulating a discrete optimization
problem and developing a heuristic integer programming algo-
rithm. However, this method cannot guarantee the global
optimum. To overcome the computation issue of discrete optimiza-
tion, Burdisso and Haftka [11] proposed a continuum approxima-
tion to reduce computational costs. Ponslet et al. [12], Jiao and
Djurdjanovic [13] applied the genetic algorithm to deal with the
combinatorial optimization problem to further improve the optimi-
zation performance. A genetic algorithm has a high probability to
obtain the solution near the global optimum but it is computation-
ally expensive. To address this issue, Furuya and Haftka [14] pro-
posed a procedure that evaluated the effectiveness of the possible
locations and discarded ineffective ones to reduce the computation
cost. Jiao and Djurdjanovic [15] further proposed to apply a reac-
tive tabu search for large-scale combinatorial optimization
problem in the multistage manufacturing process. However, all
these methods cannot guarantee the global optimum due to the
approximation of the discrete optimization problem. To address
this limitation, our proposed estimation algorithm can efficiently
achieve the global optimum due to the convexity of the proposed
sparse learning model.
For fuselage shape control, Wen et al. [3] developed a new shape

control system and conducted the feasibility analysis by using the
FEA. They assumed that the actuators were uniformly distributed
on the edge of the outer surface of the lower semi-fuselage. Based
on this FEA platform, Yue et al. [4] proposed a surrogate model
to establish the relationship between the shape correction and actu-
ator forces applied to the fuselage. By minimizing the WMSD, they
could calculate the optimal forces applied by each actuator for fuse-
lage shape control and then assembly [16]. However, as they only
considered the uniform actuator layout for all different incoming
fuselages, shape control performance may not be optimal for a spe-
cific fuselage due to its special initial shape distortions.
To address this problem, this paper proposes an optimal actuator

placement method for fuselage shape control, which considers the
initial shape distortions. Given all the feasible locations of actuators,
we propose a sparse learning model to link actuator forces with the
WMSD of the fuselage. To estimate the model parameters effi-
ciently, we develop an algorithm that integrates the binary search
and the ADMM algorithm. After obtaining the optimal actuator
placement, the optimal forces can be obtained by minimizing the
WMSD.

Fig. 1 Illustrations for a fuselage shape control: (a) a feasible actuator placement, (b) a schematic drawing of shape adjustment,
and (c) layout of measurement points
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3 Sparse Learning-Based Methodology for Optimal
Placement of Actuators
3.1 Problem Definition and Formulation. Let n denote the

number of measurement points of shape deviations of a fuselage,
and m denote the number of feasible positions (e.g., candidate posi-
tions where an actuator may be placed) for actuators in the fuselage
edge plane. We assume that the mechanical response behavior of
the fuselage to the actuator forces is linear, which indicates the
shape correction of each measurement point in the fuselage can
be calculated by a linear combination of shape corrections under
each actuator force. This assumption can be physically interpreted
from the elastic deformation in mechanics. Hence, the adjusted
shape deviations can be formulated as

δ = ψ + UF (1)

where ψ∈Rn represents the initial shape distortions at n mea-
surement points. U∈Rn×m is the displacement matrix where the
element Uij corresponds to the shape correction of measurement
point i given a unit of force at location j. F∈Rm is the force
vector where the element Fj is the force of actuator at location
j. δ∈Rn is the adjusted shape deviation vector, where the
element δi represents the adjusted shape deviations of the mea-
surement point i. In this paper, we adopt that the actuators are
used to minimize the WMSD of fuselages, i.e., δ2wmsd , which is
defined as

δ2wmsd = δ′Bδ (2)

where δ′ is the transpose of δ. B∈Rn×n is a diagonal weighted
matrix, which represents the importance of different measurement
points. Note m is the number of all feasible locations for actua-
tors, and M is the number of actuators for fuselage shape control.
We aim to select M locations from m feasible ones, which indi-
cates that only M components of the vector F are nonzero.
Therefore, this problem can be formulated as

min
F

δ2wmsd = (ψ + UF)′B(ψ + UF)

s.t. ||F||0 =M, FL ≼ F ≼ FQ

(3)

Here, ≼ is the component-wise inequality. FL and FQ are
the lower bound and upper bound of actuator forces, respec-
tively. || · ||0 is the l0 norm, which counts the number of
nonzero entries in a vector. The l0 norm function is non-convex,
non-smooth, discontinuous, and globally non-differentiable.
Finding the sparse solution of the optimization problem (3) is

NP-hard [17] and even difficult to approximate [18]. Donoho [19]
showed that for most underdetermined systems, the sparse solution
could be found by solving a convex optimization problem when a
sufficiently sparse solution exists. He pointed out that the solution
of minimizing l1 norm was also the sparsest solution. Hence, we
transform the optimization problem (3) into a convex optimization
with a l1 norm:

min
F

L(F) = (ψ + UF)′B(ψ + UF) + λ||F||1
s.t. FL ≼ F ≼ FQ

(4)

where λ is a tuning parameter, and its value is selected to meet the
requirement of ||F||0=M.
There are two key differences between our model and the current

literature [6–12]: (1) The current literature only considered selecting
M actuators from m feasible locations and formulated the problem
as an integer programming problem. However, this problem formu-
lation tends to be computationally costly when m is large. In com-
parison, we propose a sparse and convex representation of the
problem, which can be solved efficiently, as to be discussed in
Sec. 3.2. (2) The current literature obtained the displacement
matrix U0∈Rn×M from mechanics. The analytical derivation of
the matrix U0 is limited to simple structures such as beams.

For complex structures, matrix U0 needs to be obtained from the
FEA. This indicates that once one of the M actuator locations is
changed, the FEA should be conducted again to obtain U0 before
the optimization, which is computationally expensive and time-
consuming. Here, we propose a displacement matrix U∈Rn×m

under all feasible m locations, and we obtain this U matrix from a
surrogate model.
Since the deformation of measurement points in the shape control

should be elastic [20], we use a linear model [21] as the surrogate
model, which is formulated as

Y i = FDβi + εi (5)

where FD∈RN×m and Yi∈RN are the design force matrix and shape
correction vector of the measurement point i, i= 1, 2,…, n. FD and
Yi are obtained from the design of experiment (DOE). N is the
sample size of DOE and ɛi is the noise vector that follows a
Gaussian distribution. βi∈Rm×1 is the coefficient vector for mea-
surement point i, which can be estimated by the least-squares
method. The displacement matrix is U= [β1, β2,…, βn]′.
More details about surrogate modeling can be found in Ref. [4].
Figure 2 shows the schematic diagram of the proposed
method. It is worth noting that the main focus of this paper is to
propose a sparse learning methodology for actuator placement
optimization.

3.2 Algorithm for Parameter Estimation. Since there are
non-smooth term ||F||1 and linear constraints in the optimization
problem (4), the conventional convex optimization algorithm
[22], such as the interior point method, cannot be implemented effi-
ciently. The alternating direction method of multipliers (ADMM)
[23] is widely used to solve the optimization problem that features
a separable objective. The optimization problem (4) has the objec-
tive function that can be separated into the summations of (ψ+UF)′
B(ψ+UF) and λ||F||1, so we apply the ADMM algorithm to solve
the optimization problem (4).
We can reformulate the optimization problem (4) as

minimize f (F) + λ||z||1
s.t., F − z = 0

(6)

Fig. 2 Schematic diagram of our proposed method
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where F∈Rm, z∈Rm, and f (F)= χC+ (ψ+UF)′B(ψ+UF).
χC is an indicator function of the constraint set C=
{F ∈ Rm: FL ≼ F ≼ FQ}, i.e.,

χC =
∞ F ∉ C
0 F ∈ C

{
(7)

Let g(z)= λ||z||1, the augmented Lagrangian of the optimization
problem (6) is

Lρ = f (F) + g(z) + y′(F − z) +
ρ

2
||F − z||22 (8)

where ρ is the augmented Lagrangian parameter and y is the
dual variable. According to Ref. [23], the ADMM can be expres-
sed as

Fk+1: = argmin
F

f (F) +
ρ

2
||F − zk + uk||22

( )
(9)

zk+1: = argmin
z

g(z) +
ρ

2
||Fk+1 − z + uk||22

( )
(10)

uk+1: = uk + Fk+1 − zk+1 (11)

where u = y/ρ is the scaled dual variable. In Proposition 1, we can
derive the main steps of the ADMM for the optimization problem
(4) according to formulas (9–11).
PROPOSITION 1. Given the formulation (6) and formulas (9–11),

the scaled form of the ADMM of the optimization problem (4)
can be derived as

Fk+1: =
∏

C
((2U′BU + ρI)−1(ρzk − ρuk − 2U′Bψ)) (12)

zk+1: = Sλ/ρ(Fk+1 + uk) (13)

uk+1: = uk + Fk+1 − zk+1 (14)

Here, I∈Rm×m is an identity matrix. ∏C is a Euclidean projec-
tion onto the convex set C = {F ∈ Rm: FL ≼ F ≼ FQ}, which can
be denoted as

∏
C
(v) = argmin

F∈C
(||F − v||2) (15)

Sλ/ρ is the soft thresholding operator of || · ||1, which is

Sλ/ρ(v) = (v − λ/ρ)+ (−v − λ/ρ)+ (16)

where (x)+ is short for max {x, 0}.
The proof of Proposition 1 is provided in Appendix A.
According to Ref. [23], the convergence of the ADMM is guar-

anteed in our context, which means that we can obtain the global
optimum of the optimization problem (4) via the ADMM. In
practice, Boyd et al. [23] suggested that a reasonable termination
of the ADMM is that both the primal and dual residuals should
be small, i.e.,

||rk||2 ≤ e1, and ||sk||2 ≤ e2 (17)

where r k=Fk− z k is the primal residual and s k=−ρ(z k− z k−1) is
the dual residual. e1 > 0 and e2 > 0 are the tolerances, which can
be chosen by using an absolute criterion and a relative criterion, i.e.,

e1 =
��
m

√
e3 + e4 max {||zk||2, ||Fk||2} (18)

e2 =
��
m

√
e3 + e4ρ||uk||2 (19)

where e3 > 0 and e4 > 0 are an absolute tolerance and a relative
tolerance, respectively. Algorithm 1 shows the proposed ADMM
algorithm.

Algorithm 1 The ADMM for estimating

(1) Input: parameter ρ, λ, e3, e4, m, B, U, ψ
(2) Initialize F0, z0, u0

(3) Repeat
(4) F k+1=∏C((2U′BU+ ρI)−1(ρzk− ρu k− 2U′Bψ))
(5) zk+1= Sλ/ρ(F

k+1+ uk)
(6) uk+1=u k+F k+1− zk+1.
(7) rk+1=F k+1− zk+1

(8) sk+1= ρ(zk+1− zk)
(9) e1 =

��
m

√
e3 + e4 max {||zk+1||2, ||F

k+1||2}
(10) e2 =

��
m

√
e3 + e4||ρuk+1||2

(11) Until ||r k+1||2≤ e1, and ||s k+1||2≤ e2 or k=K

In Algorithm 1, K is the maximum number of iterations. The
tuning parameter λ in model (4) is used to control the sparsity of
F, i.e., the number of nonzero components in vector F. For the
required numberM of actuators, the number of nonzero components
in the vector F is M. Hence, we need to search the value of λ such
that ||F||0=M. The binary search algorithm is one of the most
important search algorithms for finding a value in a linear array
by ruling out half of the values at each step, which is the case of
our context. Hence, we propose to use the binary search algorithm
for estimating λ. To perform the binary search algorithm, the range
of parameter λ needs to be determined. The minimum value of λ is
zero, which indicates no shrinkage of vector F. The maximum value
of λ is provided in Proposition 2 that penalizes all the components of
vector F into zero.
PROPOSITION 2. The maximum value of λ for the binary search is

λmax= ||2U′Bψ||∞.
The derivation of Proposition 2 is provided in Appendix B.

Notably, for searching λ such that ||F||0=M, M> 0, there is no
need to search the value larger than λmax, which is the minimum
value of λ to penalize all the components of vector F into zero.
The binary search algorithm for determining λ is listed in
Algorithm 2.

Algorithm 2 A binary search algorithm for estimating λ

(1) Input: parameter ρ, e3, e4, M, m, B, U, ψ
(2) Initialize λmin= 0, λmax= ||2U′Bψ||∞
(3) Repeat
(4) λ= (λmin+ λmax)/2
(5) Calculate F from Algorithm 1
(6) If ||F||0=M
(7) Stop
(8) Else if ||F||0 <M
(9) λmax= λ
(10) Else
(11) λmin= λ
(12) End
(13) End

According to the Algorithm 2, we can obtain λ* such that ||F||0=
M. The locations of nonzero components of vector F indicate the
locations of actuators. To adjust the shape of the fuselage, the
applied force Fc of actuators in these locations aims to minimize
adjusted shape deviations, i.e.,

min
Fc

L(Fc) = (ψ + UcFc)
′B(ψ + UcFc), s.t. FL ≼ Fc ≼ FQ

(20)

where Uc∈Rn×M is the submatrix of U∈Rn×m, which corresponds
toM locations of nonzero components of vector F. Equation (20) is
a conventional constrained quadratic programming problem, which
is convex, continuous, smooth, and globally differentiable. Hence,
we follow Yue et al. [4] and use the interior point method to solve
this problem.

101004-4 / Vol. 141, OCTOBER 2019 Transactions of the ASME



In practice, due to the material property of composite structures,
the elements of displacement matrix are usually very small. To
avoid the numerical implementation issues, such as floating-point
errors [24], we multiply a large constant number LN of the objective
function (ψ+UF)′B(ψ+UF) in the optimization problem (4),
which does not have influences on the optimal solution. In this
way, the numerical problem induced by U matrix can be avoided
in real implementations.

4 Case Study
An FEA model is useful to mimic the manufacturing system,

especially when the manufacturing data is scarce and precious. In
this case study, we use an FEA model to generate the data and val-
idate the proposed methodology. This model has been validated
with the experimental data [3,4]. In our case study, we assume
that there are m= 18 feasible actuator locations uniformly distribu-
ted from −12 deg to 192 deg, as shown in Fig. 3. Notably, all those
18 feasible locations of actuators are placed at the lower part of the
fuselage for ease of engineering implementation. M= 10 locations
are selected from all those 18 feasible locations for fuselage
shape control. The number of measurement points is n= 182, and
we take the same importance of each measurement point, i.e., B=
diag(1/n).

4.1 Design of Experiment and Surrogate Modeling. To
mimic the initial shape distortions of fuselages and obtain

displacement matrix U, we use the Maximin Latin Hypercube
Design [25] to generate 40 training samples and 20 testing
samples. The forces are sampled in the range from −200 lb to
200 lb by m= 18 actuators, and the initial shape distortions are
shown in Fig. 4. The maximum initial shape distortion is 3.422
in., which commendably emulate the real case.
In our case study, we first use the training samples to estimate

parameters in the surrogate model (5) and then use the testing
samples to test the surrogate model performance. Figure 5 shows
the training error and the testing error of the surrogate model. The
Y-axis shows the root mean square error (RMSE). The mean
values of the RMSEs of training data and testing data are 1.86 ×
10−5 in. and 1.92 × 10−5 in., respectively, thereby indicating the
proposed surrogate model has a very good prediction capability.

4.2 Actuator Placement and Static Shape Control Result. In
this section, we evaluate our proposed method based on 20 testing
samples. The parameters in Algorithm 2 are set as ρ= 1, e3= 10−4,
e4= 10−2, and K= 1000, which are regular settings of the ADMM
algorithm. LN= 107 is set to avoid the numerical computation
issues. In our problem, the ADMM converges quickly and only
takes less than 0.5 s to obtain the optimal solution for one sample
in MATLAB R2014B by a computer with Intel Core-i5-4200U @
2.30 GHz processor, 8 GB of RAM. The computational speed
meets the requirements for fuselage shape control. In Fig. 6, we ran-
domly select several samples and show the proposed actuator loca-
tions. The circular curves are the ideal shape, and the shaded area is

Fig. 3 m=18 number of feasible actuator locations

Fig. 4 The initial shape distortions generated by FEA
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the initial shape distortions generated from the FEA. To show it
clearly, we magnify the distortions 50 times, and the true initial
shape distortion magnitude of one measurement point is marked.
Ten round points are also marked on the shape curve, which are
the actuator locations selected by our proposed method. Figure 6
shows that our proposed method selects different actuator locations
according to different initial shape distortions of fuselages. Our
method tends to distribute more actuators in the locations with

larger initial shape distortions, which is consistent with the engi-
neering intuition.
We introduce three quantitative indices to evaluate the perfor-

mance of our method, which are the maximum of adjusted shape
deviations (MD), the root mean square of adjusted shape deviations
(RMSD), and the maximum force (MF) for shape control. Because
the practitioners currently use a fixed placement to adjust the fuse-
lage shape with different initial shape distortions, we compare our

Fig. 5 The training error and the testing error of the surrogate model

Fig. 6 The proposed actuator placements according to different initial shape distortions
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Fig. 7 Comparisons between our proposed method and the 30 fixed placements in terms of the
(a) MD, (b) RMSD, and (c) MF
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proposed method with the fixed actuator placement. We randomly
select M actuators from m feasible locations without replacements.
Thirty replications are conducted, and we obtain 30 fixed actuator
placements. We compare our method with the 30 fixed actuator
placements, as shown in Fig. 7. The X-axis shows the index of
the actuator placement. The first index “O” denotes our method,
and the rest indexes denote the 30 fixed actuator placements. For
each index (e.g., each actuator placement plan), 20 testing
samples are used to test our method and other placements,
thereby generating a boxplot. Y-axis shows the MD, RMSD, and
MF. Figure 7 shows that our method achieves the smaller adjusted
shape deviations by using smaller maximum forces than the 30
fixed placements, thereby indicating that our method outperforms
the fixed actuator placement.
In order to make the comparisons clearer, the authors select the

actuator placement strategies that have the minimum MD from
those 30 fixed placements for each testing sample. Specifically,
for each one of the 20 testing samples, we select a placement that
achieves the minimumMD among the original 30 fixed placements.
Therefore, at most there could be 20 different fixed placements that
achieve the minimum MD. In fact, we obtain only nine fixed place-
ments, since some of them achieve the minimum MD for more than
one testing samples.
Figure 8 shows the comparisons between our proposed method

and the nine selected placements. The X-axis shows the index of
the actuator placement. The first index “O” denotes our method,
and the following denotes the indexes of the nine selected place-
ments. Although the nine selected placements achieve the
minimumMD for at least one of the 20 testing samples, these place-
ments cannot perform well for other initial shape distortions. For
comparison, our method achieves smaller adjusted shape deviations

by using relatively smaller forces for different initial shape distor-
tions, which demonstrates the effectiveness of our method more
clearly.
We choose the best-fixed placement from the 30 fixed placements

that achieves the minimum mean RMSD, and the comparison
results are listed in Table 1. For comparison, our method uses
11.50% less max MF to achieve 16. 82% and 25.81% smaller
max MD and max RMSD than the best-fixed placement, respec-
tively. In addition, our method uses 20.54% less mean MF to
achieve 22.32% and 17.65% less mean MD and mean RMSD
than the best-fixed placement, respectively. Hence, our proposed
method is more effective than the fixed placement method.
In order to provide the statistical evidence of the comparison, we

use the paired-sample t-test to test the mean difference between the
“Best” fixed placement and our method in terms of the MD, RMSD,
and MF. The null hypothesis (H) is that the mean difference is zero
for the MD, RMSD, and MF, respectively. If the null hypothesis is
rejected at the 5% significance level, H is equal to 1. Otherwise, H is
equal to 0. Table 2 lists the p-value, i.e., the probability of observing
the given result, or one more extreme, by chance if the null hypoth-
esis is true. 95% confidence interval for the true mean difference
from the paired t-test is also listed in Table 2. Although the
method of the “Best” fixed placement is comparable with the pro-
posed method in terms of the mean RMSD, the mean MD and
MF values are significantly larger than our method. Hence, our
method is more effective than the “Best” fixed placement from 30
fixed placements.

4.3 Sensitivity Analysis of Part Uncertainty. In this subsec-
tion, we conduct a sensitivity analysis to see how our method per-
forms for the fuselage with part uncertainty, which comes from the
variability of raw material, such as the thickness of carbon fabrics.
Without loss of generality, in this sensitivity analysis, we use 98%
epoxy resin thickness of the fuselage in the studies in Secs. 4.1 and
4.2. For fair comparisons, we also use FEA simulations to generate
the initial shape distortions based on the 20 testing inputs from the
DOE, and 20 testing samples with part uncertainty are obtained. We
test our method on the 20 testing samples with uncertainties by
using the same displacement matrix U without considering part
uncertainty. In Fig. 9, we list the comparison results between our
proposed actuator placements and the 30 fixed actuator placements.
Similarly, the X-axis shows the index of the actuator placement.
The first index “O” denotes our method, and the rest indexes
denote the 30 fixed actuator placements. Y-axis shows the MD,
RMSD, and the MF, respectively. As shown in Fig. 9, our
method achieves smaller MD, RMSD by using smaller MF. Thus,
we can conclude that our method outperforms the fixed actuator
placements if there is a part uncertainty.
We also compare the shape control results of the fuselages with

and without part uncertainty in Fig. 10 by using our method. Small
differences exist in the shape control performance between the fuse-
lages with and without part uncertainty. In order to quantify the dif-
ference of control performance between the part with uncertainty
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Fig. 8 Comparison results between our proposed method and nine fixed placements with the minimum MD

Table 1 Comparisons between our method and the best-fixed
placement from 30 fixed placements

Method

Mean
MD
(in.)

Mean
RMSD
(in.)

Mean
MF (lbf)

Max
MD
(in.)

Max
RMSD
(in.)

Max MF
(lbf)

Our
method

0.0087 0.0028 231.2973 0.0173 0.0046 397.9796

“Best”
fixed
placement

0.0112 0.0034 291.0714 0.0208 0.0062 449.6754

Table 2 Results of statistical paired-sample t-test

Method H p-value 95% confidence interval

MD (in.) 1 0.0479 [2.48 × 10−5, 0.0048]
RMSD (in.) 0 0.0502 [−6.13 × 10−7, 0.0013]
MF (lbf) 1 1.84 × 10−5 [37.6873, 81.8609]
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and the part without uncertainty, the statistical paired-sample t-test
is also used to test the mean difference of the MD, RMSD, and MF.
The results are listed in Table 3. The H, p-value, and 95% confi-
dence interval denote the same meaning as Table 2. As shown in
Table 3, the mean MD, RMSD, and MF of the part with 2% uncer-
tainty are significantly larger than the part without uncertainty. The
reason is that the thickness of epoxy resin is thinner for the part with
uncertainty, thereby leading to larger initial shape distortion under
the same forces for the simulation. This fact is illustrated in
Fig. 11. Hence, larger forces are needed for the part with uncer-
tainty. Since the displacement matrix of the part without uncertainty
is used for the part with uncertainty, the control performance is a
little worse than the part without uncertainty. The percentages of
the mean increase of the MD, RMSD, and MF are also listed in
Table 3. Although introducing the uncertainty leads to the signifi-
cant mean increases on the MD, RMSD, and MF, the increase per-
centage is very limited, thereby indicating the effectiveness of the
proposed method.
We also compare the locations of actuators for the fuselages with

and without part uncertainty. The actuator locations are exactly the
same for the 20 testing samples. It means that the introduced uncer-
tainty (by changing the resin epoxy thickness uniformly for the
whole composite fuselage) only has an influence on the magnitude
of optimal forces but not on the optimal actuator placement. The
intuition behind this fact is as follows. In this simulation, we have
20 testing samples of fuselages. Given each sample of the fuselage,
the force used to generate the shape distortion of the part without
uncertainty is the same as the part with uncertainty. The introduced
uncertainty is to change the thickness of carbon fabrics for the
whole composite fuselage. In other words, the only difference of
the part with uncertainty is the material thickness, so the overall
shape is similar to the part without uncertainty. Figure 11 can
also illustrate this fact. The actuator placement is dependent on
the shape, so the introduced uncertainty only has an influence on
the magnitude of optimal forces, not the optimal actuator placement.
Figure 11 shows an illustration on the actuator locations of one

random sample from the 20 testing samples with and without part

uncertainty. Notably, since the thickness of epoxy resin is thinner
for the part with uncertainty, the initial shape distortions of the part
with uncertainty is a little larger than the part without uncertainty.

5 Discussion
Figure 12 shows the ring setup of actuators for the new genera-

tion of actuator placement. The actuators can move along the ring
pathway to get the optimal locations for fuselage shape control
based on the sparse learning results. Thus, the actuators are not
fixed, and the optimal actuator placement strategy is needed for
fuselage shape control. This paper proposes a sparse learning
model and ADMM algorithm to obtain the optimal actuator place-
ment and the optimal forces. The methodology is validated by the
aforementioned numerical studies.
Besides the optimal actuator placement given the fixed number of

actuators for fuselage shape control, the proposed method can also
be used to determine the minimum number of actuators given the
shape control requirement. Specifically, we can use the binary
search algorithm to find the minimum number of actuators so that

Table 3 Results of statistical paired-sample t-test

Evaluation
index H p-value

95% confidence
interval Percentage

MD (in.) 1 2.53 × 10−5 [2.55 × 10−4,
5.67 × 10−4]

[2.92%, 6.49%]

RMSD (in.) 1 3.02 × 10−9 [7.35 × 10−7,
1.11 × 10−6]

[8.98%, 13.53%]

MF (lbf) 1 9.31 × 10−11 [8.33, 11.61] [3.60%, 5.02%]
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Fig. 11 Comparisons of actuator locations between the fuselages without (left) and with (right) part uncertainty on the same
testing sample

Fig. 12 The ring setup of actuators for composite fuselage
shape control

Table 4 Results of shape control under different number of
actuators for one sample

Binary search order/M 10 6 8 7

MD/in. 0.0103 0.0393 0.0216 0.0249
RMSD/in. 0.0024 0.0128 0.0062 0.0088
MF/lbf 283.5796 366.0418 266.5041 349.9775
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the adjusted shape deviations meet the requirements for two fuse-
lage assembly. For example, given the engineering requirement of
RMSD≤ 0.01 in., we first try 10 actuators and find its control per-
formance is much better than the requirements. Then,M= 6 is tried
according to the binary search algorithm. Following this procedure,
the minimum number of actuators can be determined. The results of
the binary search algorithm for one sample from the 20 testing
samples are listed in Table 4.M= 7 is the minimum number of actu-
ators that meets the shape control requirements of this sample.
Figure 13 shows the initial distortions of this sample and corre-
sponding locations of seven actuators for fuselage shape control.

6 Conclusion
This paper proposes a sparse learning-based optimal actuator

placement method for fuselage shape control. Due to dimensional
variations of fuselages, the actuators are used for fuselage shape
control in the airplane assembly process. However, how to optimally
determine the locations of actuators for a given number of actuators is
a challenging task due to the complexity of initial shape distortions
and the structure of fuselages. To tackle these challenges, we
propose a sparse learning model, which aims to select the actuator
locations from all feasible locations for each initial shape of a fuse-
lage. An efficient algorithm integrating the ADMM and the binary
search is developed to estimate the model parameters.
A set of case studies show that our method achieves satisfactory

performance and outperforms other fixed actuator placements for
fuselage shape control in terms of the maximum of adjusted
shape deviations, the root mean square of adjusted shape deviations,
and the maximum force for shape control. Furthermore, a sensitivity
analysis shows the performance of the proposed method is robust
for the fuselage with part uncertainty.
Although our method is demonstrated for fuselage shape control,

the methodology can be conceptually feasible for other large space
structures, such as composite wings. However, when the linear
assumption results in large prediction errors, the optimal actuator
placement strategy needs further investigation. In some industrial
applications such as composite fuselage shape control, experimental
samples are expensive and time-consuming to obtain. The future
work will be the optimization of experiment design to use the
minimum of sample size to improve the predictive modeling for
the automatic shape control system of the composite fuselage.
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Appendix A: Derivation of Proposition 1
Let h(F) = (ψ + UF)′B(ψ + UF) + ρ

2 ||F − zk + uk||22.
To obtain the optimal F to minimize h(F), we take the derivative

to F on both sides, i.e., ∇h(F) = 2U′B(ψ + UF) + ρ(F − zk + uk).
Let ∇h(F) = 0, we get F= (2U′BU+ ρI)−1(ρz k− ρuk− 2U′Bψ).
For formula (9), we want to obtain F, which minimizes

f (F) + ρ
2 ||F − zk + uk||22, i.e., to minimize (h(F)+ χC). Due to

χC =
∞ F ∉ C
0 F ∈ C

{
, we need to project F to C to minimize (h(F)

+ χC). Thus,

Fk+1: = argmin
F

f (F) +
ρ

2
||F − zk + uk||22

( )

=
∏

C
((2U′BU + ρI)−1(ρzk − ρuk − 2U′Bψ))

where ∏C is Euclidean projection onto the convex set
C = {F ∈ Rm: FL ≼ F ≼ FQ}.
For formula (10), we want to obtain z to minimize

g(z) + ρ
2 ||Fk+1 − z + uk||22

( )
, which is the proximal operator of

scaled function g(z)/ρ, i.e.,

proxg/ρ(Fk+1 + uk) = argmin
z

g(z) +
ρ

2
||Fk+1 − z + uk||22

( )

Since g(z)= λ||z||1, proxg/ρ(Fk+1 + uk) = Sλ/ρ(F
k+1+u k). The devia-

tion of the soft thresholding operator can be referred to Ref. [26].

Appendix B: Derivation of Proposition 2
We want to prove the following:

F = 0 if λ ≥ λmax = 2||U′Bψ||∞
Due to the first-order condition, we have

2U′B(ψ + UF) + λ∂||F||1 = 0

for some subgradient ∂||F||1 of ||F||1. Multiply the equation with F′,
we have

2F′U′B(ψ + UF) + λ〈F, ∂||F||1〉 = 0

Since B is a weight matrix, which is a positive diagonal matrix,
U′BU is symmetric positive definite. Thus, we have

0 ≤ 2F′U′BUF = −2F′U′Bψ − λ〈F, ∂||F||1〉 (B1)

On the other hand, note ∂||Fi||1 =
1, Fi > 0
−1, Fi < 0

[−1, 1], Fi = 0

⎧⎨
⎩ . Since

λ ≥ 2||U′Bψ||∞, for i∈ S= {i:Fi≠ 0}, we have

sign(2U′Bψ + λ∂||F1||)i = sign(Fi),

where sign(x)= 1 for x> 0 and −1 otherwise. It can be easily
checked that

2F′U′Bψ + λ〈F, ∂||F||1〉 = F′
S(2U

′Bψ + λ∂||F||1)S
+ F′

Sc (2U
′Bψ + λ∂||F||1)Sc = F′

S(2U
′Bψ + λ∂||F||1)S > 0

This shows the contradiction in Eq. (B1), which completes the
proof.
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