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A B S T R A C T

The mechanical deformation of workpieces due to tightening is a common phenomenon in most assembly
processes. Such deformation is typically characterized on the basis of a few critical points from sensing signals
during process monitoring. Our previous study focus on improving critical point detection accuracy by estab-
lishing a state space model and a two-stage particle filter algorithm. The state variables are estimated in the first
stage and the critical point is estimated in the second stage. These two stages are recursively estimated until the
estimation of critical point converges. However, such method usually requires a large amount of computational
efforts which may not be affordable in practice. To effectively identify critical points as well as meet the
timeliness of detection, we improve the estimation algorithm by leveraging the quantification of state changes
and estimating the critical point in the first stage. In this way, the critical point can be identified within one
stage, thereby significantly reducing computation costs. The results from a real case study indicate that our
proposed method delivers efficient critical point detection performance for process monitoring.

1. Introduction

In many tightening processes, process failure resulting from ex-
cessive mechanical deformation is one of the abnormal process condi-
tions. This type of deformation usually occurs when a local loading
force exceeds the specified limits, and the contact surface of workpieces
is unable to achieve the desired engineering precision. Examples can be
found in many assembly processes, such as oil pipe connection and
engine piston ring fitting [1], which require a high precision in as-
sembly to guarantee the product quality. In practice, such product
quality is typically examined by testing major functions offline. For
example, the leak-proofness of connected oil pipes is determined by
performing a hydraulic test after the pipe connection, and unqualified
products are then reworked or discarded depending on leakage se-
verity. This offline testing procedure is usually conducted in the final
stage in workshop. Consequently, the nonconforming pipes occurred at
certain intermediate stages need to follow the operational path and pass
through many other stages before the final testing, resulting in many
nonvalue-added activities involved in manufacturing systems.

The advancement of sensor technologies and computational cap-
abilities provides an unprecedented opportunity to acquire valuable
information for product quality assurance in a variety of manufacturing

processes. Automatic process monitoring and fault detection by using
sensing signals has significantly improved production efficiency and
reduced the nonconforming rate of products, such as in forging,
stamping, spot welding, and engine assembly process [2]. In these
sensing signals, the profiles caused by local mechanical deformation
can be regarded as a typical class of nonlinear profiles. Specifically, the
occurrence of deformation can be identified by detecting associated
critical points within these profiles. These critical points are generally
interpretable from an engineering perspective, and in this paper they
are referred in particular to the points indicating the occurrence of
mechanical deformation. For example, in the oil pipe connection pro-
cess shown in Fig. 1, an observable abrupt shift in the signal is mainly
caused by a local shoulder deformation in the sealing procedure that
generates a large elastic stress. This critical point named “shoulder
point” represents the occurrence of this deformation in the torque
signal. In practice, the shoulder point is one of the major quality
characteristics of connected pipes. A pipe connection with a torque
value within the specified threshold at the shoulder point, is treated as
an eligible connection. Incorrect detection of shoulder points may lead
to a failure in identifying unqualified connections. Consequently, non-
conforming pipes will be released to the oil field, and the risk of leakage
during oil well drilling, pumping, and transferring tends to increase. It
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is reported that the annual cost from the failure of oil pipes reaches half
a billion dollars, and two-thirds of these failures are caused by pipe
connections [3]. Thus, accurately detecting critical points from sensing
signals to monitor the assembly process is of importance in product
quality assurance.

There are three main challenges for automatic detection of critical
points in tightening processes: (1) multiple types of nonlinear profiles
simultaneously appear in a given signal, which significantly increase
the number of potential critical points and mask the true critical point.
Fig. 2 provides four examples of torque signals in pipe connection

processes. Various nonlinear profiles that are generated from the con-
nection process exist in the torque signals in the same connection ma-
chine, and the points along the curves show the potential change points
in the torque signals from the engineering practice; (2) lateral oscilla-
tions caused by mechanical return differences frequently appear in
original signals (Fig. 2(d)), and such signals could not be directly re-
garded as functional data. This characteristic may make some methods,
such as conventional time series analysis, fail to detect critical points;
(3) original signals usually exhibit different lengths as a result of in-
consistent upstream process settings, leading to the mutable locations of
critical points. Fig. 2 shows four example signals with different lengths.
This variation poses another challenge in critical point detection be-
cause the locations of critical points may vary significantly.

Extensive research has been conducted on critical point detection
methods. These methods are generally categorized into two classes:
engineering-based methods and data-driven methods.

1.1. Engineering-based methods

In the use of engineering-based methods, the basic physical
knowledge of a given process is usually studied through engineering
and experimental analysis before model development. For instance, the
tonnage signals of the stamping process can be divided into multiple
segments, which can be physically interpreted by studying the stamping
mechanism; the process faults from different operations can then be
directly identified by analyzing the profiles or critical points within the

Fig. 1. The nominal torque curve over screwing-on turns.

Fig. 2. Examples of typical profiles in torque signal, and the critical points easily submerge under different nonlinear patterns of torque signals.
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associated segments [4]. Another example is that the critical point of oil
pipe connection in torque signals could be identified by using empirical
methods of engineering practice [34,35]. Besides this, the end point of
wafer polishing in optical signals could be identified by matching a
given signal to a reference image obtained from physical experiments
[5]. A few other works that utilized similar methods could be found in
the areas of hot forming, chemical vapor decomposition, and coating
and granulation [6–8]. These methods generally provide a basic over-
view and explanations on changes in fault and process conditions under
certain situations from a physical perspective. However, one common
limitation is that these methods may fail to achieve repeatable successes
under situations that could not be explained directly with associated
engineering experience.

1.2. Data-driven methods

In data-driven methods, statistical models for critical point detec-
tion are proposed by incorporating sensing signals as the functional
process variables. These methods consist of two streams: parametric
methods and nonparametric/semiparametric methods.

Parametric methods are mainly used in studies on the distribution of
signals and associated parameters to characterize the condition of the
manufacturing process. Canonical critical point detection has been
carried out using parametric methods [9–11], in which the hypothesis
test of time series data is initially performed for change point detection.
For example, a sequential change point detection method for the
normal distribution uses the generalized likelihood ratio statistics [12].
In addition, a two-phase regression model is adopted in undocumented
change point detection with the use of Fmax test [13]. These methods are
acceptable when the signals completely comply with the model’s con-
straints; however the model assumption may not be fully satisfied in
practice. Another track of change point detection method involves the
use of statistical control charts. For example, exponential weighted
moving average charts [14] and Gaussian process model-based T 2

control charts were used to detect the occurrence of a shift in time series
data [15]. Moreover, analysis based on segmented signals such as pie-
cewise linear approach [13] and piecewise constant approach [16]
were also developed for change point detection. These methods are
mainly employed to detect changes in signal distribution from collected
data. However, the signals in complex manufacturing processes usually
contain various nonlinear profiles caused by different types of me-
chanical deformation. Hence, directly using specific distributions is
unsuitable to characterize these scenarios.

To overcome the limitations of parametric methods, nonparametric
and semi-parametric models for critical point detection have been
proposed. Mann-Whitney test [17], relative density ratio test [18],
graph-based method [19], and kernel change detection method [20]
were proposed to detect the abrupt distribution change in a data se-
quence. These methods are model-free and powerful but may fail to
detect critical points of the deformation signals with existence of mixed
types’ nonlinear profiles. Other alternative nonparametric methods for
critical point detection include spectral analysis [21–24]; nevertheless,
spectral analysis partially loses its interpretation if the original se-
quence data is not in the time domain. A general critical point detection
method, such as the Kullback–Leibler information discrimination, was
proposed under the local stationarity assumption [25]. This method
occasionally fails because the local stationarity of signals could not be
always satisfied in many industrial practices. To deal with this problem,
a state space model has been introduced with appropriate state esti-
mation algorithms to capture the critical information from the signals.
Relevant works include the end point detection of chemical mechanical
polishing processes [26] and ultrasonic-cavitation based nanoparticle
dispersion processes [27]. These data-driven methods provide a feasible
way to search over the critical points while the signal contains a few of
nonlinear patterns and traditional types of noises. However, in most of
mechanical assembling processes, such as tightening processes,

featured points due to various types of mechanical deformation may
exist widely within the signal and vary a lot, and these methods may fail
to identify the critical ones among these points. Meanwhile, critical
point detection methods without consideration of the physical me-
chanism usually lead to incorrect decisions when signals contain con-
dition-irrelevant nonlinear patterns caused by some latent process
factors. Therefore, it is desirable to develop a generic critical-point
detection method appropriately incorporating mechanical engineering
knowledge.

In our previous study [36], we proposed a critical point detection
method for the premium pipe connection by considering the physical
interpretations of the connection mechanism and developed a two-stage
recursive particle filter algorithm for critical point identification. The
first stage of this particle filter algorithm estimates the states and the
inference on the location of critical point is made in the second stage.
To assure the accuracy of critical point detection, these two stages are
recursively conducted until this algorithm converges under the de-
signed criteria. This method requires a large amount of computations
and may not meet the requirements of production cycle time in tigh-
tening processes. To address this issue, we propose a new particle filter
algorithm by quantifying state changes, which is directly used for in-
ference on the location of critical points in the first stage. In this way,
the second stage and iterations of previous two-stage particle filter al-
gorithm are non-necessary, which significantly reduces the computa-
tional time to meet online monitoring requirement. The framework of
the proposed methodology is shown in Fig. 3.

The rest of this paper is organized as follows. Section 2 introduces
the model formulation for critical point detection via the two-phase
state space model. Section 3 presents the proposed new particle filter
algorithm for critical point detection. In Section 4, a case study on an oil
pipe connection process is provided to validate our proposed approach.
The discussions are provided in Section 5. Section 6 concludes the
paper.

2. A two-phase state space model for critical point detection

In this section, the critical point detection problem is formulated as
a two-phase state space model with a critical point parameter. To
clarify the problem, we use an oil pipe connection process as a de-
monstration. As explained in Fig. 1, the torque curve in the connection
process is regarded as two linear parts separated by a critical point
according to the relationship between the stress and Young’s modulus
in material mechanics [28]. Thus, in light of physical interpretation of

Fig. 3. The framework of the proposed methodology.
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mechanical deformation, we set the following assumptions for our
proposed approach:

(1) A single critical point existing among multiple potential points can
capture occurrence of deformation in tightening processes.

(2) The nominal curve behind the original signal in each segment is
linearly presented in terms of the principles in material mechanics.
Specifically, in oil pipe connection, the first segment is referred to
as thread engagement procedure and the second segment is referred
to as shoulder contact procedure.

Notably, the nominal curve in assumption (2) denotes the curve
theoretically derived from the physical analysis of mechanical de-
formation [28], which is piecewise linear. Although the obtained
torque signals in Fig. 2 present various nonlinear patterns, the basic
physical mechanism beneath each signal is identical to the nominal
curve. Although other nonlinear models, such as polynomial models,
can be used to formulate this problem instead of a two-phase piecewise
linear model, these models cannot satisfactorily address the critical
point detection problem with mechanical deformation profiles. The
reasons are explained as follows: (1) The physics behind mechanical
deformation profiles can be theoretically represented by a piecewise
linear model with a parameter regarding the critical point location.
Thus, nonlinear models without physical interpretation, such as poly-
nomial models, could not successfully address the critical point due to
mechanical deformation during the tightening process. (2) Nonlinear
models, such as quadratic or basis-function models, might detect a
series of points which are mixed by some local pseudo change points
caused by system noises or numerous latent process factors, leading to
confusion in explanation of these change points. Therefore, a two-phase
piecewise linear state space model is developed to concisely address the
critical point detection problem in this study.

Specifically, the two-phase state space model is proposed as follows:
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where y t,k k and εk represent the torque observation, screwing turn
observation, and Gaussian noise at time k, respectively. For this tigh-
tening process, the variance of the noise appears stable according to the
continuous historical data observations. Thus, in this research, we as-
sumed the variance of the noise term as a constant. Parameter c denotes
the location of the critical point in the x -axis, which represents the
screwing turns while process condition changes. ak and bk are the in-
tercept and slope of the current linear segment at time k. Specifically, a0
and b0 are the intercept and slope before the critical point. p is the
transition probability between current state and new state. δ is the
increment of the slope bk at the critical point. For torque signals in oil
pipe connection processes, observation yk dramatically increases in the
second segment once the pipe edge touches the shoulder of the casing.
Accordingly, δ should be a large positive number. In general, (1) can be
regarded as the measurement model, and (2) can be treated as the
prediction model which indicates the transitions between state vari-
ables of previous and current time. Since the measurement model has a
piecewise linear structure, some traditional tools, such as Kalman filter,
are not effective to be used in its parameter estimation. A particle filter,
as an alternative method, is suitable to deal with this problem [29].
However, as there is an unknown parameter c of the critical point that
does exist in the measurement model, the direct estimation of the dis-
tributions of variables using a traditional particle filter algorithm is not
applicable. In the next section, a new particle filter algorithm is pro-
posed to tackle this problem.

3. Particle filter algorithm for critical point detection

The proposed particle filter is built upon the basic ideas of a particle
filter. Therefore, we will briefly review the basic particle filter algo-
rithm in Subsection 3.1, and then introduce the novel proposed particle
filter in Subsection 3.2.

3.1. The basic concepts of the particle filter algorithm

In a general state space model, the state xi transits over time, and
the observation y under the state xi can be obtained as shown in Fig. 4.
Generally, a two-step procedure is established for the state estimation
in a state space model: update procedure and prediction procedure.

In this subsection, we assume that the distribution of c is known as a
prior, and the state xk only contains two parameters ak and bk, i.e.

=x a b( , )k k k . Hence, state estimation can be conducted by:

=
−

−x
x

xp y
p y

p y y
p y( )

( )
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( )k k
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k k
k k1:

1: 1
1: 1 (3)

where xp y( )k k1: is the state posterior probability given a sequence of
observations y1 to yk, and xp y( )k k is the probability of the current
observation yk given the state xk, which can be estimated from (1).

−p y y( )k k1: 1 is the marginal distribution, which can be obtained by
calculating ∑ −x xp y p y( ) ( )x k k k k1: 1k

. In the implementation, calcu-
lating −p y y( )k k1: 1 can be avoided by converting −x xp y p y( ) ( )k k k k1: 1 to a
density function. In the state prediction procedure, the general form of
the state prediction is:

∫=+ +x x x x xp y p p y d( ) ( ) ( )k k k k k k k1 1: 1 1: (4)

where +xp y( )k k1 1: is the prior distribution of state variable at time +k 1
given the observations y1 to yk, and +x xp ( )k k1 is the state transition
probability, which can be obtained from the prediction model (see (2)).
Consequently, (3) provides the state posterior distribution for (4), and
(4) provides the state prior distribution at time +k 1 for (3). It is quite
challenging to obtain the analytical solution of the current state from
(3) and (4) if the measurement model is piecewise linear. In such a case,
the particle filter, which generates the particles from the prior dis-
tribution and estimates the posterior distribution via sampling techni-
ques, is a powerful tool to use. In particular, particle filters employ a
large number of samples as particles to approximate the probability
distribution function xf ( ) of the state posterior probability xp y( )k k0: 1: .
Denote χk as ≔ … …x x x xχ , , , , ,k k k k

m
k

M[1] [2] [ ] [ ] , i.e., χk is a set of particles
of state xk. Each particle xk

m[ ] is a realization of the state estimation at
time k , and M is the total number of particles in the particle set χk .
Ideally, the probability of a state xk shown in the particle set χk is
proportional to xp y( )k k1: when M becomes infinite. In practice, a large
value of M is often used to guarantee an accurate approximation. It
should be noticed that sampling particles from xf ( ) directly may not be
applicable because xf ( ) can be from any arbitrary complex distribu-
tion, such as non-Gaussian, or multimodal distributions. Thus, an im-
portance sampling technique, which samples particles from a known
probability distribution function xg ( ) to approximate the target prob-
ability distribution function x( ), is used to tackle this issue. Here we
denote ∈I x A( )k

m[ ] as the indicator function, and then the integral of
xg ( ) under a Borel set A can be approximated by

∫∑ ∈ ⎯ →⎯⎯⎯⎯⎯⎯⎯
=

→+∞
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M
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m
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Fig. 4. The general view of a state space model.
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where xk
m[ ] is the mth sample from xg ( ). Define the importance sampling

weight as:
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As a result, the integral of f under A can be approximated by
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A notable property of importance sampling is that it allows the
probability distribution function g to converge to f as M becomes in-
finity. In particle filter, the particles in −χk 1 are sampled from

− −xp y( )k k1 1: 1 , and we select distribution function g as

− − −x x xp p y( ) ( ).k k k k1 0: 1 1: 1 (8)

Hence, the state posterior distribution can be obtained as

∝ − − −x x x x xp y p y p p y( ) ( ) ( ) ( )k k k k k k k k0: 1: 1 0: 1 1: 1 (9)

where the derivation procedure of (9) is given in Appendix A. Notably,
at time =k 1, the state prior distribution for xk is empirical distribution
from engineering knowledge, while at time >k 1, the state prior dis-
tribution for xk can be formulated as:

− − −x x xp p y( ) ( )k k k k1 0: 1 1: 1 (10)

with the importance sampling weight
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The basic particle filter algorithm is established based on the above
formulae. However, particle filter has a common degeneracy problem
[31], which appears that only a few particles have dominant weights
while most particles have small weights after a few iterations. Resam-
pling is a popular approach to tackle the degeneracy problem by
eliminating the particles with small weights and focusing on the par-
ticles with significant weights [32]. Therefore, the resampling step is
essential in particle filter. On the basis of the above discussions, the
basic particle filter algorithm is given in Appendix B.

3.2. The proposed particle filter algorithm

Although the resampling method can deal with the particle degen-
eracy problem, randomness is introduced to such procedure due to the
particle impoverishment and further increases the estimation variance
of state parameters [30]. To deal with the particle resampling issue in
the proposed two-phase state space model, we introduce an integrated
sampling strategy as below. Specifically, given that transition prob-
ability p is included in our two-phase state-space model, stratified
sampling is necessary to sample the state prior distribution −xp y( )k k1: 1
at time k from the state posterior distribution − −xp y( )k k1 1: 1 with
probability −p1 at previous time −k 1 and the new state distribution

xh ( ) with probability p (see Eq. (2)). Afterward, a low-variance sam-
pling technique is used to replace the traditional resampling technique
in the resampling step to obtain particles with large weights. Compared
with independent sampling, low-variance sampling reduces the var-
iance and computation load in the resampling step of the particle filter.
Low-variance sampling has a complexity of O M( ), whereas regular in-
dependent sampling has a complexity of O MlogM( ) [30]. In the fol-
lowing discussions, we will briefly introduce these two sampling tech-
niques first, and then present the details of the proposed particle filter
algorithm.

(1) Stratified sampling. Stratified sampling is an efficient sampling
method to partition the population into non-overlapping groups
when the groups within the overall population follow different
distributions [33]. Here, by using the stratified sampling, state prior

distribution −xp y( )k k1: 1 is sampled with a deterministic sample size
m0 from xh ( ) at time k, and −M m0 sample size from state dis-
tribution =− −x xp y( )k k1 1: 1 at time −k 1, respectively. The state prior
distribution of stratified sampling is

= = + − =− − −x x x x xp y ph p p y( ) ( ) (1 ) ( )k k k k1: 1 1 1: 1 (12)

Denote xk,0
[1], xk,0

[2],…, xk
m
,0

[ ]0 to be randomly sampled from xh ( ) and
xk,1

[1], xk,1
[2],…, −xk

M m
,1

[ ]0 to be the random samples from − −xp y( )k k1 1: 1 .
In practice, the number of the allocated particles is usually in
proportion to the transition probability to reduce sampling var-
iance, that is, =m pM0 [27].

(2) Low variance sampling. The key idea of low variance sampling is
that the selection of samples involves a sequential stochastic pro-
cess and is thus not performed independently in the resampling
process. In the original particle filter and the stratified sampling-
based particle filter, M random numbers are used in particle se-
lection. On the contrary, in low variance sampling, only one
random number r is uniformly selected in the interval M[0, 1/ ]
and is then added by M1/ repeatedly once a particle is selected. Any
real number = + −u r m( 1) M

1 in the interval [0, 1] exactly corre-
sponds to one particle selected. The corresponding relationship
between the sampling particle i and u is shown in the following
equation:

∑= ≥
=

i w uargmin
j m

j

k
m

1

[ ]

(13)

Two advantages emerge in the implementation of the low variance
sampling strategy: (1) the resampled particles preserve higher diversity
than that without low variance sampling, and (2) the complexity of the
low variance sampling strategy is lower than the independent sampler
during the entire resampling procedure [30]. Given that computation
load is a critical challenge in particle filter, an efficient resampling
strategy will significantly improve the time efficiency in real applica-
tions. The limitation of low variance sampling technique also exists
when the state variables are unchanged, i.e., = −x xk k 1. In such situa-
tion, one should never resample because the resampling will lead to M
identical particles ( ∼ −x x xp ( )k

m
k k

m[ ]
1

[ ] ) and lose the particle diversity,
thereby leading to inaccurate estimations of state variables. Note-
worthy, the combined stratified sampling has an advantage to bring at
least m0 new particles into the state estimation, which will increase the
particle diversity and thus reduce the particle impoverishment in-
troduced by the resampling. In this way, the limitation of the low
variance sampling can be avoided.

Fig. 5 shows our integrated sampling strategy for the proposed
particle filter algorithm. At time when >k 1, stratified sampling is used
to draw particles from priors and state posterior distributions at the
previous time step, and low variance sampling is performed in the

Fig. 5. The flowchart of the integrated sampling technique.
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resampling step to resample the particles of large importance weights.
Through above sampling strategy, the state variables can be directly

estimated. Since the critical point is located at the places where a sig-
nificant change of state variables occurs, we need to know the exact
change quantity from the state variables to identify the critical point.
Here, we propose to introduce the information concept from Shannon
[37] to quantify the change information of the state variables and in-
corporate such information into our proposed algorithm for critical
point detection. In the following paragraphs, we will first introduce the
information concept and then illustrate how to use such information for
critical point identification.

Let Ek denote the event “the change of states occurs at time step k ”,
and the information quantity of event Ek is defined as

= ( )I E( ) logn k P
1
Ek

. Notably, such definition shows that the information

quantity of a deterministic event and an impossible event is zero and
infinity, respectively. Hence, in our problem context, = ∞I E( )n k in-
dicates the critical point does not occur at time step k while =I E( ) 0n k

indicates the critical point has occurred no later than time step k. Thus,
a possible way to identify the critical point is to exploit the information
quantity of state variable changes. The particle distribution in the state
space exhibits the change information, which is the key for change
detection. We propose to group the particles according to their state
values for quantification of I E( )n k . From the engineering perspective of
the tightening process, the critical point occurs once the shoulder
contact occurs between the pipe and the casing. Hence, the state vari-
able bk experiences a dramatic increase after the critical point occurs.
So we expect to group the state variables based on their state values and
obtain the proportion of particles which achieves dramatic increase in
state values.

Let s denote the threshold to partition the particles into two groups.
The first group contains the particles with bk values smaller than s, and
the other particles are separated into the second group. s can be given
by the engineering specifications based on the types of connections
between the pipe and the casing. After grouping, PEk and I E( )n k can be
calculated. I E( )n k is almost infinity before the critical point and will be
decreasing after the critical point occurs. When I E( )n k becomes zero,
the critical point definitely occurs before time step k. PEk can be esti-
mated as

∑= ≥ ≈
=

≥ xP Pr b s y w I( ) ( )E k k
m

M

k
m

b s k
m

1:
1

[ ]
{ }

[ ]
k k

(14)

Based on the above discussions, the specific particle filter algorithm
is given as follows:

Here, xg ( )1 and g c( )2 denote the prior distributions of state
=x a b( , )k k k and c m[ ] and h x( ) can be derived from Eq. (2). In the

particle filter algorithm, the state variables are estimated in each time
step. The state change information quantity I E( )n k at any time can be
obtained. Hence, the location of critical point can be obtained ac-
cording to the point where continuous decrease of I E( )n k occurs.

4. Case study

In this section, a real case study from the pipe connection process
are conducted to validate the effectiveness of our proposed methods. In
our implementation of the proposed method, the priors of the para-
meters were first specified. We assume that the state vector x follows a
normal distribution μ ΣN ( , ); parameter μ can be estimated from the
coefficients of the piecewise linear regression in the original signals.
Meanwhile, we can reasonably assume that the covariance matrix is
with the structure =Σ diag σ σ( , )0

2
1
2 . We set the prior distribution of c

follows a beta distribution beta α β( , ). In practice, the prior distribution
of c does not greatly impact the detection results. For transition prob-
ability p, the same rule in Ref. [27] is applied, and we set the transition
probability =p 0.2 for fair comparison. The number of particles

=M 500 and the threshold =s 20000 from engineering specifications
are set for real case study.

Our proposed approach is validated by using the torque signals
collected in a real pipe connection process. A total of 180 samples of
torque and screwing turn signals from four continuous batches of
connected pipes were collected. All the collected signals have different
lengths, and various nonlinear profiles exist with lateral oscillations.
The critical point locations were annotated by experienced technicians.
A few typical examples are selected from our 180 samples to demon-
strate the performance of our method (Fig. 6). The critical points that
characterize the connection conditions are accurately identified from
the different nonlinear profiles in the torque signals.

Given that the signal sampling rate is 20 Hz, we defined a range of

Fig. 6. Examples of critical point detection in torque signals with nonlinear profiles.
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screwing turns [−0.04, 0.03] as a criterion for successful detection;
that is, the difference between detected and real turns should be within
the specified range in the successful detection of the critical point. The
successful detection rate (SDR) of our proposed method in this case
study is provided in Table 1. To measure the deviation between the true
screwing turn value and the detected screwing turn value, we define
root mean square error (RMSE) of screwing turns, and the performance
is shown in Table 2. We use MATLAB 2017b running on a CORE i5 Intel
processor to compute the proposed method. The computation time is
listed in Table 3. As shown in these tables, our proposed method
achieves a satisfactory performance on both detection accuracy and
detection time.

We first compared our proposed method with our previous method
[36] by using the same dataset. As shown in Tables 1 and 2, the ac-
curacy rate and the RMSE of our method is 3.2% higher and 5% smaller
than the method in [36] respectively. Moreover, the proposed method
is 72.3% faster than the method in [36], which meets the requirement
of the online monitoring for the fast pipeline production. Hence, our
new proposed methodology not only improve the computation speed
but also keep the high successful detection rate.

Our method was also compared with Wu’s method [27] by using the
same dataset. Wu’s method uses a particle filter combined with strati-
fied sampling to infer the distribution of the latest change point. The
detection power of Wu’s method is much lower than that of our pro-
posed method in terms of the detection rate, and the RMSE, but much
higher in the computation time. Wu’s method is more sensitive to the
multiple nonlinear patterns in the signal and detects a series of false
critical points, which makes the detection ineffective in our problem
context. We randomly pick one sample to show the detection results of
Wu’s method and our method in Fig. 7, which clearly show that Wu’s
method fails to detect the critical point in this context.

We also compared our method with the cubic spline with one free
interior knot [38] and the piecewise linear regression [13] with two
pieces. For the cubic spline method, the location of the knot is regarded
as the critical point. For the piecewise linear regression method, the
connection point between two pieces is regarded as the critical point.

The successful detection rate (SDR), the RMSE, and the computation
time are listed in Tables 1–3, respectively. Although the cubic spline
method and piecewise linear regression method are faster than our
method, both SDR and RMSE indicate our method is superior in the
detection power of the critical point.

We finally compared our method with the VAM method [34], which
is the current practice in steel industry, the slope detection method
(SDM) [39], and the variance ratio test (VRT) method [40]. In SDM,
least squares are used to estimate the slope of a moving window. In
VRT, we recognize the critical point whose location is with the largest
variance ratio of two adjacent moving windows. Given that the re-
solution of the torque signal is 0.002, we set the window size to 10 to
achieve an acceptable precision. The detection results are shown in
Tables 1–3. The VAM detection results are provided by the steel plant
since it is the current practice. This method can meet the online de-
tection requirement reported from the steel company, although the
exact computational time is not released by the plant. As shown in the
tables, the mean SDR and the mean RMSE of VAM method are 46.39%
lower and 115.79% higher than our method, respectively. The SDM and
VRT methods are faster, however, the detection rates of both methods
are much lower than our proposed method, and meanwhile their
RMSEs are much larger. These results indicate that our proposed
method outperforms these three methods.

5. Discussions

Motivated from the premium pipe connection problem, [36] pro-
posed a pairwise critical point detection method over torque signals.
Such method highlights the accuracy by designing a two-stage esti-
mation algorithm since the change point detection power is the sole
criterion in [36]. A large number of iterations between two stages are
required to obtain the precise change location estimation. Hence, the
method in [36] is hard to be fully implemented in production lines to
meet the time requirements and leading to a lower production effi-
ciency. Differently, our proposed method overcomes such flaw in [36],
and leverages the Shannon information quantification of state changes

Table 1
The SDRs of our method and other methods in tightening processes.

Batch Number Bach size Our method Method in [36] Wu’s Method Cubic spline piece linear Regression VAM’s Method SDM VRT

1 50 0.96 0.96 0.38 0.64 0.92 0.22 0.56 0.14
2 50 0.96 0.90 0.20 0.54 0.88 0.62 0.40 0.26
3 50 0.96 0.96 0.30 0.54 0.84 0.42 0.34 0.36
4 30 1.00 0.93 0.23 0.37 1.00 1.00 0.50 0.63
Mean – 0.97 0.94 0.28 0.54 0.90 0.52 0.44 0.32

Table 2
The RMSEs of our method and other methods in tightening processes.

Batch Number Bath size Our Method Method in [36] Wu’s Method Cubic spline piece linear Regression VAM’s Method SDM VRT

1 50 0.017 0.012 0.048 0.278 0.182 0.050 0.027 1.411
2 50 0.016 0.019 0.064 0.602 0.287 0.037 0.039 1.323
3 50 0.028 0.029 0.055 0.518 0.324 0.052 0.038 1.457
4 30 0.013 0.018 0.046 0.050 0.011 0.011 0.032 0.559
Mean – 0.019 0.020 0.054 0.397 0.222 0.041 0.034 1.257

Table 3
Computation Time(s) of each batch of our method and other methods in tightening processes.

Batch Number Bath size Our Method Method in [36] Wu’s Method Cubic spline piece linear Regression VAM’s Method SDM VRT

1 50 43.685 166.125 413.025 9.6396 19.8925 – 1.3859 1.2007
2 50 48.630 165.860 436.900 8.5529 19.6415 – 1.2209 1.1512
3 50 41.610 149.845 390.865 8.7191 18.4493 – 1.1243 1.0716
4 30 20.856 77.526 187.230 4.4507 8.9525 – 0.4443 0.5746
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and estimates the critical point through one stage, thereby significantly
reducing computation costs. As shown in Table 3 on Page 9, our method
achieves the comparable detection accuracy as [36] but is much faster
than [36], which meets the online requirements of steel plants.

From the comparison studies in Section 4, our method outperforms
other methods in terms of the detection accuracy and computation
time, which can be used for online critical point detection in the tigh-
tening process. The key advantage of our method incorporates the en-
gineering domain knowledge of the pipe tightening process into the
statistical model and estimation algorithm. Specifically, the Shannon
information quantifies the state change during the one-stage estimation
algorithm. In this way, we can achieve a timely precise critical point
detection. Due to the estimation of critical point depends on the in-
formation quantity of the state change, low signal-noise ratio may mask
the state change, and further affect the effectiveness of our proposed
method. However, for the torque signals in the tightening process, the
signal-noise ratio is sufficiently high as shown in Fig. 2 and our method
can be implemented effectively.

6. Conclusions

In this paper, a novel method is developed for critical point detec-
tion in tightening processes. In-situ sensing is used to measure the
torque of a tightening process of pipes, which generates nonlinear
profiles with sensing noises. Although the previous study can achieve
good critical point detection performance, the algorithm is time

consuming, thereby leading infeasibility for online monitoring of fast
production lines in tightening processes. Development of an algorithm
which achieves both high successful detection rate and low computa-
tion time is urgently needed but challenging. To address this problem,
we propose a new particle filter algorithm by integrating sampling
techniques and quantifying the information of state change for efficient
critical point detection.

A real case study on a pipe tightening process was conducted to
validate our method. The results show that the proposed method out-
performs other existing methods in terms of SDR, RMSE and compu-
tation time. For our proposed method, the transition state in the state
space model is pre-defined on the basis of engineering knowledge of
mechanical deformation and the critical point is identified according to
the information quantity of state changes. Thus, its computational time
is much shorter than that of the particle filter-based models without
incorporation of engineering knowledge. It is worthy to point out that
the proposed methodology can be used for critical point detection in
other manufacturing process by further investigations of the corre-
sponding physical mechanism of mechanical deformation.
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Appendix A. Posterior distribution derivation for (9)

∝ − −x x xp y p y y p y( ) ( , ) ( )k k k k k k k0: 1: 0: 1: 1 0: 1: 1

∝ −x xp y p y( ) ( )k k k k0: 1: 1

∝ − − − −x x x xp y p y p y( ) ( , ) ( )k k k k k k k0: 1 1: 1 0: 1 1: 1

∝ − − −x x x xp y p p y( ) ( ) ( )k k k k k k1 0: 1 1: 1

Appendix B. Basic particle filter algorithm based on importance sampling

At time =k 1,

(1) For =m 1 to M Sample ∼x xg ( )m
1
[ ]

1 , = …m M1, 2, , Compute = xw p y( )m m
1
[ ]

1 1
[ ] End

Fig. 7. An example of the comparison between Wu’s method and our method.
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(2) For =m 1 to M Draw i with probability ∝ w m
1
[ ] Add x i

1
[ ] to χ1 End At time ≥k 2,

(3) For =m 1 to M Sample ∼ −x x xp ( )k
m

k k
m[ ]

1
[ ] , = …m M1, 2, , Compute = xw p y( )k

m
k k

m[ ] [ ] End
(4) For =m 1 to M Draw i with probability ∝ wk

i[ ] Add xk
i[ ] to χk End
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