
Automatica 164 (2024) 111634

P
a

U
b

c
u
c
p

(
(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Optimal supervisory control of discrete event systems for cyclic tasks✩

eng Lv a, Zhangcong Xu a, Yiding Ji b, Shaoyuan Li a, Xiang Yin a,∗

Department of Automation and Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong
niversity, Shanghai 200240, China
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, 511458, Hong Kong, China

a r t i c l e i n f o

Article history:
Received 18 September 2022
Received in revised form 8 January 2024
Accepted 14 February 2024
Available online xxxx

Keywords:
Discrete event systems
Optimal supervisory control
Mean payoff games

a b s t r a c t

In this paper, we investigate the problem of optimal supervisory control for cyclic tasks in the context
of discrete-event systems (DES). We consider the completion of each single task as the visit of a
marked state, and overall control objective is to complete tasks cyclically in the sense that marked
states are visited infinitely often. Following the standard optimal supervisory control framework, two
types of costs, disable cost and occurrence cost, are considered. However, instead of considering the
standard accumulated total cost or the average cost per event, we consider the measure for the control
performance using the average cost per task. We show that such an optimality measure is more suitable
for tasks that need to be completed cyclically. Our goal is to design a live and non-blocking supervisor
such that the average cost per task in the worst-case is minimized. To solve the problem, we propose
a game-theoretical approach by converting the optimal control problem as a two-player graph game.
Structural properties of the converted game are discussed. In particular, we show that this game
can be solved by a set of mean payoff decision problems, for which effective algorithms exist. Our
problem can be considered as a special instance of the general ratio-game in the literature. However, by
exploring new structural property for this problem, we achieve superior computational efficiency when
compared to the conventional solution designed for more general problem formulations. Illustrative
examples are provided to demonstrate the proposed algorithm.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivations

Discrete event systems (DES) are dynamic systems with dis-
rete state–spaces and event-driven dynamics, which are widely
sed in the modeling and analysis of man-made engineering
yber–physical systems such as manufacturing systems, trans-
ortation systems and communication networks (Cassandras &

✩ This work was supported in part by the National Natural Science Foundation
of China (62173226, 62061136004, 62303389), in part by the Guangdong Basic
and Applied Basic Research Funding, China, grant 2022A151511076, in part
by the Guangzhou Basic and Applied Basic Research Scheme, China, grant
2023A04J1067, and in part by the Guangzhou Municipality-University Joint
Funding, China, grant 2023A03J0678. The material in this paper was partially
presented at the 60th IEEE Conference on Decision and Control, December 13–
15, 2021, Austin, Texas, USA. This paper was recommended for publication in
revised form by Associate Editor Michel Reniers under the direction of Editor
Christos G. Cassandras.
∗ Corresponding author.

E-mail addresses: lv-peng@sjtu.edu.cn (P. Lv), randomx200@sjtu.edu.cn
Z. Xu), jiyiding@ust.hk (Y. Ji), syli@sjtu.edu.cn (S. Li), yinxiang@sjtu.edu.cn
X. Yin).
ttps://doi.org/10.1016/j.automatica.2024.111634
005-1098/© 2024 Elsevier Ltd. All rights reserved.
Lafortune, 2009). In the context of DES, the supervisory con-
trol theory (SCT) initiated by Ramadge and Wonham is a pow-
erful formal methodology that aims to synthesize a feedback
supervisor such that the closed-loop system under control sat-
isfies some desired specifications, such as safety, liveness and
non-blockingness, in the presence of uncontrollable events; see,
e.g., the textbooks (Seatzu, Silva, & Van Schuppen, 2013; Wonham
& Cai, 2019) and some recent works (Li & Takai, 2022; Ma &
Cai, 2022; Sakakibara, Urabe, & Ushio, 2021; Takai, 2021; Yin &
Lafortune, 2016a, 2016b).

One important problem in the SCT is to synthesize supervisors
optimally in terms of some performance measures. This is re-
ferred to as the optimal supervisory control problem and has drawn
considerable attentions in the literature; see, e.g., Alves, Pena, and
Takahashi (2021), Fu, Ray, and Lagoa (2004), Hill and Lafortune
(2016), Kumar and Garg (1995), Ma and Zhang (2020), Pena,
Vilela, Alves, and Rafael (2021), Sakakibara and Ushio (2020), Sen-
gupta and Lafortune (1998), Su, Van Schuppen, and Rooda (2011),
Ware and Su (2016). Particularly, an optimal supervisory con-
trol framework was proposed in Sengupta and Lafortune (1998)
by considering both the occurrence cost and the disable cost.
The objective of the supervisor is to reach marked states with
the smallest worst-case accumulated total cost. This framework
has been extended subsequently to several different settings,

https://doi.org/10.1016/j.automatica.2024.111634
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2024.111634&domain=pdf
mailto:lv-peng@sjtu.edu.cn
mailto:randomx200@sjtu.edu.cn
mailto:jiyiding@ust.hk
mailto:syli@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn
https://doi.org/10.1016/j.automatica.2024.111634

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

i
2
2
s

e
a
b
e
(
w
s
l
S
t
c
a
s
w

1

v
s
e
t
o
t
s
t
c
m
s

g
t
(
b
t
v
t
t
f

p
a
t
t
i
s
I
d
b

1

l
b
g
P
c
d
m

ncluding, e.g., multiple goals (Marchand, Boivineau, & Lafortune,
000), partial observations (Marchand, Boivineau, & Lafortune,
002), online control (Grigorov & Rudie, 2006) and probabilistic
ystems (Pantelic & Lawford, 2011).
The original framework of Sengupta and Lafortune (1998)

ssentially considers finite languages, which is more suitable for
single non-repetitive task. In terms of optimal control of infinite
ehaviors, a common approach is to use the average cost per
vent as the optimality measure; see, e.g., Ji, Yin, and Lafortune
2021a, 2021b), Pruekprasert and Ushio (2016). However, as we
ill argue later in the paper, such an optimality measure is not
uitable when cyclic tasks are considered, because the optimal so-
ution may keep executing useless behaviors to minimize its cost.
till following the framework of Sengupta and Lafortune (1998),
he authors in Schmidt (2015) consider the optimal supervisory
ontrol of cyclic tasks, where each task cycle is pre-specified
s the reset to its initial state. This setting cannot handle the
cenario where tasks are modeled by multiple marked states
ithout a pre-specified visiting order.

.2. Our results

In this paper, we formulate and solve a class of optimal super-
isory control problem for cyclic tasks. We also follow the basic
etting in Sengupta and Lafortune (1998), where uncontrollable
vents are taken into account, and both the occurrence costs and
he control costs are considered. The tasks are modeled by a set
f marked states and each completion of the task is captured by
he visit of a marked state. The task is cyclic in the sense that the
ystem needs to visit marked states infinitely often. To formulate
he optimal control problem, we consider a performance measure
alled the average cost per task. We argue that such a performance
easure is more suitable for infinite cyclic behaviors than the
tandard accumulated total cost or the average cost per event.
In order to solve the proposed optimal control problem, a

ame-theoretical approach is developed. Specifically, we show
wo important structural properties of the control problem:
i) the optimal strategy is state-based; and (ii) the optimal value
elongs to a finite space. Then we show that the associated
hreshold decision problem can be reduced to a mean payoff
alue decision problem, for which effective algorithms exist in
he literature. By leveraging the structural properties as well as
he reduction, a (pseudo) polynomial-time algorithm is proposed
or solving this type of optimal supervisory control problem.

The proposed optimal supervisory control problem has various
otential applications in different engineering systems. For ex-
mple, in manufacturing lines, machines need to be reconfigured
o make products repeatedly, and one always wants to minimize
he overall production cost for each product. Also, for example,
n multi-robot surveillance, the team of robots needs to visit
ome checkpoints regularly in order to gather or upload data.
n this case, it is meaningful to minimize the long-run average
istance between each time the checkpoint is visited, which can
e captured by a per task cost.

.3. Related works

Our work is closely related to several existing works in the
iterature. Specifically, our solution methodology is motivated
y the two-player graph games (Gradel & Thomas, 2002) and
ame-based methodologies have been used in Ji et al. (2021a),
ruekprasert and Ushio (2016) for solving optimal supervisory
ontrol problems. However, our per task optimality metric is
ifferent from those considered therein. The formulated opti-
al control problem is motivated by the standard mean payoff
2

games (Brim, Chaloupka, Doyen, Gentilini, & Raskin, 2011; Ehren-
feucht & Mycielski, 1979). However, in mean payoff games, the
cost is averaged per event not per task. Furthermore, no infinite
visit requirement is imposed therein. Our problem is also related
to the problems studied in Chatterjee, Henzinger, and Jurdzinski
(2005), Ding, Smith, Belta, and Rus (2014). However, Chatterjee
et al. (2005) study the mean-payoff parity game, where the cost
is still averaged per event not per task. The optimality measure
in Ding et al. (2014) is more similar to our setting. However,
it considers a stochastic setting in terms of Markov decision
processes for the expected cost, while our work considers a
non-stochastic supervisory control problem for the worst-case
cost, and therefore, the solution methodologies are completely
different.

In Bloem et al. (2014), a general type of game called ratio-
game is investigated. Instead of considering a single cost function,
the ratio-game aims to minimize the ratio value of two different
costs. Our investigated mean payoff Büchi game per task can be
considered as a special instance of the ratio-game. Specifically,
for each edge achieving the task, one can assign a unit cost to the
denominator and zero otherwise. However, using existing ratio-
game algorithm to solve our problem requires a cubic complexity
on the number of vertices, while by leveraging structural property
of the per task game, our algorithm can solve the problem with a
quadratic complexity on the number of vertices. In the context of
DES, ratio-games have been first applied in van der Sanden (2018)
to optimize the throughput performance of supervisors, which is
captured by the ratio of two different costs. However, there is
no target state considered therein and the synthesized optimal
supervisor may not be non-blocking.

1.4. Organization

The rest of this paper is organized as follows. Section 2 reviews
some basic notions in the optimal supervisory control theory.
Section 3 formulates the optimal supervisory control problem
for average cost per task (OSCP-AT) that we solve in this work.
Section 4 discusses how to transform the OSCP-AT into mean
payoff Büchi game per task (MPBG-PT) and show the equivalence
between the two problems. Our main synthesis procedure is pro-
vided in Section 5. Case studies as well as numerical experiments
are provided in Section 6. Finally, we conclude the paper in
Section 7. Preliminary and partial versions of some of the results
in this paper are presented in Lv, Yin, Ji, and Li (2021). However,
the algorithm in Lv et al. (2021) needs to enumerate the entire
strategy space which leads to an exponential complexity. Here, by
leveraging new structural properties of the problem, we develop
a new polynomial-time synthesis algorithm, which significantly
improves the result in Lv et al. (2021).

2. Preliminary on optimal supervisory control

2.1. Supervisory control theory

Let Σ be a finite set of events. A string over Σ is a finite
sequence of events of form s = σ1 . . . σn, σi ∈ Σ . We denote by
Σ∗ the set of all finite strings over Σ including the empty string
ε. The set of all infinite strings over Σ is denoted by Σω . We
denote by |s| the length of s and by s[i] the ith event in s. Also,
s[i,j] = σi . . . σj denote the sequence from the ith event to the jth
event in s. A language L ⊆ Σ∗ is a set of strings. The prefix-closure
of L is defined by L = {s ∈ Σ∗ : ∃w ∈ Σ∗ s.t. sw ∈ L}.

We consider a DES modeled as a deterministic finite-state
automaton (DFA)

G = (Q , Σ, δ, q ,Q),
0 m

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

w
δ

r
o

w
d
o

w
f
t

w

l

t

T
t
a
t
t
c

3

3

v
i
t
s
s

E
a
s
t
t
w

here Q is a finite set of states, Σ is a finite set of events,
: Q × Σ → Q is a partial transition function, q0 ∈ Q is the

initial state and Qm ⊆ Q is a set of marked states. The transition
function is also extended to δ : Q × Σ∗ → Q in the usual
manner (Cassandras & Lafortune, 2009). The language generated
by G is L(G) = {s ∈ Σ∗ : δ(q0, s)!}, where ‘‘!’’ means ‘‘is defined’’.
We also denote by Lω(G) the set of infinite strings generated by G.
The language marked by G is Lm(G) = {s ∈ L(G) : δ(q0, s) ∈ Qm}.
Marked states are usually used to model the goal/task of a system.
For any q ∈ Q , we define ∆G(q) = {σ ∈ Σ : δ(q, σ)!} as the set
of active events at q; we also define ∆G(s) = ∆G(δ(q0, s)). For
simplicity, we write δ(q, s) as δ(s) when q = q0. For technical
eason that will be clear later, we assume that the transition from
ne state to the other is unique, i.e., for any q, q′ ∈ Q , we have
|{σ ∈ Σ : δ(q, σ) = q′}| = 1, and we denote by σq,q′ the unique
event from q to q′. Note that, this assumption is without loss of
generality since we can always refine the state space such that
the assumption holds.

In the supervisory control theory, the event set is partitioned
as

Σ = Σc∪̇Σuc,

where Σc is the set of controllable events and Σuc is the set of
uncontrollable events. Then a supervisor is a mapping

S : L(G)→ Γ

that enables events dynamically based on the executed string,
where Γ = {γ ∈ 2Σ

: Σuc ⊆ γ } is the set of control patterns.
The language generated by the closed-loop system under control,
denoted by L(S/G), is defined recursively by

• ε ∈ L(S/G);
• For any s ∈ Σ∗ and σ ∈ Σ , we have sσ ∈ L(S/G) iff

s ∈ L(S/G), sσ ∈ L(G) and σ ∈ S(s).

The language marked by S/G is defined by Lm(S/G) = L(S/G) ∩
Lm(G). The infinite language generated by the closed-loop is de-
noted by Lω(S/G) such that, for any s ∈ Σω , we have s ∈ Lω(S/G)
iff ∀i ≥ 1 : s[1,i] ∈ L(S/G).

A supervisor S is said to be:

• live: if ∀s ∈ L(S/G), ∃σ ∈ Σ : sσ ∈ L(S/G);
• non-blocking: if Lm(S/G) = L(S/G);
• state-based: if the decisions are only based on the current

state, i.e., ∀s, t∈L(G) : δ(s)=δ(t)⇒ S(s)=S(t).

Note that liveness and non-blockingness are incomparable, and in
this work, we require the synthesized supervisor satisfying both
properties.

2.2. Cost functions

Following the standard framework of optimal supervisory con-
trol (Sengupta & Lafortune, 1998), we consider the following two
types of costs:

• occurrence cost: ce : Σ → N; and
• disable cost: cd : Σc → N.

That is, for each σ ∈ Σ , ce(σ) denotes the cost incurred when σ is
executed. The occurrence cost can model, for example, the energy
consumption for each event execution. On the other hand, the
disable cost cd(σ) describes the cost incurred when the supervisor
tries to prevent a feasible and controllable event σ from happen-
ing. The disable cost also provides a quantitative measure for the
permissiveness of the supervisor since the supervisor will incur
large disable cost if it interferes the behavior of the system too
 a

3

much. Therefore, the disable cost incurred using control decision
γ ∈ Γ at state q ∈ Q , denoted by c ′d(γ , q), is defined by

c ′d(γ , q) =
∑

σ∈(∆G(q)∩Σc)\γ

cd(σ),

hich is the summation of disable costs for all feasible but
isabled events. With a slight abuse of notion and for the sake
f simplicity, hereafter, we still use cd(γ , q) to denote c ′d(γ , q).
Then given a supervisor, and for any finite string s = σ1

. . . σn ∈ L(S/G), the total cost incurred along s is defined by

CostS(s) =
∑

i=1,...,n

ce(σi)+
∑
s′∈{s}

cd(S(s′), δ(s′)),

here the first component represents the total occurrence cost
or all events in string s and the second component represents
he total disable cost for all decisions along s.

However, for an infinite string s ∈ Lω(S/G), it does not make
sense to talk about its total cost as it usually goes to infinity. An
alternative optimality metric is to consider the average cost (or,
the mean payoff), which is defined by

CostAve
S (s) = lim sup

n→∞

{
1
n
CostS(s[1,n])

}
,

here s[1,n] is the prefix of s with length n.
In the DES literature, different types of optimal control prob-

ems have been investigated, including, e.g.,

(1) Total Cost Control for Reachability (Sengupta & Lafortune,
1998): This problem requires to reach marked states op-
timally; hence, the supervisor needs to be non-blocking.
Furthermore, the supervisor needs to minimize the worst-
case total cost CostS(s) for string s that reaches the marked
states Qm for the first-time. Note that here it is meaning-
ful to discuss the total cost since once a marked state
is reached, the entire task is completed, i.e., the optimal
solution should be in finite horizon.

(2) Average Cost Control for Liveness(Ji et al., 2021b; Pruekpraser
& Ushio, 2016): This problem requires to find a live supervi-
sor such that the system can execute indefinitely. Since the
horizon is infinite, it makes sense to consider the average
cost and the supervisor needs to minimize CostAve

S (s) for
the worst-case.

he first problem is useful to describe the scenario, where a single
ask, modeled by marked states, needs to be achieved optimally
nd for only once. The second problem is useful to describe
he scenario, where the supervisor needs to ensure the non-
ermination of the entire process and to minimize the average
ost during the indefinite process.

. Optimal control for cyclic tasks

.1. Motivating example

In the optimal control problem for cyclic tasks, the super-
isor wants to make sure that marked states can be visited
nfinitely often so that tasks can be completed repeatedly. Al-
hough such a solution involves infinite strings, the following
imple example shows that the standard average cost is not a
uitable performance metric for optimality.

xample 1. Let us consider system G shown in Fig. 1, where
ll events are controllable and double circle denotes a marked
tate. For each state, we assume that there is no disable cost and
he occurrence cost is given as the number associated to each
ransition. If one wants to visit marked state q0 infinitely often,
hile minimizing the average cost, a possible optimal solution is

s follows:

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

T
c
t
w

b
p
A
d
s
s
c
n

3

w
s

I

C

C
r
s
e
a
c

4

(
a
e
p
a

4

A

t
ρ

c
s

s
w
b
a
f
ρ

c
g
d

g
a

(
a
s
P
w
f
d

w
t
g
a
g
p
a

(
g
w

(
o
p
m

M

Fig. 1. System G in Example 1.

• upon the kth occurrence of event a, the supervisor repeats
control decision {c} for k-times and then changes to control
decision {b}.

his is because that c has a lower cost and enabling c few times
an help to reduce the cost averaged by events, i.e., CostAve

S (s) goes
o 2. Furthermore, marked state q0 is still visited infinitely often,
hich satisfies the cyclicity requirement.
However, this optimal solution is not of practical interest,

ecause the optimal average cost is achieved by increasing the
ercentage of event c , which is useless for completing the task.
simple and practical solution is to alternate between control

ecisions {a} and {b} without allowing event c for even once. This
imple example suggests that, when tasks modeled by marked
tates are considered, it makes more sense to average the total
ost by the number of completions of tasks, rather than the
umber of event occurrences.

.2. Problem formulation

Motivated by the above discussions, for each string s ∈ L(G),
e denote by Im(s) the number of visits of marked states Qm along
, i.e.,

m(s) = |{s′ ∈ {s} : δ(q0, s′) ∈ Qm}|.

Essentially, Im(s) represents the number of tasks the system has
completed. Let s ∈ Lω(S/G) be an infinite string generated by the
system. Then the average cost per task of s under supervisor S is

ostAveT
S (s) = lim sup

n→∞

{
1

Im(s[1,n])
CostS(s[1,n])

}
. (1)

This leads to the Optimal Supervisory Control Problem for Average
Cost Per Task (OSCP-AT) that we solve in this paper.

Problem 1 (OSCP-AT). Given system G with Σc , find an optimal
supervisor S∗ such that

(1) S∗ is live and non-blocking; and
(2) for any s ∈ Lω(S∗/G), CostAveT

S∗ (s) <∞; and
(3) for any S ′ satisfying (1) and (2), we have

sup
s∈Lω(S∗/G)

Cost∗
AveT

S (s) ≤ sup
s∈Lω(S′/G)

CostAveT
S′ (s).

Remark 1. It is important to note that, the average cost per task
considered in our problem can be treated as a special instance
of the ratio value cost originally studied in Bloem et al. (2014).
Specifically, for any finite string s[1,n], we consider two different
costs c1(s[1,n]) and c2(s[1,n]). Then for any infinite string s, its
ratio value cost is defined as Ratio(c1,c2)(s) = lim supn→∞

c1(s[1,n])
c2(s[1,n])

.
learly, by setting c1 = CostS and c2 = Im, this ratio value cost
educes to our average cost per task. In this work, instead of
olving our problem directly using the general algorithm in Bloem
t al. (2014), we will explore new structural properties for the
verage cost per task measure, which yield a more efficient and
ustomized algorithm.
4

. Game-based formulation of SCT

Pruekprasert, Ushio, and Kanazawa (2015), van der Sanden
2018), a graph-game-based approach was developed for solving
n optimal supervisory control problem for average cost per
vent. In this paper, to solve the optimal supervisory control
roblem for average cost per task, we also convert the DES model
s a two-player game over a weighted graph.

.1. Two-player graph games

A two-player game graph is a bipartite graph

= (V =V0∪̇V1, E, v0),

where V is a set of vertices and V0 and V1 form a partition of V
denoting, respectively, the set of vertices of Player 0 and Player
1; E ⊆ (V0 × V1) ∪ (V1 × V0) is a set of edges; and v0 ∈ V0 is
he initial vertex of the game. A play in A is an infinite sequence
∈ Vω such that ⟨ρ[i], ρ[i+1]⟩ ∈ E,∀i ≥ 0. The set of all

plays starting from v is denoted by Plays(A, v). For any play
ρ = v0v1 · · · vn ∈ Plays(A, v), ρ is called a cycle if v0 = vn. For a
ycle, if ∀0 < i < j < n, vi ̸= vj, vi ̸= v0 and vj ̸= v0, we call it a
imple cycle; otherwise, it is a compound cycle.

A strategy for Player i ∈ {0, 1} is a function θi : V ∗Vi → V
uch that ∀w ∈ V ∗, v ∈ Vi : θi(wv) = v′ ⇒ ⟨v, v′⟩ ∈ E,
here V ∗ is the set of all finite sequences over V . We denote
y Θ̃i the set of all strategies for Player i ∈ {0, 1}. Then given
strategy θi of Player i ∈ {0, 1}, we say a play ρ ∈ Play(A, v)

rom v ∈ V is consistent with strategy θi if ∀n ≥ 0 : ρ[n] ∈ Vi ⇒

[n+1] = θi(ρ[1,n]). We denote by Play(A, v, θi) the set of all plays
onsistent with θi from v ∈ V . If the strategies of both players are
iven, i.e., θ = (θ0, θ1), then the play from v ∈ V can be uniquely
etermined, which is ρ(v, θ) := ∩i=0,1Play(A, v, θi).
The goal of each player is to achieve some objective. Most

ame objectives investigated in the literature can be categorized
s qualitative objectives or quantitative objectives.

1) Qualitative Objective: A qualitative objective can be expressed
s a winning condition Win ⊆ Vω , which is a set of infinite
equences. Specifically, we say that strategy θi achieves Win for
layer i, if Play(A, v0, θi) ⊆ Win. In this paper, we focus on finding
inning strategies for Player 0; hence Win is always considered

or Player 0. Given a set of vertices Vm ⊆ V , one can define
ifferent types of winning conditions, e.g.,

• safety: WinS(Vm)={ρ∈Vω
: Occ(ρ) ∩ Vm=∅};

• reachability: WinR(Vm)={ρ∈Vω
: Occ(ρ)∩Vm ̸=∅};

• Büchi: WinB(Vm)={ρ∈Vω
: Inf(ρ) ∩ Vm ̸=∅},

here Occ(ρ) and Inf(ρ) denote, respectively, the set of vertices
hat occur at least once and infinite number of times in ρ. Game
raphs associated with winning conditions WinS(Vm),WinR(Vm)
nd WinB(Vm) are referred to as the safety game, reachability
ame and Büchi game, respectively. Effective algorithms have been
roposed for solving each of the above games; see, e.g., Gradel
nd Thomas (2002).

2) Quantitative Objective: Quantitative objectives are investi-
ated for a weighted game (A, w), where A is an arena and
: E → N+ is a weight function assigning each edge a weight

or payoff). Later in this work, we will leverage an important type
f quantitative game called the mean payoff game to solve our
roblem. In the mean payoff game, Player 0 aims to minimize the
ean payoff of a play ρ ∈ Vω , i.e.,

P(w)(ρ) = lim sup
n→∞

1
n

∑
w(ρ[i], ρ[i+1]).
i<n

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

T

i
a
w
c
q
q
n
‘
f
w
t
A

Q
f
F
w

n

t
t
c
p

E

f
g
t
a
o
w
u
e
t
r

l
f
r
i

P

he value secured by strategy θ0 of Player 0 at vertex v ∈ V is

val(w)
MP (v; θ0) = sup

θ1∈Θ̃1

MP(w)(ρ(v, θ0, θ1)),

which is the worst-case payoff it can ensure. The optimal value
for Player 0 at vertex v ∈ V in the game (A, ω) is val(w)

MP (v) =
infθ0∈Θ̃0

val(w)
MP (v; θ0). It was shown by Zwick and Paterson (1996)

that Player 0 has an optimal strategy θ∗0 to secure this optimal
value; furthermore this strategy is positional, i.e., it only depends
on the current vertex. Note that, here we use superscript (w) to
emphasize that the payoff is w.r.t. weight function w. We will also
omit the superscript (w) when there is no ambiguity.

4.2. Supervisory control as a game

As we mentioned earlier, our approach is to transform the
supervisory control problem as a game. Specifically, given a DES
G = (Q , Σ, δ, q0,Qm), we construct a new game arena

AG
= (V G

=V G
0 ∪ V G

1 , EG, vG
0)

where

• V G
0 ⊆ Q ∪ {vD,0} are Player 0’s vertices;

• V G
1 ⊆ (Q × Γ) ∪ {vD,1} are Player 1’s vertices;

• EG
⊆ (V G

0 ×V G
1) ∪ (V G

1 ×V G
0) are edges defined by:

– for any q ∈ Q ⊆ V G
0 , γ ∈ Γ , we have ⟨q, (q, γ)⟩ ∈ EG

– for any (q, γ) ∈ V G
1 , if ∆G(q) ∩ γ ̸= ∅, then for each

σ ∈ ∆G(q) ∩ γ , we have

⟨(q, γ), δ(q, σ)⟩ ∈ EG

otherwise, when ∆G(q) ∩ γ = ∅, we have

⟨(q, γ), vD,0⟩ ∈ EG

– for vD,0 ∈ V G
0 and vD,1 ∈ V G

1 , we have

⟨vD,0, vD,1⟩, ⟨vD,1, vD,0⟩ ∈ EG

• vG
0 = q0 is the initial vertex.

Intuitively, game graph AG explicitly distinguishes between
the supervisor’s decision stage V G

0 from which a control pattern
s chosen and the environment’s decision stage V G

1 from which
n event occurs. Furthermore, each state in V G

1 is of form (q, γ),
here q is the current state, while γ ∈ Γ represents the current
ontrol pattern applied. Note that (q, γ) can move to some state
′
∈ V G

0 only when there exists some feasible events enabled at
under γ . For the case that ∆G(q) ∩ γ = ∅, we introduce two
ew vertices vD,0 ∈ V G

0 and vD,1 ∈ V G
1 , where ‘‘D’’ represents

‘deadlock’’. Therefore, the graph has at least one outgoing edge
or each vertex, but may loop in the deadlock vertices forever. We
ill refer to AG as the supervisory control (SC) game graph and for
he sake of simplicity, hereafter we will omit all superscripts G in
G and just write it as A.
To describe the qualitative winning condition, we define Vm :=

m ⊆ V0 as the set of ‘‘target’’ vertices that should be visited in-
initely often, i.e., we consider Büchi winning condition w.r.t. Vm.
urthermore, to introduce the quantitative objective, we define a
eight function w : E → N ∪ {∞} by:

• w((q, γ), q′) = ce(σq,q′);
• w(q, (q, γ)) = cd(γ , q);
• w((q, γ), vD,0)=w(vD,0, vD,1)=w(vD,1, vD,0) = ∞.

The above construction is sufficient to capture all information
eeded in the synthesis problem since we have assumed that
5

Fig. 2. DES G for Example 2.

Fig. 3. The SC game graph A, where γ0 = {a, d, e} and γ1 = {d, e}.

here is at most one event from a state to another. If this assump-
ion does not hold, then function w cannot capture the occurrence
osts correctly since σq,q′ is not unique. In this case, we need to
re-process plant G such that the assumption holds.

xample 2. Consider system G shown in Fig. 2, where Σc = {a}
and Qm = {q0, q1, q4}. Suppose the occurrence costs of events are
given by ce(a) = 1 and ce(d) = ce(e) = 2 and the disable cost
or a ∈ Σc is given by cd(a) = 1. Then, the corresponding SC
ame graphA is shown in Fig. 3, where we use circles and squares
o denote Player 0’s vertices and Player 1’s vertices respectively
nd the numbers on the edges are the cost values. For the sake
f simplicity, at each state, we only consider control patterns in
hich all disabled events are defined at this state. That is, those
ndefined events are always included in the control pattern. For
xample, in state q3, event a is not feasible; therefore, it suffices
o only consider control decision γ0 = {a, d, e}, and γ1 = {d, e} is
edundant.

To capture the average cost per task requirement as formu-
ated in Problem 1, similarly to the mean payoff game, for any
inite sequence ρ, we denote by Nm(ρ) as the number of occur-
ences of Qm in ρ. Then the mean payoff per task of a play ρ ∈ Vω

s

T(w)(ρ) = lim sup
n→∞

Cost(ρ[0,n])
Nm(ρ[0,n])

, (2)

where Cost(ρ[0,n]) =
∑

i<n w(ρ[i], ρ[i+1]). Then themean payoff per
task value secured by strategy θ0 of Player 0 at vertex v ∈ V w.r.t.
weight function w is defined by

val(w)
PT (v; θ0) = sup

θ1∈Θ̃1

PT(w)(ρ(v, θ0, θ1)).

Similarly, we define the optimal mean payoff per task value for
Player 0 at vertex v ∈ V in the game (A, ω) as val(w)

PT (v) =
inf val(w)(v; θ).
θ0∈Θ̃0 PT 0

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

E
p
r
q

d
T
w
e

xample 3. We still consider the SC game in Fig. 3 and consider
ositional strategies θ0 and θ1 showed by red and blue lines,
espectively. Then we have ρ(q0, θ0, θ1) = ρ0ρ

ω
1 with ρ0 =

0(q0, γ0) and ρ1 = q2(q2, γ0)q1(q1, γ1). Since there exists only
one target vertex q1 in ρ2 and the total cost of ρ2 is 5, we have
val(w)

PT (q0) = val(w)
PT (q0; θ0) = PT(w)(ρ(q0, θ0, θ1)) = 5.

We consider a game in which Player 0 aims to minimize the
per task payoff. This leads to the formulation of the following
problem of Mean Payoff Büchi Game Per Task (MPBG-PT).

Problem 2 (MPBG-PT). Given a game graph A, target vertices Qm
and weight function w : V → N ∪ {∞}, find an optimal strategy
θ∗0 ∈ Θ̃0 for Player 0 such that

(1) Play(A, v0, θ
∗

0) ⊆ WinB(Vm);
(2) for any strategy θ ′0 ∈ Θ̃0 satisfying (1), we have val(w)

PT

(v0; θ
∗

0) ≤ val(w)
PT (v0; θ

′

0).

Note that, if strategy θ∗0 ensures infinite visits of target ver-
tices, then its per-task value has to be finite, and vice versa. There-
fore, in the above problem formulation, the satisfaction of the
Büchi condition is equivalent to the boundedness of val(w)

PT (v0; θ
∗

0).

4.3. Correctness of the transformation

Note that game graph A is constructed from G. Therefore, a
Player 0’s strategy in A and a supervisor for G can be mapped
from one to the other as follows:

• Given strategy θ0, it induces a supervisor, denoted by Sθ0 ,
inductively by: for any play ρ = q0(q0, γ0)q1(q1, γ1) . . .
qn(qn, γn) ∈ Play(A, q0, θ0), we have Sθ0 (σ0σ1 . . . σn) = γn,
where σ0 = ϵ and δ(qi, σi+1) = qi+1,∀i = 0, 1, . . . , n− 1.
• Given supervisor S, it also induces a strategy for Player 0,

denoted by θS , inductively by: for any s = σ1 · · · σn ∈

L(S/G), we have θ0(ρ) = (qn, S(s)), where ρ is the unique
play of form ρ = q0(q0, γ0)q1(q1, γ1) . . . qn ∈ Play(A, q0, θS),
and δ(qi, σi+1) = qi+1,∀i = 0, 1, . . . , n− 1.

We note that Problem 2 requires the Büchi winning condi-
tion, which seems to be stronger than the liveness and non-
blockingness requirements in the original problem, because non-
blockingness only requires the existence of path to marked states.
However, these two conditions are essentially equivalent under
the assumption that each event has a non-zero occurrence cost
and the requirement that CostAveT

S∗ (s) < ∞. This is because,
if the system is live and non-blocking but cannot visit marked
states infinitely often, then it must loop somewhere which yields
infinite cost per task. For example, for system G in Fig. 1, the
system itself is already live and non-blocking, but its cost per task
is infinite due to the cycle at state q1. Therefore, it does not satisfy
the Büchi winning condition.

The following theorem shows that, to solve the original OSCP-
AT as formulated in Problem 1, it is equivalent to solve the game
as defined in Problem 2. Therefore, our later developments can
only focus on the game-based formulation.

1. A strategy θ∗0 solves Problem 2 if and only if its induced supervisor
Sθ∗0

solves Problem 1.

Proof. See the Appendix.

Hereafter, we assume without loss of generality that, for the
construction game A, there exists a strategy of Player 0 θ0 such
that Play(A, v0, θ0) ⊆ WinB(Vm). The existence of such a strategy
can be determined by checking the non-emptyness of the Büchi
winning region in polynomial-time; see, e.g., Gradel and Thomas
(2002). Otherwise, we can conclude immediately that Problem 1
has no solution.
6

5. Optimal supervisor synthesis procedure

In this section, we present our main synthesis procedure for
solving Problem 2 (and hence solves Problem 1). Our approach
consists of the following steps:

• First, we show two key structural properties of MPBG-PT: (i)
the optimal strategy is positional; and (ii) the value of the
game is within a finite set;
• Then, we further consider a threshold decision problem for

the mean payoff per task value, and show that this decision
problem can be reduced to the threshold decision problem
for the standard mean payoff value;
• Finally, by leveraging the structural properties of the game

and by iteratively applying the threshold decision problems,
we can effectively solve MPBG-PT.

5.1. Structure property of MPBG-PT

In this subsection, we first show two key structural properties
of MPBG-PT. First, we show that the value of MPBG-PT can be
achieved by a positional strategy.

In the literature of two-player graph games, it is well-known
that (e.g., Corollary 7 in Gimbert and Zielonka (2005)), given a
payoff function, the optimal value of the game can be achieved by
a pair of positional strategies if each player has a positional optimal
strategy for the same payoff function by assuming that it can
control all vertices in the graph. In many cases, the later condition
is much easier to test. The reader is referred to Gimbert and
Zielonka (2005) for a more rigorous statement of this result. Here,
by applying this result to our MPBG-PT, we have the following
proposition.

Proposition 1. If Problem 2 has a solution, then there exists a pair
of positional strategies (θ∗0 , θ∗1) such that θ∗0 solves Problem 2 and
val(w)

PT (v0) = PT(w)(ρ∗(v0, θ
∗

0 , θ∗1)).

Proof. For the original weighted game (A = (V = V0 ∪

V1, E, v0), w), we assume that Player 0’s vertices are V0 ∪ V1
and there is no Player 1’s vertex and consider (2) as the payoff
function for Player 0. For any pair of positional strategies (θ0, θ1),
ρ(v0, θ0, θ1) ∈ WinB(Vm) must be a play of the prefix–suffix form
ρ(v0, θ0, θ1) = ρpre(ρsur)ω , where ρpre = v0 · · · vn is a finite path
from v0 to ρsur and ρsur = vn+1 · · · vm is a cycle. Furthermore, we
know that

PT(w)(ρ) = lim sup
i→∞

Cost(ρ[0,i])
Nm(ρ[0,i])

= lim sup
k→∞

Cost(ρpre)+ k · Cost(ρsur)
Nm(ρpre)+ k · Nm(ρsur)

.

As ρpre is a finite sequence, we have

PT(w)(ρ) = lim sup
k→∞

Cost(ρpre)+ k · Cost(ρsur)
Nm(ρpre)+ k · Nm(ρsur)

= lim sup
k→∞

k · Cost(ρsur)
k · Nm(ρsur)

=
Cost(ρsur)
Nm(ρsur)

,

which means that PT(w)(ρ) is only determined by the mean payoff
value per task of ρsur . Also, given two cycles ρ1 and ρ2 with
Cost(ρ1) = n1,Cost(ρ2) = n2,Nm(ρ1) = d1 ̸= 0 and Nm(ρ2) =
2 ̸= 0, suppose n1

d1
<

n2
d2
. Clearly, we have n1

d1
<

n1+n2
d1+d2

.
herefore, let ρ∗sur be the simple cycle with the minimum value
ith respect to (2) that is reachable from v0. Then there must
xist a positional strategy for Player 0 to achieve the following

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

p
ρ
w
w
i

m
p
w

P

P
r
d
ρ

a
i
o
1

a
i
b
n
T

Ξ

w

I

t
p
g
p
s

p
v
i
f

ath ρ∗ = ρ∗pre(ρ
∗
sur)

ω , where ρ∗pre is a finite path from v0 to
∗
sur . Therefore, Player 0 has an optimal positional strategy in any
eighted game (A, ω) with V1 = ∅ with respect to (2). Similarly,
e can also argue that Player 1 has an optimal positional strategy

n any weighted game (A, ω) with V0 = ∅ with respect to (2)
by letting ρ∗sur be the simple cycle with the maximum value
with respect to (2) that is reachable from v0. Since both Players
have a positional optimal strategy when assuming it can control
all vertices, the proposition is proved according to Corollary 7
of Gimbert and Zielonka (2005). ■

Based on the above result, hereafter, we will only consider
positional strategies for Player 0 to solve Problem 2 and denote by
Θi the set of all positional strategies for Player i ∈ {0, 1}. In fact,
the following result further shows that, for any optimal positional
θ0 ∈ Θ0 of Player 0, the worst-case value can be achieved also by
a positional strategy θ1 ∈ Θ1 of Player 1 (either for the mean
payoff value or the MPBG-PT value).

Lemma 1. Given an optimal positional strategy θ0 ∈ Θ0 such that
Play(A, v0, θ0) ⊆ WinB(Vm), we have

val(w)
PT (v; θ0) = sup

θ1∈Θ1

PT(w)(ρ(v, θ0, θ1)) (3)

val(w)
MP (v; θ0) = sup

θ1∈Θ1

MP(w)(ρ(v, θ0, θ1)). (4)

Proof. We first prove Eq. (3). Let p = supθ1∈Θ1
PT(w)(ρ(v, θ0, θ1)).

Note that since θ0 is a positional strategy, then for any positional
strategy θ ∈ Θ1, ρ(v0, θ0, θ) must be a play of prefix–suffix
form such that ρ(v0, θ0, θ) = ρpre(ρsur)ω with ρsur being a simple
cycle. Now we assume Eq. (3) does not hold, which means that
∃θ ′ ∈ Θ̃1, PT(w)(ρ(v0, θ0, θ

′)) > p. As A is a finite graph with
a finite vertex set V , there must exist at least one vertex v ∈
V occurring infinite times in ρ(v0, θ0, θ

′). Then, we can divide
ρ(v0, θ0, θ

′) into infinite number of cycles according to v, which
may be either simple cycles or compound cycles, and a finite play
from v0 to these cycles. If PT(w)(ρ(v0, θ0, θ

′)) > p, then there
must exist infinite number of cycles in ρ(v0, θ0, θ

′) with the mean
payoff values per task being greater than p, which leads to a
contradiction. Therefore, Eq. (3) holds.

Regarding Eq. (4), similarly, we can still choose p = supθ1∈Θ1
MP(w)(ρ(v, θ0, θ1)). Note that ρ(v0, θ0, θ) is also a play of prefix–
suffix form. Therefore, following the same contradictive argu-
ment, we know that there exists no θ ′ ∈ Θ̃1 such that MP(w)

(ρ(v0, θ0, θ
′)) > p. ■

With the help of the above lemma, now we are ready to show
the second key structural property of MPBG-PT. That is, the value
of MPBG-PT val(w)

PT (v0) belongs to a finite set of rational numbers.

2. Let (A, w) be a weighted game, where A = (V = V0∪V1, E, v0),
W = maxe∈E w(e) and W ′ = mine∈E w(e) be the maximum and
inimum weights in A, respectively. Then the optimal mean payoff
er task value for Player 0, i.e., val(w)

PT (v0), is a rational number n
d ,

here n, d ∈ N, such that 1 ≤ d ≤ |Vm| and 2d ·W ′ ≤ n ≤ |V | ·W.

roof. By Proposition 1 and Lemma 1, we know that val(w)
PT (v0)

can be achieved by a pair of positional strategies (θ0, θ1), which
yields a unique play in the prefix–suffix form ρ(v0, θ0, θ1) =
ρpre(ρsur)ω . As we have argued before, the per task value of
the play PT(w)(ρ(v0, θ0, θ1)) is only determined by the suffix
part ρsur and we have PT(w)(ρ(v0, θ0, θ1)) = Cost(ρsur)

Nm(ρsur)
. Therefore,

T(w)(ρ(v0, θ0, θ1)) is a fractional number, where the numerator
epresenting the total cost value incurred along ρsur and the
enominator representing the number of occurrences of Vm in

. Since each edge is assigned with a non-negative integer
sur

7

weight, PT(w)(ρ(v0, θ0, θ1)) must be a rational number, which
means that the optimal mean payoff value per task val(w)

PT (v0) is
lso a rational number. Furthermore, for any simple cycle ρsur
n A, the number of vertices in Vm that ρsur passes through can
nly be an integer between 1 and Vm, and therefore we have
≤ d ≤ |Vm|.
Then for the numerator Cost(ρsur), since A is a bipartite graph

nd Vm belongs to V0 only, for a given d, the minimum total cost
s 2d · W ′. On the other hand, since val(w)

PT (v0) can be achieved
y two optimal positional strategies (θ0, θ1), the maximal edge
umber in ρsur is |V |. Therefore, we have Cost(ρsur) ≤ |V | · W .
his proves the theorem. ■

Based on the above theorem, we define

=

{
n
d
:

n, d ∈ N, 1 ≤ d ≤ |Vm|,

2d ·W ′ ≤ n ≤ |V | ·W

}
as the set of all possible optimal values, or the value space, of
Player 0.

For example, let us consider the SC game (A, w) in Fig. 3,
hich is constructed based on DES G in Fig. 2. Since W = 2,W ′ =

0, |V | = 13 and |Vm| = 3, the space of the optimal per task value
is

Ξ =

{n
d
: d = 1, 2, 3, n = 0, 1, 2, . . . , 26

}
. (5)

Recall that the objective of MPBG-PT is to find an optimal strategy
that achieves the minimum value in Ξ . Since we have already
shown that Ξ is a finite set, the optimal value can be found by
solving a set of threshold decision problems defined as follows.

Problem 3 (Per Task Value Decision Problem). Let (A, w) be a
weighted game. Given a rational number p ∈ Q+, decide whether
there exists a strategy θ0 ∈ Θ0 such that val(w)

PT (v0; θ0) ≤ p. If so,
find such a strategy.

Clearly, if we can solve the above value decision problem,
then we can start from the largest p in Ξ and decrease the
threshold value until the answer to the decision problem becomes
negative. Then the strategy achieving the minimum p ∈ Ξ is the
optimal strategy θ∗0 achieving the optimal value val(w)

PT (v0). Now,
the question comes how to solve Problem 3.

5.2. Synthesis of p-shifted game

In order to solve the per task value decision problem, our ap-
proach is to reduce it to the standard mean payoff value decision
problem defined as follows.

Problem 4 (Mean Payoff Value Decision Problem). Let (A, w) be a
weighted game. Given a rational number p ∈ Q+, decide whether
or not we can find a strategy θ0 ∈ Θ0 such that val(w)

MP (v0; θ0) ≤ p.
f so, find such a strategy.

Compared with Problem 3, Problem 4 simply replaces the per
ask criterion by the mean payoff criterion. Clearly, this decision
roblem can be solved by the standard mean payoff game al-
orithm. Specifically, for each (A, w), one can find the optimal
ositional strategy θ∗MP ∈ Θ0. If val

(w)
MP (v0; θ

∗
MP) ≤ p, then it is the

olution; otherwise, no solution exists.
Now we present our main construction for connecting the

er task value decision problem with the standard mean payoff
alue decision problem. Specifically, for any (A, w) and p as the
nstance of Problem 3, we construct an instance of Problem 4 as
ollows.

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

D
w
p
E
p
t

m
e
a
u
m
g
t
a
u
t
θ

ρ

s
a
g
M

S
w

P
i
a

t
N
t
o
p

P
i
p
o
P

P

P

=

a

A
O

=

w
b

·

f
o

efinition 1 (p-Shifted Game). Let (A, w) be a weighted game,
here A = (V = V0∪̇V1, E, v0) with accepting vertices Vm, and
∈ Q+ be a rational number. We define Em = {⟨(q, γ), q′⟩ ∈
: q′ ∈ Vm} as the set of edges leading to target vertices. The

-shifted game of (A, w) is a new weighted game (A, ŵ), where
he arena A is the same and the weight function ŵ is defined by:

• ∀e ∈ Em, ŵ(e) = w(e);
• ∀e ∈ E \ Em, ŵ(e) = w(e)+ p.

The above construction is motivated by the reduction from
ean payoff games to energy games in Brim et al. (2011). How-
ver, here we need to further take the issue of target vertices into
ccount. Furthermore, as we will show later, this construction is
sed to connect (not precisely reduce) our per task game with
ean payoff game. Intuitively, for a weighted game, its p-shifted
ame simply adds value p to the weight of each edge leading
o non-task vertices. Then the per task value decision problem
nd the mean payoff value decision problem can be connected
sing the p-shifted game. Note that, since (A, w) and (A, ŵ) share
he same arena A, it makes sense to apply the same strategy
0 ∈ Θ0 of Player 0 to both games. Now let us consider a play
∈ Play(A, v, θ0) and suppose that MP(ŵ)(ρ) ≤ p, i.e., the play

atisfies the mean payoff threshold in game (A, ŵ). Now, let us
nalyze the mean payoff per task value of the same run but in
ame (A, w), i.e., PT(w)(ρ). By the construction of ŵ, we know that
P(ŵ)(ρ) consists of two parts:

• the payoff collected from w with MP(ŵ)(ρ);
• the added payoff p in each non-task edges.

ince MP(ŵ)(ρ) ≤ p, the (average) total payoff collected from
each time visiting task edges must be no larger than p, i.e.,

T(w)(ρ) ≤ p. Otherwise, by moving these payoff to each task edge
n (A, ŵ), the mean payoff will be larger than p. Similarly, we can
rgue that if PT(w)(ρ) ≤ p, then we have MP(ŵ)(ρ) ≤ p.
Now, we formalize the above heuristic discussion and show

hat the two decision problems are related by the p-shifted game.
ote that, according to Proposition 1 and Lemma 1, for both
he mean payoff value and the per task value, one can focus
n positional strategies for both players, which yield a play of
refix–suffix form.

roposition 2. Let (A, w) be a weighted game and (A, ŵ) be
ts p-shifted game for some given p ∈ Q+. Let θ0 ∈ Θ0 be a
ositional strategy of Player 0 such that Play(A, v0, θ0) ⊆ WinB(Vm)
n arena A. Then for any prefix–suffix form play ρ = ρ1(ρ2)ω ∈
lay(A, v0, θ0), we have

T(w)(ρ) ≤ p⇔ MP(ŵ)(ρ) ≤ p. (6)

roof. (⇒) Suppose MP(ŵ)(ρ) > p and let ρ2 = v1v2 · · · vnvn+1.
Then we have

MP(ŵ)(ρ) = lim sup
m→∞

∑
i<m ŵ(ρ[i], ρ[i+1])

m

=

∑n
i=1 ŵ(vi, vi+1)

n
.

Also, since Play(A, v0, θ0) ⊆ WinB(Vm), we have Nm(ρ2) ̸= 0. Then∑n
i=1 ŵ(vi, vi+1)

n∑n
i=1 w(vi, vi+1)+ (n− Nm(ρ2)) · p

Nm(ρ2)+ (n− Nm(ρ2))
> p,

which means that PT(w)(ρ) =
∑n

i=1 w(vi,vi+1)
Nm(ρ2)

> p. However, this is
contradiction, which means that MP(ŵ)(ρ) ≤ p.
 t

8

(⇐) Suppose PT(w)(ρ) > p. Then we know that

PT(w)(ρ) = lim sup
m→∞

Cost(ρ[0,m](v0, θ
∗

0 , θ1))
Nm(ρ[0,m](v0, θ

∗

0 , θ1))

=

∑n
i=1 w(vi, vi+1)
Nm(ρ2)

.

s we consider non-negative weight function w, Nm(ρ2) ̸= 0.
therwise, MP(ŵ)(ρ) > p. Therefore,∑n

i=1 w(vi, vi+1)+ (n− Nm(ρ2)) · p
Nm(ρ2)+ (n− Nm(ρ2))∑n

i=1 ŵ(vi, vi+1)
n

> p,

which means that MP(ŵ)(ρ) =
∑n

i=1 ŵ(vi,vi+1)
n > p. However, this is

a contradiction, which means that PT(w)(ρ) ≤ p. ■

With the help of the above result, now we present the main
theorem that establishes the relationship between Problem 3 and
Problem 4.

3. Given any rational number p ∈ Ξ and weight function ŵ defined
with respect to p, for any positional strategy of Player 0 θ0 ∈ Θ0 such
that Play(A, v0, θ0) ⊆ WinB(Vm), we have

val(w)
PT (v0; θ0) ≤ p⇔ val(ŵ)

MP (v0; θ0) ≤ p.

Proof. We only prove the ‘‘⇒’’ direction since the other direction
is analogous. Since val(w)

PT (v0; θ0) ≤ p, by Eq. (3), we have ∀θ ∈
Θ1, PT(w)(ρ(v0, θ0, θ)) ≤ p. Clearly, this also holds when ρ is
of the prefix–suffix form. Then by Proposition 2, for any play
ρ ∈ Play(A, v0, θ0) of prefix–suffix form, we have MP(ŵ)(ρ) ≤ p,
hich also means that ∀θ ∈ Θ1,MP(ŵ)(ρ(v0, θ0, θ)) ≤ p. Then
y Eq. (4), we have val(ŵ)

MP (v0; θ0) ≤ p. ■

Therefore, given a rational number p, if we want to solve the
per task value decision problem, we can only concentrate on
the solution to the mean payoff value decision problem on the
p-shifted game.

5.3. Synthesis algorithm

Algorithm 1: Optimal Strategy Search
Input: Weighted game (A, w) with Vm
Output: Optimal strategy θ∗0 for Problem 2

1 order Ξ = {p1, p2, . . . , p|Ξ |} in increasing order;
2 imin ← 1, imax ← |Ξ |, i = 0;
3 while imin < imax do
4 i← ⌊ imin+imax

2 ⌋;
5 Construct pi-shifted game (A, ω̂);
6 if ∃θ0 ∈ Θ0, val

(ŵ)
MP (v0; θ0) ≤ pi then

7 imax = i;
8 Update θ∗0 as θ0;
9 else

10 imin = i+ 1;

11 return θ∗0 .

Based on the above discussions, we present Algorithm 1 as
the main algorithm for solving MPBG-PT. Initially, we order all
possible optimal values in Ξ in increasing order, i.e., p1 < p2 <

· · < p|Ξ |. To find the optimal value val(w)
PT (v0), it suffices to

ind the smallest p ∈ Ξ such that val(w)
PT (v0) ≤ p holds. In

rder to find such a value, we perform a binary search over
he value space Ξ (the while loop). Specifically, for each value

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

t
s

(
θ

Fig. 4. The SC game (A, ŵp) with p = 5, where γ0 = {a, d, e} and γ1 = {d, e}.

Fig. 5. Weighted game for Remark 2.

p ∈ Ξ to be determined, we construct the corresponding p-
shifted game (A, ω̂) and solve the corresponding mean payoff
value decision problem over the p-shifted game. If the answer to
he decision problem is positive, then we keep the synthesized
trategy θ as the current optimal strategy, and search for smaller
p for later iterations; otherwise, we search for larger p for later
iterations. Note that, we need to construct the p-shifted game
for each p in the iteration. Once we obtain the optimal strategy
θ∗ to Problem 2, according to Theorem 1, its induced supervisor
Sθ∗ is the solution to the optimal supervisory control problem
as formulated in Problem 1. Since we have shown that θ∗ is
positional, Sθ∗ is state-based.

We illustrate the synthesis procedure by the following exam-
ple.

Example 4. Let us still consider the SC game (A, w) in Fig. 3,
where Ξ has been given in Eq. (5). By running Algorithm 1,
we first consider value p = 13 = 0+26

2 ∈ Ξ . Then we
construct the p-shifted game (A, ŵp) and compute the optimal
mean payoff strategy θ

p
0 for Player 0 on (A, ŵp), which is θ

p
0 (q0) =

q0, γ0), θ
p
0 (q1) = (q1, γ1), θ

p
0 (q2) = (q2, γ0), θ

p
0 (q3) = (q3, γ0) and

p
0 (q0) = (q4, γ0). For this strategy, we have val

(ŵp)
MP (q0; θ

p
0) = 11 <

13, which means that we should continue the binary search.
By iteratively repeating the above process, finally, the bi-

nary search process terminates with p = 5 ∈ Ξ such that
val

(ŵp)
MP (q0; θ

p
0) = 5 ≤ 5. Therefore, we conclude that θ

p
0 with p = 5

is the optimal strategy θ∗0 with val(w)
PT (q0; θ∗0) = 5. In particular,

the p-shifted game (A, ŵp) with p = 5 is shown in Fig. 4. The red
arrows in the figure denote the optimal positional strategy θ∗0 for
the mean payoff game w.r.t. ŵp, which is also the optimal strategy
for the per task game. Finally, we obtain optimal supervisor S∗ for
G based on θ∗0 , which works as follows:

• S∗(s) = γ0 = {a, d, e}, when δ(q0, s) ̸= q1;
• S∗(s) = γ1 = {d, e}, when δ(q0, s) = q1.
9

Remark 2. Note that Algorithm 1 requires to iteratively construct
p-shift games for different value p and solve the corresponding
mean payoff games. In the above example, we see that the opti-
mal strategy for each value of Player 0 keeps unchanged during
the iteration process, which is equal to the optimal strategy θ∗0 .
Therefore, one may ask if do we really need to solve mean payoff
games over the same graph but for different values iteratively. In
other words, once we obtain the optimal mean payoff strategy
for some value p, is it possible that the mean payoff strategy
is not optimal for different p. The answer is yes, which justifies
why iterations are needed. To see this, let us consider another
weight game shown in Fig. 5. Obviously, the optimal value is
val(w)

PT (q0) = 5 and Ξ = {
n
d : d = 1, n = 0, 1, 2, . . . , 56}.

However, at the initial stage of the iteration, when p is chosen
between 12.5 and 56, the optimal mean payoff strategy over the
p-shift game is to choose vertex q1 at q0. However, once the
value of p is smaller than 12.5, the optimal mean payoff strategy
over the p-shift game changes to choose vertex q2 at q0, which
is the actual optimal strategy for the optimization problem. This
observation also justifies why we cannot reduce the per task
game to the standard mean payoff game directly since we do not
know the optimal value p a priori. Therefore, in order to establish
the reduction, we have to fix the decision value p first and then
approach the optimal value gradually.

5.4. Complexity analysis

We conclude this section by discussing the complexity of the
overall synthesis algorithm. Let V and E be the set of vertices and
edges in A, respectively, and let W be the largest weight in A.
The while loop in Algorithm 1 executes at most O(log |Ξ |) times,
where Ξ contains at most W · |V |2 elements (very roughly esti-
mated). For each iteration of the while loop, the p-shifted game
has exactly the same numbers of vertices and edges. To solve
the mean payoff decision problem and strategy synthesis problem
over (A, ŵ), one can use the algorithm developed recently (Brim
et al., 2011) with the complexity being O(|V |2 ·W · |E|). Therefore,
the overall complexity of Algorithm 1 is O(|V |2 ·W · |E| · log(W ·
|V |)). Finally, we recall that the SC game is constructed from the
original DES G and its size is linear in the number of states |Q | and
exponential in the number of controllable events |Σc |. In large
systems, where the complexity is an important issue, the number
of states is usually much bigger than the number of controllable
actions. In such cases, the size of the state–space is the main
parameter in the scalability of the synthesis algorithm.

Note that, MPBG-PT can also be solved by formulating it as an
instance of a ratio-game, for which an effective algorithm is pro-
vided in Bloem et al. (2014). The reader is referred to Bloem et al.
(2014) for more details about ratio-games. In brief, it considers a
ratio value of two different costs and to capture our requirement,
we can assign a unit cost to the denominator and zero otherwise.
However, the complexity of using (Bloem et al., 2014) to solve
our problem is O

(
|V |3 ·W · |E| · log (W · |V |) · log |E|

|V |

)
. Compared

to our method, the algorithm in Bloem et al. (2014) requires an
additional complexity of O

(
|V | · log |E|

|V |

)
. The reason for this is

that the general ratio-game algorithm needs to search the optimal
value and optimal strategy separately and once the optimal ratio-
value has been computed, iterative group-tests are performed to
find the optimal ratio-game strategy, which introduces the ad-
ditional complexity mentioned above. However, in Proposition 2
and Theorem 3, we have established a key structural property of
MPBG-PT such that, based on the p-shifted game, when search-
ing the possible value space, once this value converges to the
optimum, the corresponding optimal strategy for the reduced
p-shifted game is indeed the optimal strategy for the original

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

e
p
b

6

t
t
o
3

s
s
a
s
t

r

o
w
t
f
o
p
s

W
r

C
b
i
d
o
T
T
o
a

U
e
m
i
e
U
e
e
i
o
i
c

Table 1
Statistics for systems with fixed number of events |Σ | = 10.
|Q | 50 100 200

t (s) 3.76 43.65 325.52

Table 2
Statistics for systems with fixed number of states |Q | = 100.
|Σ | 5 10 20

t (s) 8.63 38.31 1005.46

per-task game. With the help of this new structural property for
the per-task game, we are able to combine the value search and
the strategy search in the same iteration loop, which reduces the
group-test complexity of O

(
|V |·log |E|

|V |

)
that is required in Bloem

t al. (2014) after the binary search. In other words, although our
roblem setting is less expressive than existing works, we achieve
etter computational performance for this restrictive class.

. Experimental results

In this section, we first present a set of numerical experiments
o test the scalability of the proposed method. Then we illustrate
he proposed optimal supervisory control problem by a case study
f robot planning. All experiments are implemented by Python
.7 and robot simulation platform V-REP 4.2.0 on a PC with

64 cores with 3.30 GHz processors and 64 GB of RAM. All codes,
the simulation video and other auxiliary materials are available
in our project website.1

6.1. Numerical experiments

First, we show the scalability performance of the proposed
approach with respect to the size of plant G. Specifically, for each
ize of the plant, we randomly generate 20 automata with the
ame numbers of states |Q | and events |Σ |. Then we compute the
verage running time of our algorithm for solving the 20 different
ystems with the same size. For each random plant generation,
he parameters are chosen as follows: |Qm| =

1
10 |Q |, |Σc | =

3
5 |Σ |, the maximal number of transitions defined at each state
is ⌈ 14 |Σ |⌉, ce(σ) is chosen randomly in [1, 5] and cd(σ) is chosen
andomly in [0, 3].

In the first set of experiments, we investigate how the number
f states in the plant affects the overall running time. To this end,
e fix the number of events in G as |Σ | = 10. Then we increase
he number of states |Q | from 50 to 200. The averaged statistics
or the running times are shown in Table 1. In the second set
f experiments, we investigate how the number of events in the
lant affects the overall running time. Here, we fix the number of
tates in G as |Q | = 100 and increase the number of events |Σ |
from 5 to 20. The results are shown in Table 2. Based on the above
numerical experiments, clearly, we see that the running time of
our algorithm is more sensitive to the number of events in the
plant. This result is consistent with our theoretical analysis since
the numbers of edges and vertices of the underlying game graph
grows exponentially in the number of controllable event.

Next, we perform numerical experiments to show the compu-
tational efficiency of our approach compared with the standard
ratio-game algorithm (Bloem et al., 2014). Specifically, we con-
sider four batches of experiments, in which the number of states
in the DES model is increased from 10 to 25,50 and 100. For

1 https://github.com/Lv-Peng/Optimal-Supervisory-Control-for-Cyclic-Tasks
10
Table 3
Statistics for comparison between our algorithm and the standard ratio-game
algorithm for solving MPBG-PT.
|Q | 10 25 50 100

t (s) 0.037 0.293 4.25 56.23

t ′ (s) 2.596 44.376 1252.43 −

each batch with the same number states, we randomly generate
20 DES models and apply both our synthesis algorithm and the
algorithm in Bloem et al. (2014) to solve the MPBG-PT. We
compute the average running time of the 20 randomly generated
models as the statistic result for this batch. For each random
model generation, the parameters are as follows: |Qm| =

|Q |
10 ,

|Σc | = 10, |Σuc | = 2, the maximal number of transitions defined
at each state is ⌈ 14 |Σ |⌉, ce(σ) is chosen randomly in [1, 5] and
cd(σ) is chosen randomly in [0, 3]. The experimental results are
shown in Table 3. We use t and t ′ to denote the running time
of our algorithm and that in Bloem et al. (2014) respectively. We
use ‘‘−’’ to denote that the running time exceeds 10000 s Clearly,
although the ratio-game algorithm is more general, in terms of
the MPBG-PT under investigation, our algorithm is more efficient
not only theoretically, but also in practice.

6.2. Simulation experiment

In this part, we illustrate the proposed optimal supervisory
control problem by a case study of robot planning.

SystemModel: We consider a scenario where a cargo UGVmoves
in a factory as shown in Fig. 6(a). The factory has twelve regions of
interest: a lobby, a logistics, a finance, a canteen, two warehouse
(Whs 1-2), three laboratories (Lab 1-3) and three workshops (Wsp
1-3). The UGV can deliver cargoes from one region to another
by passing through doors. Depending on the security law of
the factory, some doors are one-way but some are two-way, as
depicted in the figure. For simplicity, we consider four moving
actions for the robot E, S, W and N , which represent advancing to
east, south, west and north, respectively. The mobility of the UGV
is abstracted as a DES shown in Fig. 6(b), where states q0 to q12
correspond to regions outside, lobby, logistics, finance, canteen,

hs 1, Lab 1, Lab 2, Lab 3, Whs 2, Wsp 1, Wsp 2 and Wsp 3,
espectively.

ontrol Capabilities: We assume that all doors in the factory can
e controlled by the building manager. That is, if there is a door
n any direction, we can disallow the UGV from moving in that
irection by closing the door, which means that the UGV can
nly choose one of the remaining open doors to pass through.
herefore, all the moving actions, E, S, W and N , are controllable.
he execution costs for the four actions are all assumed to be
ne unit and the cost to close any door (the disable cost for each
ction) is also assumed to be one unit.

ncontrollable Events: In this example, we consider two differ-
nt sources of uncontrollability. First, we assume that the UGV
ay break down in canteen due to the wet environment, which

s captured as an uncontrollable action B in Fig. 6(b) with its
xecuting cost being one unit. Furthermore, we consider another
AV that hovers over the factory to monitor the operation of
quipment in the three laboratories, whose mobility can be mod-
led as a DES shown in Fig. 6(d). We assume that the aerial space
n each region is interconnected, allowing unrestricted movement
f the UAV without any constraints imposed by doors. At each
nstant, the UAV can randomly choose to continue monitoring the
urrent region or go to adjacent regions through three actions H ,
W and E. Therefore, the movement of the UAV is not controllable

https://github.com/Lv-Peng/Optimal-Supervisory-Control-for-Cyclic-Tasks

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

f
c
r

O

Fig. 6. Illustrative example of a mobile robot.
u
f
d

a

rom our point of view. Note that, since we are only interested in
ontrolling the UGV, the execution costs for uncontrollable events
elated to the UAV are all assumed to be zero.

bjectives: The objectives of the UGV are threefolds: (1) safety
constraint: to avoid signal interference between each other, it
cannot stay with the UAV in the same region at the same time.
(2) specifications: it should achieve the task specification captured
by the system shown in Fig. 6(c). Note that, each event in it
means that the UGV moves to some region or not. For example,
q10 means that the UGV is in Wsp 1 while !q10 means that it
is not in Wsp 1. Therefore, this specification essentially requires
that the UGV first needs to deliver cargoes from Wsp 2 to Wsp 1,
then deliver cargoes from Wsp 1 to Wsp 3, next deliver cargoes
from Wsp 3 to finance, and then return to logistics to report.
Finally, it needs to continuously deliver cargoes between Whs 1
and logistics. (3) cost optimization: each time that the UGV returns
to logistics is considered as a completion of task and it should
optimize the average cost per task.

DES Construction: In order to solve the optimal supervisory
control problem, we need to build DES G, which is the product
of G0, G1 and T . Specifically, since the movements of the UGV
and UAV are independent, their synchronization G0×G1 is a pure
shuffle. Moreover, since properties of interest are on states in G0×

G1 while properties of interest are on edges in the specification
model T , states in G0 × G1 need to be synchronized with edges
in T in order to obtain the overall DES G = G0 × G1 × T . We
refer to Lacerda, Parker, and Hawes (2014) for details of this type
of product. In particular, since there are many states that are
either unreachable or unrelated to the synthesis of the optimal
strategy, we use some pruning methods to remove redundant
states and the resulting system for synthesis only has 40 states
and 3 marked states with the controllable and uncontrollable
 b

11
events sets being Σc = {E, S,W ,N} and Σuc = {B,H,W , E},
respectively. The DES model of G as well as the optimal supervisor
is available on our project website.2

Synthesis Result: With our synthesis algorithm, the optimal su-
pervisor S∗ for this example is found in 2.17 sec and we perform
simulations on simulation platform V-REP 4.2.0. In Figs. 6(e)
and 6(f), we show two different simulation trajectories under S∗
pon the first time visiting marked states. The reason for the dif-
erent trajectories is that, when the UGV begins to continuously
eliver cargoes between Whs 1 and logistics, the UGV needs to

adopt different strategies in response to the different behaviors
of the UAV. Specifically:

• When the UGV arrives at logistics or Whs 1 and the UAV
arrives at Lab 1 or Lab 2, since the UGV cannot determine
whether the UAV will proceed to Lab 1 next step or not, su-
pervisor S∗ must disable E and S to avoid potential collisions.
This corresponds to the trajectory shown in Fig. 6(e).
• On the other hand, when the UGV arrives at logistics or Whs

1, but the UAV arrives at Lab 3, since the UAV will definitely
not reach Lab 1 next step, supervisor S∗ can enable E and S.
This corresponds to the trajectory shown in Fig. 6(f).

Note that the first trajectory incurs a larger cost to complete
the task for the first time compared with the second one. Here,
we only show two trajectories upon the first visit of marked
states. In fact, the two robots work indefinitely, which results in a
random combination of these two trajectories for different times
of visiting marked states.

2 This model essentially captures asynchronous movements between the two
gents. In our simulation, to enforce synchronous movements, we further add a
inary variable to encode turn-based decision of the two agents.

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

7

t
p
m
i
c
p
o
o
s
a

W
n

P
s
Σ

p

=

t
s
k
a
I

ρ

v
e
t

l

S
h
l

T

=

=

. Conclusion

In this paper, we solve a class of optimal supervisory con-
rol problem for discrete-event systems under the average cost
er task metric. This setting captures the scenario where tasks,
odeled by marked states, need to be completed indefinitely

n a cyclic manner. Although the optimality metric considered
an be treated as a special instance of the ratio value cost, we
rovide a more efficient new algorithm which achieves the trade-
ff between computational efficiency and expressiveness of the
ptimality metric. In particular, we showed that the optimal
trategy for this problem is positional and the optimal value is
rational number in a finite set. With the notion of p-shifted

games, we reduce this problem to a set of mean payoff value
decision problems so that the optimal strategy can be effectively
synthesized. Our results extend the theory of optimal supervisory
control of DES. In the future, we plan to further extend our result
to the partial observation setting as well as stochastic systems
modeled as Markov decision processes.

Appendix

In order to prove Theorem 1, we first prove some basic prop-
erties of the induced supervisors as well as the induced strategies
satisfying some given conditions. Then, the proof for Theorem 1
follows directly.

Proposition 3. For any strategy θ0 ∈ Θ̃0 such that Play(A, v0, θ0) ⊆
inB(Vm) and val(ω)

PT (v0; θ0) <∞, its induced supervisor Sθ0 is live,
on-blocking and CostAveT

Sθ0
(s) <∞,∀s ∈ Lω(Sθ0/G).

roof. Suppose that Sθ0 is not live, then there exists a string
= σ1 · · · σn ∈ L(Sθ0/G), such that there exists no event σ ∈

: sσ ∈ L(Sθ0/G). From the definition of A, there exists a
lay ρ = q0(q0, γ0)q1(q1, γ1) · · · qn ∈ Play(A, q0, θ0), where

σi ∈ γi−1. As Play(A, v0, θ0) ⊆ WinB(Vm), then there exists a play
ρ ′ = (qn, γn)qn+1, ρρ ′ ∈ Play(A, q0, θ0). Therefore, there exists a
string s = σ1 · · · σnσn+1 ∈ L(Sθ0/G), where σn+1 ∈ γn, which is a
contradiction.

Suppose that Sθ0 is blocking, then there exists a string s =
σ1 · · · σn ∈ L(Sθ0/G), such that there exists no string s′ ∈
Σ∗ : ss′ ∈ Lm(Sθ0/G). From the definition of A, there exists
a play ρ = q0(q0, γ0)q1(q1, γ1) . . . qn ∈ Play(A, q0, θ0), where
σi ∈ γi−1. As Play(A, v0, θ0) ⊆ WinB(Vm), then there exists
a play ρ ′ = (qn, γn)qn+1 (qn+1, γn+1) · · · qm, such that ρρ ′ ∈

Play(A, q0, θ0) and qm ∈ Vm. Therefore, there exists a string
s = σ1 · · · σnσn+1 · · · σm ∈ Lm(Sθ0/G), where σi ∈ γi−1, which
is a contradiction.

Suppose there exists a string s = σ1 · · · σn · · · ∈ Lω(Sθ0/G),
such that CostAveT

Sθ0
(s) = ∞. From the definition of A, there exists

a play ρ = q0(q0, γ0) · · · qn(qn, γn) · · · ∈ Play(A, q0, θ0), where
σi ∈ γi−1. From the definition of Im and Nm, we can easily get that

lim sup
n→∞

Im(s[1,n]) = lim sup
k→∞

Nm(ρ[1,k]).

From the definition of weight function w for A, we also get that

lim supCostSθ0 (s[1,p]) = lim supCost(ρ[1,q]).

p→∞ q→∞ s

12
Then, we have

CostAveT
Sθ0

(s)

= lim sup
n→∞

{
1

Im(s[1,n])
CostSθ0 (s[1,n])

}
lim supn→∞ CostSθ0 (s[1,n])

lim supn→∞ Im(s[1,n])
=

lim supp→∞ Cost(ρ[1,p])
lim supp→∞ Nm(ρ[1,p])

= lim sup
p→∞

{
Costρ[1,p]
Nm(ρ[1,p])

}
=PT(ω)(ρ) = ∞.

As val(ω)
PT (v0; θ0) = supθ1∈Θ1

PT(ω)(ρ(v0, θ0, θ1)) < ∞, it is a
contradiction. ■

Proposition 4. For any live and non-blocking supervisor S such that
CostAveT

S (s) < ∞,∀s ∈ Lω(S/G), its induced strategy θS satisfies
Play(A, v0, θS) ⊆ WinB(Vm) and val(ω)

PT (v0; θS) <∞.

Proof. Suppose Play(A, v0, θS) ⊈ WinB(Vm), then there exists
a play ρ = q0(q0, γ0)q1 . . . qn(qn, γn) · · · ∈ Play(A, v0, θS), such
hat Inf(ρ) ∩ Vm = ∅. From the definition of G, there exists a
tring s = σ1 · · · σn · · · ∈ Lω(S/G), where σi ∈ γi−1. Then, we
now that Im(s) < ∞. However, as S is live and non-blocking
nd CostAveT

S (s′) < ∞,∀s′ ∈ Lω(S/G), then it must hold that
m(s) = ∞, which is a contradiction.

Next, we prove the second part. Suppose there exists a play
= q0(q0, γ0) · · · qn(qn, γn) · · · ∈ Play(A, q0, θ0), such that

al(ω)
PT (v0; θS) = PT(ω)(ρ) = ∞. From the definition of G, there

xists a string s = σ1 · · · σn · · · ∈ Lω(S/G), where σi ∈ γi−1. From
he definition of Im and Nm, we know that

im sup
n→∞

Im(s[1,n]) = lim sup
k→∞

Nm(ρ[1,k]).

imilarly, from the definition of weight function w for A, we also
ave
im sup
p→∞

CostS(s[1,p]) = lim sup
q→∞

Cost(ρ[1,q]).

hen, we have

val(ω)
PT (v0; θS)

PT(ω)(ρ) = lim sup
p→∞

{
Costρ[1,p]
Nm(ρ[1,p])

}
=

lim supp→∞ Cost(ρ[1,p])
lim supp→∞ Nm(ρ[1,p])

=
lim supn→∞ CostS(s[1,n])
lim supn→∞ Im(s[1,n])

lim sup
n→∞

{
1

Im(s[1,n])
CostS(s[1,n])

}
=CostAveT

S (s) = ∞.

However, we have CostAveT
S (s) < ∞,∀s ∈ Lω(S/G), which is a

contradiction. ■

Based on the above two propositions, now we are ready to
prove the main theorem.

Proof for Theorem 1. We prove the " ⇒ " direction here and
the other direction is analogous. As θ∗0 solves Problem 2, from
Propositions 3 and 4, we know that Sθ∗0

is live and non-blocking.
Suppose Sθ∗0

does not solve Problem 1, which means there exists
another live and non-blocking supervisor S⋆, such that

sup
s∈Lω(S⋆/G)

CostAveT
S⋆ (s) < sup

s∈Lω(S∗
θ0

/G)
CostAveT

Sθ∗0
(s),

sup CostAveT
S⋆ (s) ≤ sup CostAveT

S′ (s)

∈Lω(S⋆/G) s∈Lω(S′/G)

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634

f

S

S

S

S

T

v

W

W

Y

or any other supervisor S ′. Let θ ⋆
0 be the strategy induced from

S⋆. From the proof of Proposition 3, we also have

val(ω)
PT (v0; θ

⋆
0) = sup

s∈Lω(S⋆/G)
CostAveT

S⋆ (s),

val(ω)
PT (v0; θ

∗

0) = sup
s∈Lω(S∗

θ0
/G)

CostAveT
Sθ∗0

(s).

Therefore, we have val(ω)
PT (v0; θ

⋆
0) < valωPT(v0; θ

∗

0), which means
that θ ⋆

0 solves Problem 2, which is a contradiction. ■

References

Alves, Lucas V. R., Pena, Patrícia N., & Takahashi, Ricardo H. C. (2021). Planning on
discrete event systems using parallelism maximization. Control Engineering
Practice, 112, Article 104813.

Bloem, Roderick, Chatterjee, Krishnendu, Greimel, Karin, Henzinger, Thomas A,
Hofferek, Georg, Jobstmann, Barbara, et al. (2014). Synthesizing robust
systems. Acta Informatica, 51, 193–220.

Brim, Lubos, Chaloupka, Jakub, Doyen, Laurent, Gentilini, Raffaella, &
Raskin, Jean-François (2011). Faster algorithms for mean-payoff games.
Formal Methods in System Design, 38(2), 97–118.

Cassandras, Christos G., & Lafortune, Stephane (2009). Introduction to discrete
event systems. Springer Science & Business Media.

Chatterjee, Krishnendu, Henzinger, Thomas A, & Jurdzinski, Marcin (2005). Mean-
payoff parity games. In 20th annual IEEE symposium on logic in computer
science (pp. 178–187).

Ding, Xuchu, Smith, Stephen L., Belta, Calin, & Rus, Daniela (2014). Optimal
control of Markov decision processes with linear temporal logic constraints.
IEEE Transactions on Automatic Control, 59(5), 1244–1257.

Ehrenfeucht, Andrzej, & Mycielski, Jan (1979). Positional strategies for mean
payoff games. International Journal of Game Theory, 8, 109–113.

Fu, Jinbo, Ray, Asok, & Lagoa, Constantino M. (2004). Unconstrained optimal
control of regular languages. Automatica, 40(4), 639–646.

Gimbert, Hugo, & Zielonka, Wiesław (2005). Games where you can play optimally
without any memory. In International conference on concurrency theory (pp.
428–442). Springer.

Gradel, Erich, & Thomas, Wolfgang (2002). Automata, kogics, and infinite games:
A guide to current research. Springer Science & Business Media.

Grigorov, Lenko, & Rudie, Karen (2006). Near-optimal online control of dynamic
discrete-event systems. Discrete Event Dynamic Systems, 16(4), 419–449.

Hill, Richard C., & Lafortune, Stéphane (2016). Planning under abstraction within
a supervisory control context. In 55th IEEE conference on decision and control
(pp. 4770–4777).

Ji, Yiding, Yin, Xiang, & Lafortune, Stéphane (2021a). Local mean payoff su-
pervisory control for discrete event systems. IEEE Transactions on Automatic
Control, 67(5), 2282–2297.

Ji, Yiding, Yin, Xiang, & Lafortune, Stéphane (2021b). Optimal supervisory control
with mean payoff objectives and under partial observation. Automatica, 123,
Article 109359.

Kumar, Ratnesh, & Garg, Vijay K. (1995). Optimal supervisory control of discrete
event dynamical systems. SIAM Journal on Control and Optimization, 33(2),
419–439.

Lacerda, Bruno, Parker, David, & Hawes, Nick (2014). Optimal and dynamic
planning for Markov decision processes with co-safe LTL specifications.
In IEEE/RSJ international conference on intelligent robots and systems (pp.
1511–1516).

Li, Jinglun, & Takai, Shigemasa (2022). Synthesis of maximally permissive super-
visors for similarity control of partially observed nondeterministic discrete
event systems. Automatica, 135, Article 109978.

Lv, Peng, Yin, Xiang, Ji, Yiding, & Li, Shaoyuan (2021). A game-theoretical
approach for optimal supervisory control of discrete event systems for cyclic
tasks. In 60th IEEE conference on decision and control (pp. 324–330).

Ma, Ziyue, & Cai, Kai (2022). On resilient supervisory control against indefinite
actuator attacks in discrete-event systems. IEEE Control Systems Letters.

Ma, Ziyue, & Zhang, Jiafeng (2020). Determining optimal control sequences for
reconfiguration in Petri nets using cost trees. In 59th IEEE conference on
decision and control (pp. 4485–4491).

Marchand, Hervé, Boivineau, Olivier, & Lafortune, Stéphane (2000). On the
synthesis of optimal schedulers in discrete event control problems with
multiple goals. SIAM Journal on Control and Optimization, 39(2), 512–532.

Marchand, Hervé, Boivineau, Olivier, & Lafortune, Stéphane (2002). On optimal
control of a class of partially observed discrete event systems. Automatica,
38(11), 1935–1943.

Pantelic, Vera, & Lawford, Mark (2011). Optimal supervisory control of proba-
bilistic discrete event systems. IEEE Transactions on Automatic Control, 57(5),
1110–1124.
13
Pena, Patrícia N, Vilela, Juliana N, Alves, Michel RC, & Rafael, Gustavo C
(2021). Abstraction of the supervisory control solution to deal with planning
problems in manufacturing systems. IEEE Transactions on Automatic Control,
67(1), 344–350.

Pruekprasert, Sasinee, & Ushio, Toshimitsu (2016). Optimal stabilizing controller
for the region of weak attraction under the influence of disturbances. IEICE
Transactions on Information and Systems, 99(6), 1428–1435.

Pruekprasert, Sasinee, Ushio, Toshimitsu, & Kanazawa, Takafumi (2015). Quanti-
tative supervisory control game for discrete event systems. IEEE Transactions
on Automatic Control, 61(10), 2987–3000.

Sakakibara, Ami, Urabe, Natsuki, & Ushio, Toshimitsu (2021). Finite-memory
supervisory control of discrete event systems for LTL [f] specifications. IEEE
Transactions on Automatic Control.

Sakakibara, Ami, & Ushio, Toshimitsu (2020). On-line permissive supervisory
control of discrete event systems for scLTL specifications. IEEE Control Systems
Letters, 4(3), 530–535.

chmidt, Klaus Werner (2015). Optimal supervisory control of discrete event
systems: cyclicity and interleaving of tasks. SIAM Journal on Control and
Optimization, 53(3), 1425–1439.

eatzu, Carla, Silva, Manuel, & Van Schuppen, Jan H. (2013). Control of
discrete-event systems: vol. 433, Springer.

engupta, Raja, & Lafortune, Stéphane (1998). An optimal control theory for
discrete event systems. SIAM Journal on Control and Optimization, 36(2),
488–541.

u, Rong, Van Schuppen, Jan H., & Rooda, Jacobus E. (2011). The synthesis of time
optimal supervisors by using heaps-of-pieces. IEEE Transactions on Automatic
Control, 57(1), 105–118.

akai, Shigemasa (2021). Synthesis of maximally permissive supervisors for non-
deterministic discrete event systems with nondeterministic specifications.
IEEE Transactions on Automatic Control, 66(7), 3197–3204.

an der Sanden, Bram (2018). Performance analysis and optimization of supervisory
controllers (Ph.D. thesis), Eindhoven University of Technology.

are, Simon, & Su, Rong (2016). Time optimal synthesis based upon sequen-
tial abstraction and its application to cluster tools. IEEE Transactions on
Automation Science and Engineering, 14(2), 772–784.

onham, W. Murray, & Cai, Kai (2019). Supervisory control of discrete-event
systems. Springer.

in, Xiang, & Lafortune, Stéphane (2016a). Synthesis of maximally permissive
supervisors for partially-observed discrete-event systems. IEEE Transactions
on Automatic Control, 61(5), 1239–1254.

Yin, Xiang, & Lafortune, Stéphane (2016b). A uniform approach for synthesizing
property-enforcing supervisors for partially-observed discrete-event systems.
IEEE Transactions on Automatic Control, 61(8), 2140–2154.

Zwick, Uri, & Paterson, Mike (1996). The complexity of mean payoff games on
graphs. Theoretical Computer Science, 158(1–2), 343–359.

Peng Lv was born in Heilongjiang, China, in 1998.
He received the B.Eng degree in automation from
Harbin Engineering University in 2020. He is currently
a Doctoral student at Shanghai Jiao Tong University. His
research interests include formal methods, temporal
logic task planning and game theory in Discrete-Event
Systems.

Zhangcong Xu was an undergraduate student at the Department of Automation,
Shanghai Jiao Tong University.

Yiding Ji is an assistant professor of Robotics and
Autonomous Systems Thrust, Hong Kong University
of Science and Technology (Guangzhou), China, also
affiliated with Department of Electronic and Com-
puter Engineering, Hong Kong University of Science
and Technology (HKUST), China. He received bachelor’s
degree of Electrical Engineering and its Automation
from Tianjin University, China in 2014, then master’s
degree and doctor’s degree of Electrical and Computer
Engineering both from the University of Michigan,
United States, in 2016 and 2019, respectively. From

2019 to 2021, he was a postdoc researcher at Boston University in United
States, then a research scientist at Siemens Corporation in United States. He
joined HKUST in late 2021. His research interests lie in the general field of
systems science, especially automatic control and cyber physical systems. He is
a member of Institute of Electrical and Electronics Engineers (IEEE) and IEEE
Control Systems Society Technical Community on Discrete Event Systems. He
has served as reviewers for multiple top academic journals and conferences.

http://refhub.elsevier.com/S0005-1098(24)00127-4/sb1
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb1
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb1
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb1
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb1
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb2
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb2
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb2
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb2
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb2
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb3
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb3
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb3
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb3
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb3
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb4
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb4
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb4
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb5
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb5
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb5
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb5
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb5
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb6
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb6
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb6
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb6
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb6
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb7
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb7
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb7
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb8
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb8
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb8
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb9
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb9
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb9
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb9
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb9
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb10
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb10
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb10
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb11
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb11
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb11
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb12
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb12
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb12
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb12
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb12
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb13
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb13
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb13
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb13
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb13
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb14
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb14
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb14
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb14
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb14
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb15
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb15
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb15
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb15
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb15
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb16
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb16
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb16
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb16
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb16
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb16
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb16
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb17
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb17
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb17
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb17
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb17
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb18
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb18
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb18
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb18
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb18
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb19
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb19
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb19
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb20
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb20
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb20
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb20
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb20
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb21
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb21
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb21
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb21
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb21
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb22
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb22
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb22
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb22
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb22
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb23
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb23
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb23
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb23
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb23
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb24
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb24
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb24
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb24
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb24
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb24
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb24
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb25
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb25
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb25
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb25
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb25
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb26
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb26
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb26
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb26
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb26
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb27
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb27
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb27
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb27
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb27
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb28
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb28
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb28
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb28
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb28
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb29
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb29
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb29
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb29
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb29
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb30
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb30
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb30
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb31
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb31
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb31
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb31
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb31
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb32
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb32
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb32
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb32
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb32
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb33
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb33
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb33
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb33
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb33
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb34
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb34
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb34
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb35
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb35
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb35
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb35
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb35
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb36
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb36
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb36
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb37
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb37
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb37
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb37
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb37
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb38
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb38
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb38
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb38
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb38
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb39
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb39
http://refhub.elsevier.com/S0005-1098(24)00127-4/sb39

P. Lv, Z. Xu, Y. Ji et al. Automatica 164 (2024) 111634
Shaoyuan Li was born in Hebei, China, in 1965. He
received the B.S. and M.S. degrees in automation from
the Hebei University of Technology, Tianjin, China, in
1987 and 1992, respectively, and the Ph.D. degree
from Nankai University, Tianjin, in 1997. Since 1997,
he has been with the Department of Automation,
Shanghai Jiao Tong University, Shanghai, China, where
he is currently a chair Professor. His current research
interests include model predictive control, dynamic
system optimization, and cyber–physical systems. He
is the vice-president of the Chinese Association of

Automation.
14
Xiang Yin was born in Anhui, China, in 1991. He
received the B.Eng degree from Zhejiang University in
2012, the M.S. degree from the University of Michigan,
Ann Arbor, in 2013, and the Ph.D degree from the
University of Michigan, Ann Arbor, in 2017, all in
electrical engineering. Since 2017, he has been with
the Department of Automation, Shanghai Jiao Tong
University, where he is an Associate Professor. His
research interests include formal methods, discrete-
event systems and cyber–physical systems. Dr. Yin is
serving as the chair of the IEEE CSS Technical Committee

on Discrete Event Systems, Associate Editors for the Journal of Discrete Event
Dynamic Systems: Theory & Applications, the IEEE Control Systems Letters, the IEEE
Transactions on Intelligent Vehicles, and a member of the IEEE CSS Conference
Editorial Board. Dr. Yin received the IEEE Conference on Decision and Control
(CDC) Best Student Paper Award Finalist in 2016.

	Optimal supervisory control of discrete event systems for cyclic tasks
	Introduction
	Motivations
	Our Results
	Related Works
	Organization

	Preliminary on Optimal Supervisory Control
	Supervisory Control Theory
	Cost Functions

	Optimal Control for Cyclic Tasks
	Motivating Example
	Problem Formulation

	Game-Based Formulation of SCT
	Two-Player Graph Games
	Supervisory Control as a Game
	Correctness of the Transformation

	Optimal Supervisor Synthesis Procedure
	Structure Property of MPBG-PT
	Synthesis of p-Shifted Game
	Synthesis Algorithm
	Complexity Analysis

	Experimental Results
	Numerical Experiments
	Simulation Experiment

	Conclusion
	Appendix
	References

