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Abstract: This work investigates robust supervisory control problems of discrete event systems
modeled as finite state automata equipped with metric functions to measure the distance
between states. The system may deviate from its nominal behaviors and fail to achieve the
specification under disturbances whose effects are considered to be bounded. Accordingly,
the supervisor should be designed to ensure that the controlled system degrades gracefully
against such adversary. We formally formulate two problems: robustness bound verification
and optimal robust supervisor synthesis. For the special case of verification under constant
disturbances, a control Lyapunov function approach is introduced. Then we develop a two player
game framework for the general verification and synthesis problems. Specifically, a dynamic
programming method is proposed on the game structure, which uniformly tackles both problems.
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1. INTRODUCTION

Ever since its initiation in the 1980s, supervisory control
has been a core topic in discrete event systems (DES), see.,
e.g., Cassandras and Lafortune [2021]. The plant under
control is usually modeled as a finite discrete structure
with a specification to represent its admissible behaviors.
The underlying control paradigm is to properly enable
and disable certain events so that the behaviors of the
controlled system are constrained within the specification.

Supervisory control has been intensively investigated in
various settings of DES, including but not limited to net-
worked control Lin et al. [2022], timed DES control Basile
et al. [2021], quantitative control Ji et al. [2022], composi-
tional control Malik et al. [2023], to name a few.

In many applications, the system usually operates in an
uncertain environment and is subject to disturbances or
cyber attacks. DES models are appropriate for analyzing
and controlling systems against those adversaries. Specif-
ically, the goal of robust supervisory control is to design
resilient supervisors to tolerate the disturbances or errors
so that the specification is still (partially) achievable, see,
e.g., Wang et al. [2020], Alves et al. [2021], Meira-Góes
et al. [2023] for some results. Recently, supervisory control
against cyber attacks has also been extensively studied
from perspectives of both the attacker and the defender,
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such as Ma and Cai [2021], Zheng et al. [2023], You et al.
[2021], Fritz and Zhang [2023], Tai et al. [2022]. However,
those works focus on logical DES models and only give a
binary answer about whether system security is protected.

Given the above issues and motivated by robust control
for continuous systems, we develop a framework for ro-
bust supervisory control for DES modeled by finite metric
automata. First we introduce a metric function to quantify
the distance between states of the system and consider a
generic model for bounded disturbances. Then we define
robustness of supervisors as a topological concept in terms
of the distance between states. The control paradigm is
to ensure that the degree of behavior degradation of the
controlled system is propositional to the power of distur-
bances, thus no catastrophic failures are incurred. Based
on those concepts, we formulate the robust supervisor veri-
fication and optimal robust supervisor synthesis problems.

First, for the special verification case where disturbances
have constant bounds, we introduce control Lyapunov
functions (CLF) on metric DES. Analysis shows that CLF
induce supervisors that nominally achieve the specification
under no disturbances and further provide robustness
bounds for supervisors under disturbances. Second, for
general verification and synthesis problems, a two-player
game framework is developed under which we propose a
dynamic programming approach to solve both problems.

We leverage some results of robust design in cyber physical
systems, see, e.g., Majumdar et al. [2013], Girard and
Eqtami [2021]. Different from symbolic synthesis methods,
we consider supervisory control problems where uncontrol-
lable events are involved and multiple events are enabled
simultaneously. Some works in DES also apply ranking
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functions in supervisory control, see., e.g., Sakakibara
and Ushi [2020], Sakakibara et al. [2021], whose problem
settings and solution methods are incomparable with ours.

The rest of the work is organized as follows. Section 2
introduces the system model. Section 3 formulates two
key problems of this work. Section 4 presents systematic
solutions to both problems. Finally, Section 5 concludes
the paper and lists potential future extension directions.

2. SYSTEM MODEL

The discrete event system (DES) in this work is modeled
as a finite-state automaton: G = (X,E, f,Xm, x0) where
X is the finite state space; E is the finite set of events;
f : X × E → X is the partial transition function whose
domain may be extended to X × E∗ in an recursive
manner as f(x, se) = f(f(x, s), e) for x ∈ X, s ∈ E∗

and e ∈ E, Xm ⊆ X is the set of marked states and
x0 ∈ X is the initial state. When an event e ∈ E is
defined at a state x ∈ X, it is called active or feasible
at x. Strings are generated when evens occur sequentially,
and a set of strings constitutes a language which models
the behaviors of the system. Specifically, L(G) = {s ∈ E∗ :
f(x0, s) is defined} and Lm(G) = {s ∈ L(G) : f(x0, s) ∈
Xm} stand for the language generated and marked by G,
respectively. Without loss of generality, we assume that
every state in G is both accessible and co-accessible.

Given G, a metric function is introduced to quantitatively
measure the distance between states and it is formally
defined as d : X × X → R+

0 where ∀x, y, z ∈ X, the
following conditions hold: (i) d(x, y) = 0 ⇔ x = y
(identity); (ii) d(x, y) = d(y, x) (symmetry); (iii) d(x, z) ≤
d(x, y)+d(y, z) (triangle inequality). The distance between
a state to a set of states is defined as ∀x ∈ X and Q ⊆ X:
d(x,Q) = minx′∈Q d(x, x′), i.e., the shortest distance from
x to some state in Q. If G is equipped with d, it is called
a metric automaton (system) and denoted by (G, d).

Example 1. Consider the metric automaton (G, d) in
Figure 1. The event set is E = {a, b, c, d, u} and the state
space is {x0, · · · , x7} with a marked state x7. The values
of metric function d for every two states is summarized in
the following table and the above three conditions hold.

Fig. 1. The metric system (G, d)

x0 x1 x2 x3 x4 x5 x6 x7

x0 0 4 2 5 5 5 6 6
x1 0 3 3 3 3 3 4
x2 0 4 4 5 5 5
x3 0 2 3 3 1
x4 0 2 2 2
x5 0 2 3
x6 0 3
x7 0

We introduce the following notions. First, we write f(x, e)!
if e ∈ E is active at x ∈ X, where ! stands for being

defined. Next, for x1, x2 ∈ X and e ∈ E, we write x1
e−→ x2

if f(x1, e) = x2. Then we define Suc(x) = {x′ ∈ X : (∃e ∈
E)[x

e−→ x′]} as the set of direct successor states of x.

Then we briefly review the basic mechanism of supervisory
control in DES. Given system G, a supervisor is a function
S : L(G)→ Γ where Γ ⊆ 2E is the set of control decisions.
A supervisor dynamically enables and disables events,
where a control decision γ ∈ Γ is the set of enabled events.
We let S denote the set of supervisors. The event set E is
also partitioned as E = Ec ∪ Euc, where Ec and Euc rep-
resent the sets of controllable and uncontrollable events,
respectively. A control decision is admissible if Euc ⊆ γ,
i.e., no uncontrollable event is disabled. By convention,
we only consider admissible control decisions in this work.
Additionally, S/G denotes the controlled system under S,
L(S/G) denotes the language generated in S/G and the
marked language of S/G is Lm(S/G) = L(S/G)∩Lm(G),
which is solely determined by the marking of G.

When the system does not satisfy given properties, super-
visors, supervisors are designed to enforce them. In this
work, the specification is given with respect to the marked
language of G and is restricted to reachability manner
properties, i.e., marked states are reached eventually. We
also consider (weak) liveness, where ∀s ∈ L(G), ∃u ∈ E,
such that su ∈ L(G), i.e., every state has active events de-
fined. Given the above requirements, we let a prefix-closed
language K ⊆ Lm(G) represent the desired behavior of G.

3. PROBLEM FORMULATION

The DES model in Section 2 describes the nominal dy-
namics of the system when no environmental disturbances
exist. However, the given specification may no longer be
achieved subject to perturbations. It is essential for the
supervisors to work in a robust manner to tolerate dis-
turbances and circumvent catastrophic failures. For that
reason, we define robustness for supervisors, and formulate
the two major problems to be investigated in this work.

Here we propose a simple yet general model of distur-
bances. The detailed mechanism such as the physical
nature and origins of disturbances is beyond this work’s
scope. The set of disturbance is denoted by ∆ and δ = ε
indicates no disturbance. Given a metric automaton (G, d),
function υ : X → R+

0 quantifies the effects of disturbances
at each state. We also let ῡ = maxx∈Xm

υ(x) be the upper
bound of disturbances at Xm. Since the specification is to
reach marked states Xm and the disturbances prevent the
system from achieving the specification, we also call ῡ the
upper bound of ∆ when there is no confusion. Specially,
the disturbance is termed constant if υ(x) = υ(x′) for all
x, x′ ∈ X, where υ(x) = ῡ naturally holds for all x ∈ X.

Then we illustrate how the disturbances intervene with
the system’s dynamics. Given an active event e in state

x with x
e−→ y, if υ(y) < d(x, y), i.e., the disturbance

effect is less than the distance between x and y, then the
nominal transition function f(x, e) is not perturbed, thus
y is reached. Otherwise, when υ(y) ≥ d(x, y), we define

DR(x, e) = {x′ ∈ X : x′ ∈ Suc(x), 0 < d(x′, y) ≤ υ(y)}
as the set of disturbed reachable stable states from x.
Here x′ is a direct successor state of x, and the distance
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between x′ and y is greater than 0 but no greater than
the disturbance effect υ(y). A special remark is that the
original target state y is excluded from DR(x, e) to reflect
that the dynamics has been perturbed. Also DR(x, e) may
not be a singleton since nondeterminism is triggered by
disturbances. We compare the disturbance effect at the
target state y with the distance d(x, y). This is simply our
matter of choice, as it is straightforward to reformulate the
comparison w.r.t. disturbance effect υ(x) and d(x, y).

To incorporate the disturbance effects, the disturbed tran-
sition function is defined as fd : X×E → 2X where for all

x, y ∈ X and e ∈ E such that x
e−→ y, we have that

fd(x, e) =

{
y if υ(y) < d(x, y)

DR(x, e) if υ(y) ≥ d(x, y)

Then a metric automaton (G, d) under disturbance ∆ is
to replace the original transition function f by fd.

Two key problems pertain to supervisory control subject
to disturbances. First, if a supervisor nominally achieves
the specification but fails to do so under disturbances, then
how do we measure its robustness? Second, can we design
a supervisor with the optimal robust performance? Before
solving them, we first define the robustness of supervisors.

Definition 1 (σ-robust supervisor). Given a metric
system (G, d), disturbance ∆ with its effect function υ,
and specification K ⊆ Lm(G), a supervisor S is called σ-
robust with respect to a positive constant σ if for Xσ

m =
{x ∈ X : d(x,Xm) ≤ σ · ῡ}, we have that (i) L(S/G) ⊆ K
and (ii) ∀s ∈ L(S/G), ∃t ∈ E∗ such that fd(x0, st) ∈ Xσ

m.

Definition 1 is inspired by robust control for continuous
systems and the fundamental idea is that bounded distur-
bances only cause modest deviation from the desired be-
haviors. Xσ

m is an inflated set of the marked states, which
includes all states within distance σ · ῡ from Xm. Notably,
the original specification may not be achievable subject to
disturbances, where a smaller σ implies that the behaviors
of the controlled system deviate less substantially from the
original specification. In that sense, a supervisor is deemed
more robust if it is capable to drive all strings closer to
Xm in the controlled system. Therefore, σ measures the
robustness of supervisors. When there is no confusion, a
supervisor is simply called robust if it is σ-robust.

Problem 1 (Robustness bound verification). Given
metric system (G, d) and specification K ⊆ Lm(G), sup-
pose that supervisor S nominally satisfies the specification,
then if disturbance ∆ is present and has its effect function
υ, determine the smallest σ such that S is σ-robust.

Remark 1. In the settings of Problem 1, the supervisor
nominally achieves the specification. The smallest bound
σ implies that for any σ′ < σ, S is not σ′-robust.

Problem 2 (Optimal robust supervisor synthesis).
Given metric system (G, d) with specification K ⊆ Lm(G),
and disturbance ∆ with its effect function υ, synthesize
an optimal robust supervisor Sopt such that Sopt is σmin-
robust where σmin = minS∈S{σ ∈ R+ : S is σ-robust}.
Remark 2. It is likely that different supervisors share the
same σmin as their control profiles lead the system to the
same inflated set of marked states, so Sopt is not unique.

Example 2. Continue to consider the system in Exam-
ple 1 and let Euc = {u}. The specification is “reaching x7

and staying weakly live”. The disturbance effect at each
state is: υ(v0) = υ(v1) = υ(v2) = υ(v3) = υ(v4) = υ(v6) =
1, υ(v5) = 2 and υ(v7) = 4. Consider two supervisors
S1 and S2, where S1 enables a at x0; b at x1; c at x3;
u at x7, while S2 enables b at x0; u at x2, x6 and x7;
c, d and u at x4. Obviously, if there are no disturbances,
both supervisors achieve the specification. However, if dis-

turbances abound, transition x3
c−→ x7 is perturbed since

υ(x7) > d(x3, x7), then x7 is not reachable by S1. Also

transition x4
u−→ x7 is disturbed since υ(x7) > d(x4, x7).

We are going to verify the robustness for S1 and S2 and
design an optimal robust supervisor in the next section.

4. VERIFICATION AND SYNTHESIS METHODS

In this section, we sequentially solve Problem 1 and Prob-
lem 2. For robustness verification subject to disturbances
with a constant bound, we first introduce ranking func-
tions and extend the concept to control Lyapunov func-
tions, based on which we determine the supervisor’s ro-
bustness measure and partially solve Problem 1. Then we
propose a game theoretic framework to tackle robustness
verification under state-dependent disturbances and super-
visor synthesis issues . Specifically, a bipartite transition
structure is defined and both problems are reformulated
as a two-player game between the protagonist supervisor
and the antagonist environment. A dynamic programming
algorithm is proposed to completely solve two problems.

4.1 Verification under disturbances with constant bounds

Given a metric system (G, d), a function g : X → R is
called Lipschitz continuous if there exists a constantK > 0
such that ∀x, y ∈ X, |g(x)− g(y)| ≤M · d(x, y), where M
is the Lipschitz constant of g and d is the distance metric.
Since the domain of g is finite, any real valued function g
is Lipschitz continuous. Next we define ranking functions.

Definition 2 (Ranking functions). Given a metric
system (G, d), ρ : X → R+

0 is a ranking function if (i)
ρ(x) = 0 ⇔ x ∈ Xm; (ii) there exists a monotonically
increasing function α : R+

0 → R+
0 such that α(0) = 0 and

α(d(x,Xm)) ≤ ρ(x) for all x ∈ X.

A ranking function is defined on the finite state space of
G and is naturally Lipschitz continuous. By definition, a
ranking function has larger values at states further from
marked states of G. Then we impose some extra conditions
on ranking functions to define their “control” versions.

Definition 3 (Control Lyapunov functions (CLF)).
Given metric system (G, d), a ranking function ρ is called
a CLF if there exists a monotonically increasing function
h : R+

0 → R+
0 where h(0) = 0 and ∀x ∈ X, ∀e ∈ Γ(x):

[e ∈ Euc ⇒ ρ(f(x, e))− ρ(x) ≤ −h(d(x,Xm))]∧
[e ∈ Ec ⇒ ∃e′ ∈ Γ(x) : ρ(f(x, e′))− ρ(x) ≤ −h(d(x,Xm))]

The implications of Definition 3 are two-fold. First, all
uncontrollable active events lead the CLF to decrease or
retain its values. Second, if an active event is controllable,
then there exists at least one feasible event (either con-
trollable or uncontrollable) leading the CLF to decrease
or remain unchanged. The occurrence of new events can
be viewed as control inputs as they are enabled by the
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supervisor. In that sense, Definition 3 is analogous with its
counterpart in nonlinear control, see, e.g., Sontag [1998].

Definition 4 (CLF Induced Supervisors). Given a
metric system (G, d) and CLF ρ, a supervisor S is induced
by ρ if ∀s ∈ L(S/G) such that f(x0, s) = x, then S(s) =
{e ∈ Ec : ρ(f(x, e))− ρ(x) ≤ −h(d(x,Xm))} ∪ Euc

If a supervisor S is induced by a CLF r, then S enables all
controllable events satisfying the inequality of Definition 3
and all feasible uncontrollable events. That is, the super-
visor always issues commands following the direction of
not increasing the values of r. The next theorem offers
a necessary and sufficient condition for supervisors to
nominally satisfy the specification under no disturbances,
whose proof is omitted here due to space limitation.

Theorem 1. Given metric system (G, d) with specifica-
tion K ⊆ Lm(G), supervisor S achieves K if and only if
there exists a control Lyapunov function ρ that induces S.

Example 3. We continue to discuss the system in Exam-
ple 2 and temporarily ignore the disturbances. We intro-
duce a rank function ρ whose values at each state xi ∈ X
is listed in the following table, together with the distance
from xi to the marked state x7. It can be verified that ρ is
a control Lyapunov function and induces supervisor S1 in
Example 2. For a monotonically increasing function h(x) =
2x, inequalities ρ(x1) − ρ(x0) ≤ −h(d(x0, x7)), ρ(x3) −
ρ(x1) ≤ −h(d(x1, x7)) and ρ(x7) − ρ(x3) ≤ −h(d(x3, x7))
hold, which implies that the control decisions of S1 (en-
abling a at x0; b at x1; c at x3; u at x7) follow the direction
of value decreasing of ρ at a rate controlled by h.

x0 x1 x2 x3 x4 x5 x6 x7

d(xi, x7) 6 4 5 1 2 3 3 0
ρ(xi) 24 11 16 3 4 6 6 0

Then Theorem 2 (proof omitted) describes the degradation
of the controlled system’s behaviors under disturbances
with a constant bound. The deviation from nominal out-
comes is propositional to the power of disturbances.

Theorem 2. Given metric system (G, d) with specifica-
tion K ⊆ Lm(G), and disturbance ∆ with constant bound
υ, if supervisor S is induced by control Lyapunov function
r with Lipschitz constant M , then S/G is ensured to reach
{x ∈ X : h(d(x,Xm)) ≤Mῡ} and S is h−1(Mυ)/υ-robust.

4.2 Game-theoretic supervisor verification and synthesis

For robustness bound verification and optimal robust su-
pervisor synthesis under state dependent disturbances, we
formulate a two-player game between the supervisor and
the environment (disturbances), where winning conditions
are properly defined. Then we analyze the game to propose
a dynamic programming approach to search for supervi-
sor’s optimal winning strategies and robustness bound.

We first define metric state estimate to integrate logical
state information and distance information. A metric state
estimate contains two components: one tracks the system’s
current state estimate under control and disturbances; the
other tracks the distance from the state estimate to Xm.

Definition 5 (Metric State Estimate). Given a metric
automaton (G, d), a metric state estimate is a tuple

q = ((x1, · · · , xn),max
i≤n

d(xi, Xm)) ∈ 2X × R+
0

where E(q) and D(q) denote the state estimate and dis-
tance value components of q, respectively.

Given a metric state estimate q, the distance value D(q)
is set to be the maximum distance between some state
in E(q) to Xm. This reflects the worst possible deviation
from marked states caused by disturbances. Based on Def-
inition 5, we introduce metric bipartite transition systems.

Definition 6 (Metric Bipartite Transition System).
A metric bipartite transition system w.r.t. (G, d) and
disturbance ∆ is T = (QY , QZ , fyz, fzy, E,Γ, d, q

y
0 ) where

• QY ⊆ 2X × R+
0 is the set of metric state estimates;

• QZ ⊆ 2X×R+
0 ×Γ×{0, 1} is the set of augmented metric

state estimates and for qz ∈ QZ , M(qz), Γ(qz) and
B(qz) denote the metric state estimate, control decision
and disturbance indicator of qz, respectively;

• fyz : QY × Γ → QZ is the transition from QY to QZ
states, which satisfies ∀qy ∈ QY , ∀γ ∈ Γ and ∀qz ∈ QZ :

fyz(q
y, γ) = qz ⇒ [M(qz) = qy] ∧ [Γ(qz) = γ]∧

[B(qz) = I((∃e ∈ γ ∧ ∃x ∈ E(qy) ∧ ∃x′ ∈ X)⇒ (x
e−→ x′

∧ υ(x′) ≥ d(x, x′))] where I is the indicator function;

• fzy : QZ × E → QY is the transition from QZ to QY
states, which satisfies ∀qz ∈ QZ , ∀e ∈ E and ∀qy ∈ QY :

fzy(qz, e) = qy ⇒ [e ∈ Γ(qz)] ∧ [E(qy) = {x′ ∈ X : (∃x ∈
M(E(qz)))[x′ ∈ fd(x, e)]}] ∧ [D(qy) = max

x′∈E(qy)
d(x′, Xm))]

• E is the set of events of G;
• Γ is the set of admissible control decisions;
• d is the distance metric of G;
• qy0 = {x0, d(x0, Xm)} ∈ QY is the initial state.

In general, a metric bipartite transition system (MBTS) is
a two player game arena where the supervisor plays against
the environment (disturbances). A QY -state, aka Y -state,
is a metric state estimate where the supervisor issues
control decisions. A QZ-state, aka Z-state, is a metric state
estimate augmented with an admissible control decision
and a disturbance indicator. A transition from a Y -state
qy to a Z-state qz “remembers” the last issued control
command and indicates whether the transition will be
disturbed. At this stage, the metric state estimate has
not been updated yet, thus M(qz) = qy. Additionally,
Γ(qz) = γ is the control decision made at the preceding Y -

state and the indicator B(qz) = 1 if the transition x
e−→ x′ is

disturbed since the disturbance effect υ(x′) is no less than
the distance d(x, x′), otherwise B(qz) = 0, as discussed
in Section 3. A transition from a Z-state qz to a Y -state
qy represents the update of metric state estimates under
control decisions and disturbances. To be more specific,
the state estimate of qy is the set of states reachable via
enabled event e from some state in the state estimate
of qz, following the disturbed transition function fd. The
distance value D(qy) is also calculated by Definition 5.

Given an MBTS T , we let Post(qy) = {qz ∈ QZ : (∃γ ∈
Γ)[fyz(q

y, γ) = qz]} and Post(qz) = {qy ∈ QY : (∃e ∈
E)[fzy(qz, e) = qy]} be the set of direct successors states
of a Y -state qy and a Z-state qz, respectively. The set
of runs in T is denoted by Run(G) and a run is of the

form: r = qy1
γ1−→ qz1

e1−→ qy2 · · ·
γn−→ qzn

en−→ qyn+1. And we
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also denote by Runy(T ) (respectively Runz(T )) the set of
runs ending with a Y -state (respectively Z-state).

We also require that a MBTS be complete, which essen-
tially means that at least one control decision is defined at
every Y -state and all enabled events are allowed to occur
from any given Z-state. In addition, a Z-state qz is called
deadlock-free if (∀x ∈ E(M(qz)))(∃e ∈ Γ(qz))[fd(x, e)!],
otherwise, qz is a deadlock state. This condition guarantees
that some enabled event in Γ(qz) is always defined at any
state x of the state estimate E(M(qz)). Following a similar
proof as Lemma V.1 in Yin and Lafortune [2016], we can
show that a supervisor induced by an MBTS T is (weakly)
live if and only if all Z-states of T are deadlock-free.

Both players on a MBTS possess strategies to selects its
next step’s transition at its positions. A control strategy
works in the same way as a standard supervisor, thus
we will use terms “supervisor” and “supervisor’s strategy
(control strategy)” interchangeably. Moreover, we call a
strategy positional if its decisions only depend on the cur-
rent (augmented) metric state estimate. Existing results
in Apt and Grädel [2011] show that positional strategies
suffice for a player to win reachability games, so we will
restrict our attention to positional strategies aftermath.

Next, Algorithm 1 constructs the largest complete MBTS,
where being the largest is in a graph merging sense. The
structure is a tuple Tm = (QmY , Q

m
Z , E,Γ, f

m
yz, f

m
zy, q

y
0 ),

where for all complete MBTSs T , T v Tm holds.

Algorithm 1 Build Tm

Input: G, d, ∆
Output: Tm = (QmY , Q

m
Z , Eo,Γ, f

m
yz, f

m
zy, q

y
0 )

1: QmY = {qy0} = {x0, d(x0, Xm)}, QmZ = ∅;
2: T prem = DoDFS(qy0 , G, d,∆);
3: while there exist Y -states without successors do
4: remove such states and their predecessor Z-states;

5: return Tm;
6: procedure DoDFS(qy, G, d,∆)
7: for γ ∈ Γ do
8: qz = fyz(q

y, γ) by Definition 6;
9: if qz is deadlock-free then

10: add transition qy
γ−→ qz to fmyz;

11: if qz /∈ QmZ then
12: QmZ = QmZ ∪ {qz};
13: for e ∈ γ do
14: q̃y = fzy(qz, e) by Definition 6;

15: add transition qz
e−→ q̃y to fmzy;

16: if q̃y /∈ QmY then
17: QmY = QmY ∪ {q̃y};
18: DoDFS(q̃y, G, d,∆);

Algorithm 1 consists of two major steps. First, a depth-first
search of procedure DoDFS is initiated from the initial
state qy0 to add new states and transitions to the structure.
Within this step, Line 9 checks whether a newly added Z-
state is deadlock-free. If it is the case, we proceed to add
all successor Y -states to the structure. DoDFS is called
recursively until no new states are added, which eventually
results in an MBTS T prem . Since the above process may
result in Y -states without successors, the next step from
Line 3 is to remove such states and their predecessor
Z-states since enabled observable events should not be

blocked from occurring. The algorithm will converge after
a finite number of steps since the state space of Tm is finite
due to the finite number of Y -states and Z-states.

Example 4. Reconsider the system in Example 2. We
follow Algorithm 1 to construct Tm in Figure 2, where
square states and oval states represent Y -states and Z-
states, respectively. The algorithm starts from qy0 where
four control decisions ranging from γ1 to γ4 are available.
If the supervisor opts for γ1, then a Z-state is reached
and the disturbance takes turns to play. The remaining
structure is interpreted in a similar manner. Note that the
three red Z-states are deadlock, thus not included in Tm.

Fig. 2. MBTS Tm (without the three red deadlock states)

Then a dynamic programming approach is proposed to
determine the optimal robustness bound for each state in
Tm. We introduce a sequence of monotonic operators Vi for
i ≥ 0, which are defined recursively as: for all qy ∈ QmY ,

Vi+1(qy) = min{Vi(qy), min
qz∈Post(qy)

max
q̄y∈Post(qz)

Vi(q̄
y)}

and V0(qy) = D(qy) for all qy ∈ QmY . Also the above
equation immediately implies that for all qy ∈ QmY ,

V1(qy) = min{D(qy), min
qz∈Post(qy)

max
q̄y∈Post(qz)

D(q̄y)}

Therefore V1(qy) encodes the shortest distance to reach the
marked states via at most one step of action, i.e., staying at
qy or going to its successor states. The supervisor aims to
minimize the distance to marked states, while disturbance
always takes actions to force the controlled system to move
as far away as possible from marked states. In other words,
the supervisor and the environment are playing a min-max
game with respect to the distance to marked states. The
supervisor has to consider the “worst case” scenario caused
by disturbances, which is reflected by max operator in the
above equations. By iterating the sequence of operators,
we are expected to reach a fixed point defined as:

V ∗(qy) = min{D(qy), min
r∈Runz(qy)

max
q̄y∈Post(LastZ(r))

D(q̄y)}

The fixed-point of the game is also the optimal achiev-
able robustness bound of supervisors (control strategies)
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induced by Tm. Since the state space of Tm is always
finite, the fixed point is guaranteed to be calculated after
a finite number of iterations. Therefore, the complexity for
calculating the fixed point is linear in the size of Tm.

Now we ultimately solve Problem 1 as follows. For a
supervisor S, we first retrieve all the control decisions
of S and locate a control strategy in Tm that works in
the same manner with S, i.e., S is induced by Tm (under
disturbances). Aftermath we isolate a deterministic MBTS
TS from Tm by specifying a unique control decision at each
Y -state and guarantees that TS only induces S. Then we
analogously define the sequence of operators Vi for i ≥ 0
on TS , and calculate its fixed point V ∗(qy0 ) for the initial
state qy0 of TS , which returns that S is V ∗(qy0 )/ῡ-robust.

The fixed point of the min-max game in Tm indicates that
the optimal robustness bound for supervisors induced by
Tm is σmin = V ∗(qy0 )/ῡ. Then the optimal winning control
strategy is determined by the ”optimal path” leading to
V ∗(qy0 ). Finally we realize the optimal supervisor in its
automaton form and completely solve Problem 2.

Example 5. We continue Examples 3 and 4. By iterating
the operators Vi for i ≥ 0 on Tm, we have that V ∗(qy) = 3
for all Y -state qy and the optimal control strategy is:
choosing γ1, γ3, then any of {γ6, γ7, γ8} and repeat the
above choices. The detailed calculation process is omitted
here. We highlight an optimal control strategy by blue
lines in Figure 2. The induced optimal robust supervisor
is exactly S1 in Example 3 and S1 is shown in Figure 3.
Due to the disturbances, x5 instead of x7 is reached after
c is enabled at x3. Since d(x3, x7) = 1 and d(x5, x7) = 3,
S1 guarantees to reach states within distance 3 from Xm.
Since d(x3, x7) = 1 and d(x5, x7) = 3, supervisor S1

guarantees to reach states within distance 3 from x7.
Further analysis shows that supervisor S2 in Example 3
only guarantees to reach states within distance 5 from x7.

Fig. 3. An optimal robust supervisor with σmin = 3

5. CONCLUSION

This work considered robust supervisory control on metric
automaton model for the first time in DES. After intro-
ducing the system and disturbance models, we formulated
robustness verification and optimal robust supervisor syn-
thesis problems. A special case of verification was investi-
gated first. Then we developed a game theoretic framework
and proposed a dynamic programming method to search
for fixed points which turn out to provably tackle both
problems. For future extensions, we will consider robust
supervisory control with more complex specifications than
reachability, e.g., those expressed as linear temporal logics.
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