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A Dual Calibration Framework for Exploring Environments using

Heterogeneous Robot Swarms

Yun Gao®*, Hao Gao®*, Yiding Ji®, Jinni Zhou®, and Yang Shi

Abstract—Exploring complex environments using heteroge-
neous robot swarms (RSs) is a considerable challenge in terms
of coordination, sensing, and information fusion. Existing ap-
proaches suffer from a lack of systematic analysis that fully
exploits the complementary capabilities of heterogeneous agents.
To bridge this gap, we propose a novel spatial calibration
framework that integrates both virtual and physical calibration
mechanisms to enable coordinated operation between two distinct
robot swarms, RS-A and RS-B. RS-A, characterized by high
mobility and a broad field of view, performs continuous, large-
scale monitoring and identifies candidate regions of interest.
RS-B, equipped with high-precision sensors, is dispatched to
these regions to conduct fine-grained data collection and return
accurate environmental information, facilitating comprehensive
environmental mapping. To this end, we develop a distributed
control method for spatial partitioning, position optimization,
and information exchange within the swarm, based on improved
coverage control and a flooding-based broadcast algorithm for
intra-swarm communication. We further design a control ar-
chitecture that enables inter-swarm collaboration. The proposed
framework effectively addresses the limitations of homogeneous
RSs in environmental exploration by integrating fast, coarse-
grained surveillance with slow, fine-grained investigation through
heterogeneous coordination. Finally, the effectiveness of our
proposed framework is validated through simulation results.

Index Terms—Robot swarms, coverage control, distributed
coordination, optimal control, spatial calibration.

[. INTRODUCTION

In critical application domains such as disaster response,
deep-space missions, marine exploration, and critical infras-
tructure surveillance, environmental monitoring is becom-
ing fundamental for sustainable and resilient operations of
autonomous systems [1]. However, conventional approaches
often struggle to adapt to the non-stationary, partially observ-
able environment, limited physical accessibility, and elevated
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operational risks [2], [3], thus failing to satisfy the stringent
requirements of high-stakes, complex missions [4].

Robot swarms (RSs) offer a promising paradigm to over-
come these challenges through decentralized, cooperative, and
scalable sensing strategies [5]. An RS integrates (i) multi-
modal perception and data fusion modules for heterogeneous
environmental cues [6], (ii) onboard localization and mapping
capabilities for real-time situational awareness [7], and (iii)
adaptive path planning algorithms to balance obstacle avoid-
ance, mission efficiency, and energy consumption [8]. These
synergistic capabilities enable swarm systems to function as
distributed sensor networks with exceptional adaptability in
dynamic, unstructured, and hazardous environments [9], mak-
ing them suitable for mission profiles that demand persistent,
scalable, and fault-tolerant environmental intelligence [10].

In autonomous exploration of unknown environments, RSs
must achieve two primary objectives: (i) real-time updating
of a spatial representation to reflect explored and unexplored
regions [11], and (ii) derivation of optimal navigation poli-
cies based on this representation to enable sustained ex-
ploration [12], [13]. The complexity of environments incurs
exponential computational cost, thereby posing fundamental
challenges to the global optimization of environmental sensing
strategies [14]. In a spatial sense, autonomous exploration is
reduced to a coverage problem, where the prevailing—though
not exhaustive—solution includes Voronoi-based spatial par-
titioning [15], artificial potential field methods [16], and
probabilistic occupancy grid modeling. Among these, Voronoi-
based topological decomposition exhibits distinct advantages
in nearest-neighbor identification and decentralized coordi-
nation, owing to its mathematically rigorous spatial parti-
tioning [17]. This method has catalyzed the development
of advanced architectural mechanisms—such as adaptability
and asynchrony—that significantly enhance the scalability and
robustness of distributed multi-robot systems [18], [19].

Despite these advancements, two bottlenecks exist. First,
although RSs offer task-level adaptability, most works are lim-
ited to homogeneous configurations. Even for studies involving
heterogeneous robots, they are often confined to sensing ca-
pabilities but not functionality. As a result, coordination algo-
rithms usually rely on the implicit assumption of functionally
homogeneous agents [20], [21]. Second, high-fidelity environ-
mental perception necessitates a multi-resolution strategy that
integrates coarse-grained global search with fine-grained local
investigation. However, most methods suffer from the absence
of an integrated framework [22], causing suboptimal tradeoffs
between coverage efficiency and sensing performance.



This work addresses the challenge of cooperative explo-
ration by heterogeneous RSs in large-scale and complex en-
vironments whose physical scale necessitates lightweight and
highly mobile agents to ensure rapid coverage and broad sit-
uational awareness. However, adversaries such as occlusions,
uneven terrain, and dense vegetation usually restrain visibility
of RSs, requiring comprehensive equipment for exploration
and execution to achieve accurate sensing. Consider a scenario
involving an aerial-ground heterogeneous swarm composed
of drones and quadruped robots. Drones are well-suited for
initial reconnaissance across expansive terrains due to their
agility and elevated vantage point [23]. However, in environ-
ments such as dense forests, the collected data often suffers
from occlusions and lacks sufficient spatial fidelity [24].
To compensate for this limitation, ground quadruped robots,
capable of navigating rough terrain and acquiring detailed local
information, are deployed in subsequent phases for accurate
and comprehensive environment exploration. The main contri-
butions of this work are summarized as follows:

e« We develop a hierarchical control framework that coordi-
nates two functionally distinct RSs, RS-A and RS-B, for
exploration in complex environments. It integrates large-
scale exploratory mapping by RS-A with high-resolution
target examination by RS-B, establishing a closed-loop in-
formation flow through a dual-layer calibration mechanism
that fuses coarse and fine grained spatial information.

« We propose a dual-layer calibration method that integrates
virtual tagging with physical-space mapping, which en-
hances spatial awareness by combining the flexibility of
virtual annotations with targeted physical measurements.

e We introduce a coverage control strategy based on an en-
hanced Voronoi partitioning method, facilitating both persis-
tent and target-specific coverage. By embedding this scheme
within the dual-layer framework, we achieve efficient spatial
deployment while significantly reducing control complexity.

The remainder of this paper is organized as follows. Sec-
tion II introduces the heterogeneous RSs model, Voronoi
tessellation and formulates the key problem of this work.
Section III elaborates on the design of a cooperative control
algorithm for environmental exploration by two types of
heterogeneous RSs. Finally, Section V concludes the work and
outlines several future research directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Heterogeneous Robot Swarms Model

Consider two distinct RSs, i.e., RS-A and RS-B, each
of which consists of m and n homogeneous robots, re-
spectively. Both RSs operate within a compact and convex
two-dimensional domain @ C R2 Let pi(k) denote the
position of the i*® robot in RS-+, where x € {A, B}. The
position configuration of RS-A at iteration %k is represented
as PA(k) = [(p(E)T, ..., (pA (k)T]T, and RS-B is defined
analogously. Each robot updates its position according to the
first-order discrete-time kinematic model:

pi (k+1) = pj (k) + Tuj (k), (D

where u} (k) is the control input at iteration k and T stands
for the sampling interval.

Robots communicate with others within a communication
radius. Specifically, in RS-A, the i*! robot can communicate
with the j* robot if [|pi* (k) —p$* (k)||< R2, where R2 € R,
and such j belongs to the neighbor set N2 of the it" robot.
Similarly, the communication radius for RS-B is RE € R+.
Inter-RS communication between RS-A and RS-B is permitted
when the inter-robot distance does not exceed max{R%, RE}.

In addition, robots in RS-A and RS-B can perceive
the environment within sensing disks D(p2(k), R}) and
D(pB(k), RE), respectively, where Ry and RE denotes sens-
ing radii. Due to the differences in the calibration methods
for detecting the environment using two RSs, their perception
models are distinct and will be presented in Section III.

B. Voronoi Tessellation

Voronoi tessellation offers a simple yet effective method
for spatial decomposition, inherently yielding a balanced par-
titioning in which each robot is assigned to the region of
the workspace closest to its position. Taking RS-A as an
illustrative case, consider a set of m points representing the
positions of the robots. The Voronoi cell associated with the
generator point p*(k), denoted by V/A(k), is defined as:

VAk)={q € Q] |lg—p(K)|| < |lg—p3 (k)| V] # i}, @)
where ¢ € Q denotes an arbitrary point within the task domain
Q. Each Voronoi cell VA (k) forms a convex set, ensuring that
any line segment between two points within the cell remains
entirely contained within it. The collection of all Voronoi cells
at iteration k, expressed as VA (k) = {VA(k),...,VA(k)}.
Each Voronoi cell VA (k) comprises all points in Q that are
closer to pi*(k) than to any other generator p3* (k) for Vj # i.
Two cells VA (k) and V}A(k) are said to be Voronoi neighbors
if they share a non-empty boundary, i.e., VA (k)N VA (k) # 0.
RS-B’s Voronoi tessellation adheres to the same definitions
and properties outlined above.

C. Problem Formulation

Consider two heterogeneous RSs, denoted by RS-A and
RS-B, which consist of m and n robots, respectively. They
are complementary in sensing capabilities and deployed in a
two-dimensional, compact, and convex environment Q C R2.
Intra-swarm communication is enabled within radii B2 and
RE, respectively; meanwhile inter-swarm communication is
enabled within radius max{R2 RP}. Each swarm starts to
explore Q from its initial position, which is denoted by
PA(0) for RS-A and PB(0) for RS-B. Individual robot’s
dynamics is given in (1). Our goal is to (i) design a local
coverage strategy for intra-swarm coordination, enabling the
robots in both swarms to efficiently label the environment and
adapt their motion trajectories accordingly; and (ii) develop a
collaborative mechanism that facilitates coordination between
RS-A and RS-B, allowing them to complement each other and
jointly accomplish the task of exploring the environment.
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III. COLLABORATIVE CONTROL ALGORITHM
A. Overview

This section presents a collaborative control algorithm for
efficient target exploration in large and complex environment
using two heterogeneous RSs. Since the environment is com-
plex, a single detection pass cannot reveal all targets. RS-
A therefore performs continuous exploration and generates
coarse detections as preliminary guidance. For RS-A’s explo-
ration process, the environment is modeled as a homogeneous
field with an initial information density of 1, where 1 denotes
complete ignorance of the environment’s state and 0 denotes
full knowledge. RS-A employs a virtual calibration mech-
anism, and its information density function is time-variant,
allowing values to recover from 0 to 1 over a specified interval
to sustain continuous motion. RS-B conducts high-precision
detection based on RS-A’s findings. For RS-B’s exploration
process, the environment initially has an information density
of 0, and detected targets are represented by time-varying
Gaussian distributions. Once RS-B covers a target using actual
sensing, the target is marked as fully explored, and the density
of corresponding points is set to 0 (see Fig. 1).

] \
1 1
1 1
1 1
> (g, k)

> 1
e ES :
I I
1 1
I 3 1
] | , o |
I', o 3 ‘I
: $(@1))
1 1 1
1 1
1 1
| a ___+——0 :
1 I 1
1 1
1 < = 1
I s 0
'. ;

Tier 2: Purposeful Real Calibration

Fig. 1: Illustration of dual calibration of environment using
heterogeneous robot swarms.

In this framework, two communication protocols are em-
ployed: multi-robot flooding for intra-swarm communication
and handshake for inter-swarm communication. The explo-
ration process terminates once the density of all target points
associated with RS-A is reduced to 0.

B. Persistent Virtual Calibration

In this section, we design the persistent virtual calibration
algorithm for RS-A:

1) Environment: The information density of a point ¢ €
Q at iteration k is denoted by ¢*(q,k) € [0,1], where
#*(q, k) = 1 indicates that the robot has no prior information
about ¢, and ¢*(q, k) = 0 corresponds to complete infor-
mation. This formulation characterizes the exploration state

of the environment, which is represented virtually rather than
physically. Initially, the environment is modeled as a uniform
information-density field with ¢ (¢,0) = 1 for all ¢. To enable
continuous environmental monitoring by RS-A, the density
function is designed to be time-varying as follows:

0 q € D(Vpi(k), RY)
o*(q. k) = S ypalt —kT) 0< o (g, k) <1 , ()
1 q ¢ D(Vpi(k), R})

where vp € {0,1} is the activation parameter returned by
RS-B, a € R+ is the information density recovery rate and
T represents time. This implies that the information density
gradually reverts to its original value (see Fig. 2) as robots
depart from previously visited locations, thus necessitating
continuous robot motion for effective environmental coverage.
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Fig. 2: Illustration of information density function used for
persistent virtual calibration.

2) Robot Swarm A: Robots in RS-A alter the information
density of the environment in two distinct cases: upon cover-
age of a location by a robot, the information density is set to
0; otherwise, it remains at 1. The formula is as follows:

' 1 q¢ D(p}(k),R})
Therefore, the influence exerted by the robots at a specific
spatial location can be described by the model as follows:
g, p (k) = f(a, 0 (K) 6™ (g, k). 5)
3) Control Algorithm: Our objective is to optimize RS-A’s
exploration of the task area to convert unknown regions into
known regions. For the i*" robot, achieving this objective is
equivalent to minimizing h2 (g, p2(k)). Moreover, to ensure
coordinated operations within the task environment, RS-A
establishes distinct operational domains for each robot by
employing Voronoi tessellation to partition the area accord-
ingly. Consequently, the total cost of RS-A’s impact on the
environment can be expressed as follows:

HAPARVARD =Y [ bl 0)de. ©

VA (k)

i

4)

By applying a gradient-based approach to the defined cost
function, the following distributed control law is obtained:

up (k) = =26"mi (k) (97 () — ¢ (k)), ©)

where x* is control gain for RS-A, m?* (k) and c* (k) denote
the mass and centroid within VA (k), respectively, as follows:

o™ (q,k)dg, (8)
ViA

m (k) =
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A _ # A
c; (k) = A (8] /v;\ ¢ (q,k)qdq. )

Accordingly, the procedure is summarized in Algorithm 1.

Algorithm 1: Persistent virtual calibration algorithm.

1 Initialization: m, x*, PA(0), $*(q,0).
2 for iteration k =1,2,... do
for robot i =1,...,m do
Generate VA (k)
Sample ¢A(q e VAK), k
Compute m(k), c(k),
Update p; (k)

> (2)

)
u(k) > (8).9.(7)
> (1)

B - N I N

C. Purposeful Real Calibration

In this section, we design a purposeful real calibration
algorithm for RS-B:

1) Environment: The environmental information density is
denoted by ¢®(q, k) € (0,1), with $®(¢,0) = 0 at k = 0. The
information density induced by a target discovered by RS-A
is modeled as a time-varying Gaussian function:

lla—s; (k)12
1 202 (k)

g(qul(k)):me L)

where s;(k) denotes the center position of the I'" target and

o1(k) represents its effective range. In other words, the I*? tar-
get influences the environment within the disk B(s;(k), o;(k)).

(10)

The overall environmental information density ¢®(q, k) is
expressed as a Gaussian mixture function:

TI(k)

Zﬁz 9(g, s1(k)), (11)

where II(k) denotes the total number of targets discovered by
RS-A at iteration k and (3;(k) € (0, 1) is the peak information
density of the I*" target.

2) Robot Swarm B: Within its coverage area, the sensing
capability of RS-B robots attenuates with increasing distance
and is modeled as:

fB(q,pB(k)):{ne_A”q OIS g€ DR RY)
’ 0 q¢ D(pj (k),Rg)
where 77 € (0,1) denotes the maximum sensing capability,
A € (0,00) represents the attenuation coefficient, and p =

2
ne’ARE is a constant ensuring that the value at the boundary
D(p§(k), RY) is zero. The model formalizes the effect of
robots on a particular spatial position as expressed below:

he (q,p} (k) = f(q.p5 (k))8" (g, k). (13)
After a robot in RS-A detects potential targets, the robot in
RS-A compiles an information packet:

I(k) = {II(k), S(K)}, (14)
where IT1(k) = {1, ..., |TI(k)|} denotes the set of target indices
discovered by RS-A and S(k) = [s{ (k),...,sT.(k)]" is the
target position vector. '

Upon receiving information, RS-B must determine whether
it can service all targets within their deadlines before deciding

, (12)

whether to respond. For each robot-target pair (j,1), the
estimated service time ¢;; is computed as follows:

tjl = Ttravel(ja l) + Tsenses (15)

where Tiyavel is the travel time from the ;" robot in RS-B
to the [tP target, and Tsense 1S the sensing or calibration time.
The I'" target is deemed serviceable by the j'" robot if the
following condition holds:

tjy <1, (16)

where 7} is the deadline for covering the I*! target. If every
target is assigned to a serviceable robot and no robot exceeds
its time or energy budget, RS-B is considered to have sufficient
capacity. In scenarios where strict time or energy constraints
are absent, this requirement can be expressed as follows:

n > [M(k)]. (17)

More generally, the capacity constraint can be formulated as:

n [TI(K)|
Zaj > Z dy,
j=1 1=1

where a; is the effective capacity of the j th robot and d; is the
demand of the ['" target. If RS-B fails the capacity assessment,
a reject signal NACK is returned. This capacity assessment
ensures that subsequent control actions are executed only when
RS-B can feasibly complete the assigned tasks, thereby pre-
venting inefficient motion and ensuring timely target servicing.

Once RS-B decides to respond, a robot replies with an
acknowledgment signal ACK and broadcasts the information
I(k) throughout RS-B. Let 7;(k) denote the set of target
indices known to the j*" robot in RS-B at iteration k. To
ensure consistent information sharing among all robots in
RS-B while adhering to the distributed control paradigm,
Algorithm 2 is designed to facilitate cooperative updating of
target information within the swarm.

(18)

Algorithm 2: Multi-robot flooding algorithm.
1 Imitialization: 7;(0), I1(0).
2 for robot 5 =1,...,n do

3 if m;(k) < II(k) then

4 for rarger I =1,...,m;(k) do

5 if s;(k) € V,P(k) then

6 Store and broadcast s; (k)
7 if s;(k) € OV (k) then
8 ‘ ﬂj(k))%ﬂ'j(k))—f—o.g)
9 else

10 | (k) < (k) +1
11 else

12 | Receive and store s;(k), m;(k)
1B L II(k) « 32, m;(k)

3) Control Algorithm: Our objective is to maximize the
sense influence of RS-B on the detected targets. Although this
section adopts an inverse environmental calibration strategy
relative to B-1), the cost function retains the same functional
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form and can be expressed as:

Z/ i(a,p} (k)dg. (19)
VB (k)

Considering the time-varying nature of the targets, the
centroids are constantly shifting, causing the robots’ centroid-
tracking performance to be delayed and imprecise. To address
this issue, we design an enhanced control law, formulated as
follows, based on the control law presented in (7):

ui (k) = = (k" + 8(k) (05 (k) — ¢}’ (k) + ¢}’ (k),  (20)

where P denotes the control gain of RS-B, ¢B(k) represents

the time-varying compensation gain as defined in (21), and

é?(k) is the position compensation term as given in (22).

HE(PP(k), V

By 1 (q—c2 (k) (q—pF (k) (g, k)
CW=E N/dv D0
-B _ 1 B 8¢B(qak)
B0 = o /V (a- P S a2

Through this enhancement, the control law (7) is generalized
from a gradient-descent-based approximation of a centroid
to a dynamic tracking law with feedforward compensation,
enabling the robots to track time-varying centroids in real
time and thereby reducing the locational cost in scenarios
characterized by time-varying density functions. As detailed in
Algorithm 3, this advancement elevates the traditional Lloyd
approach from pure geometric optimization to an intelligent
coverage control framework with dynamic adaptability and
collaborative fault tolerance, achieved by integrating real-time
capability constraints and feedback mechanisms.

Algorithm 3: Purposeful real calibration algorithm.

B, PB(0), ¢B(q,0).

1 Initialization: n, &

2 for iteration k = 0,1,... do

3 for robot 7 =0,1,...,n do

4 Generate V,° (k) > (2)
5 Receive I(k) > (14)
6 Compute and check tj; > (15), (16)
7 if (18) holds then

8 Broadcast ACK

9 Implement Algorithm 2

10 else

11 Broadcast NACK

12 L break

13 Sample ngB( € VjB(k)7 k)

14 Compute m¥ (k), 2 (k) > (8), (9)
15 Compute f (k),¢ ?(k),u (k) > (21), (22), (20)
16 | L Update p; B(k) > (1)

D. Collaborative Control Algorithm

To enable effective cooperation between heterogeneous RSs,
this section proposes a collaborative control framework (see
Fig. 3). We introduce a handshake protocol that enhances
inter-swarm communication through a multi-stage interaction

process incorporating iterative feedback and consensus nego-
tiation [11], [17], [18].

Rough Results
Robot Swarm A [, _|
Accurate Results

Robot Swarm B

Virtual Calibration Real Calibration

Environment

Fig. 3: Illustration of interaction between robot swarms and
between robot swarms and the environment.

At each time step k, RS-A executes Algorithm 1. Upon
detecting targets, the robot in RS-A initiates a request signal
INIT_REQ to the nearest robot in RS-B, determined by:

QI

Upon receiving the information packet I(k), the robot in
RS-B, if deciding to respond, replies with an acknowledgment
signal ACK and subsequently executes Algorithm 3, which
incorporates both the swarm-wide dissemination of updated
task information via Algorithm 2 and the capability assess-
ment procedure. Once the robot in RS-B successfully covers
the designated target, it transmits (k) to RS-A together with
a status signal SUCC. The robots then permanently set the
information densities at the corresponding locations to zero,
as expressed by:

min

™M = arg min\\pf(k) (23)
J

¢"(q.k) =0, (24)
where g € B(s;(k),oi(k)) and k = k,k+1,. ... Accordingly,
the procedure is summarized in Algorithm 4.

Algorithm 4: Collaborative control algorithm.
1 Initialization: P*(0),P(0),6"(q,0),¢%(q,0),B%(0).
2 for iteration k =0,1,... do
3 for robot i =0,1,...,m in RS-A do
4 Implement Algorithm 1
5 if 1*(k) # 0 then
6 Identlfy 4™ in RS-B. > (23)
7 Robot j in RS-B < INIT_REQ(I(k))
8 for robot j =0,1,...,n in RS-B do
9 Implement Algorithm 3
10 if rarget is covered then
1 | Robot i in RS-A < succ (I(k))
2 | L L Seto¢?(q,k) > (24)

Finally, we evaluate the computational complexity of the
proposed algorithm. Specifically, Algorithm 1 exhibits a
complexity of O(kmlogm), Algorithm 2 operates with a
complexity of O(kn|II(k)|), and Algorithm 3 has a con-
stant complexity of O(knlogn + kn|II(k)|). The remaining
operations in Algorithm 4 have complexity O(km + kn).
Consequently, the overall complexity of Algorithm 4 can be
expressed as O(kmlogm + knlogn + kn|II(k)|).
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Fig. 4: Tllustration of the evolving heterogeneous robot swarms exploring unknown environments.

IV. SIMULATION

The environment is modeled as a finite convex domain
Q, delineated by the boundary coordinates (0,0), (0,100),
(100, 100), and (100, 0) km. Within this domain, 12 spatially
distributed targets, each characterized by the Gaussian func-
tion defined in (10), are initially unexposed. The exploration
mission terminates once all targets have been successfully
identified. The sampling interval is 75 = 1 minute.

The configuration of the heterogeneous RSs is as follows:

1) Robot Swarm A: RS-A comprises m = 6 robots, each
equipped with a sensing radius of RdA = 12 km and a
maximum linear velocity of v» = 1.5 km/min. The sensing
capability of each robot is characterized by (4), while its
motion is governed by the control law also defined in (7),
with control gains set to x* = 0.7. The robots update their
position according to (1). RS-A is assigned to perform virtual
calibration, wherein the parameter o« = 0.3 in the virtual
information field ¢*(q, k).

2) Robot Swarm B: RS-B is composed of n = 8 robots,
each possessing a sensing radius of RdB = 8 km and a
maximum linear velocity of v® = 0.5 km/min. Their sensing
performance is modeled by (12) with parameters = 0.6 and
A = 0.015. The motion of each robot is dictated by the control
law given in (20), (21), (22), where the control gain is set to
kB = 0.5. Robot positions are updated following (1). RS-B
is further equipped with capability assessment functionality,
configured with 7; = 3, a; = 1, and d; = 1. RS-B undertakes
the real calibration of 12 distinct targets, each uniquely defined
by specific values of s;(k), 8;(k) and o;(k), all of which are
initially completely hidden.

Fig. 4 illustrates the exploration process of the heteroge-
neous RSs in this scenario. At k¥ = 0, the entire upper
background appears blue, indicating that the robots possess
no prior knowledge of the environment and that none of the
targets are exposed. As the RSs are dynamically deployed,
targets are progressively identified by RS-A, while RS-B
performs the coverage task at £ = 45. By k£ = 100, RS-
B has successfully detected all predefined targets, thereby
completing the mission. It is noteworthy, however, that owing
to the design of RS-A, its process does not terminate after all
the targets are discovered. Instead, RS-A continues exploratory
operations, thereby enabling rapid adaptation to newly emerg-
ing or dynamically changing targets without the need for RSs
reinitialization. This property renders the proposed strategy
well-suited for environments in which target characteristics or
locations evolve over time.

Subsequently, the proposed approach is evaluated against
several homogeneous search strategies, including random
search [25], spiral search [26], and gradient search [27], [28].
The experimental results (see Fig. 5) substantiate the broad
advantages of the proposed method across detection, coverage,
energy efficiency, and load balancing. Specifically, in RS-A,
the method attains a detection rate of approximately 32.5%
within a short time frame, outperforming all benchmarks that
require longer durations to reach lower steady-state levels. In
RS-B, it achieves a coverage rate of about 39.4%, exceeding
traditional search strategies by a substantial margin. By con-
trast, spiral search underperforms in all metrics; random and
gradient searches offer only limited coverage improvements.
Collectively, these findings provide evidence of the method’s
superiority in heterogeneous RSs exploration tasks.
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Fig. 5: Discovery rate and coverage rate comparison between pro-
posed method and baseline approaches.

V. CONCLUSION

This study proposes a distributed control framework for het-
erogeneous RSs, enabling two complementary RSs to achieve
dual calibration through complementary environmental obser-
vation strategies. Distinct environmental calibration criteria are
designed for each calibration task, integrated with coverage
control to ensure effective traversal and feature sampling
in complex environments. Cross-swarm cooperative protocols
are established to realize real-time information fusion and
task coordination between the two RSs at execution levels.
Simulation results validate the framework’s effectiveness in
producing environmental maps through the synergistic com-
bination of rapid surveillance and detailed investigation capa-
bilities. Future work should focus on extending the architec-
ture to incorporate online learning mechanisms, reinforcement
learning for dynamic role allocation, and federated learning
for distributed knowledge sharing. These algorithms could
enable optimization of agent collaboration strategies and task
prioritization based on environmental feedback, enhancing
exploration efficiency in terrains.
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