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Abstract— This paper investigates event-triggered consensus
tracking in nonlinear semi-strict-feedback multi-agent systems
(MASs) involving one leader and multiple followers. We first
employ radial basis function neural networks (RBFNNs) and
backstepping techniques to approximate the unknown nonlinear
dynamics, facilitating the design of dual observers to measure
the unknown states and disturbances. Then three adaptive
event-triggered control (ETC) schemes are proposed: fixed-
threshold, relative-threshold, and switched-threshold configu-
rations, each featuring specialized controller architectures and
triggering mechanisms. Through Lyapunov stability analy-
sis, we establish that the follower agents can asymptotically
track the reference trajectory of the leader, meanwhile, all
error signals remain uniform bounded. Our proposed control
strategies effectively prevent Zeno behaviors through stringent
exclusion criteria. Finally, an empirical case study is presented,
which demonstrates the competitive performance of our control
framework in terms of achieving consensus tracking and
optimizing the triggering efficiency.

Index Terms— Multiagent systems, consensus tracking, ob-
server design, event-triggered control, learning-based control

I. INTRODUCTION

For decades, both control and learning communities
have extensively investigted consensus tracking of nonlinear
MASs due to its wide applications such as power grids
[1], [2], intelligent transportation [3]–[5] and communication
systems [6], [7]. The primary objective is to ensure that
all units in the network operate ”unanimously” along a
desired trajectory and achieve consensus [8], [9]. However,
the presence of uncertain system parameters and external per-
turbations in real engineering scenarios poses considerable
challenges for consensus tracking, often rendering existing
methods fail to work. Consequently, developing strategies
that efficiently tackle the issues is vital.

In the conventional settings of the sample-data control
system, controllers continuously respond to changes in the
system, which often results in unnecessary resource usage,
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particularly when the network has restricted bandwidth. A
pivotal study [12] highlighted the benefits of ETC compared
to periodic impulse control in stochastic systems with noise,
resulting in its extensive use in both linear and nonlinear
systems. Recent advancements in controller design such as
[10]–[20] have further propelled the field of ETC.

The application of ETC to nonlinear systems has achieved
notable success in reducing trigger frequency and enhancing
control performance [10], [11]. This framework has since
been extended by introducing new triggering conditions. For
instance, [10] proposed a dynamic triggering condition that
alleviates the traditional periodic execution requirements in
closed-loop nonlinear systems. The work in [11] utilized the
current state of the plant to determine triggering time in-
stances without the requirement of periodicity. More recently,
event-triggered mechanisms have been extensively explored
within the context of MASs. Notably, [13] introduced a
capped-threshold ETC strategy which aims to achieve robust
consensus tracking in continuous nonlinear MASs amidst
attacks, and [15] employed a switching-based trigger strategy
for consensus tracking. Additionally, [18] analyzed three
ETC strategies in nonlinear uncertain systems, which did not
require input-to-state stability.

In light of these results, we propose an adaptive consensus
tracking framework for high-order MASs, which integrates
the backstepping method, filtering techniques, RBF NNs, and
observers. Our key contributions are summarized as follows:

• We employ RBF NNs with backstepping method to ap-
proximate the unknown transition functions of the MASs;

• We develop observers to monitor both unknown states
and unmeasured disturbances, which later enhance the
robustness of the controller against perturbations;

• We propose three ETC strategies: fixed-threshold, relative-
threshold, and switched-threshold, then highlight their per-
formance in terms of reduced control update frequency,
improved resource utilization, and extended controller
lifespan in the empirical study.

The rest of the paper is structured as follows. Section II
reviews preliminary knowledge of MAS, observer design and
graph theory, then formulates the key problem of the work.
Section III develops the fixed-relative-switched threshold
control strategies and analyzes the stability of the strategies.
Section IV presents simulation to validate the performance
of our method. Finally, Section V summarizes the work and
lists several future research directions.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. MAS Model

Imagine a group with a leader labeled 0 and N followers
labeled from 1 to N ., they communicate with each other in
a directed graph and form the MAS model [23] [24]:

ẋi,r = xi,r+1 + fi,r(x̄i,r) + ξi,r

ẋi,n = ui + fi,n(x̄i,n) + ξi,n

yi = xi,1 (1)

where i = 1, ..., N , j = 1, ..., n, r = 1, ..., n − 1, x̄i,j =
[xi,1, ..., xi,j ]

T are the state of the ith follower, while ui ∈ R
denotes its input of control. The output of the ith follower
is expressed as yi ∈ R. The function fi,j(x̄i,j) represents
C1 class nonlinear smooth equation vectors. ξi,j represents
unmeasured external perturbations affecting the system. No-
tably, the leader’s movement occurs independently without
being influenced by the actions or positions of the followers.

B. Observer Design

To effectively locate the unknown states and perturbations
throughout the entire control system, we introduce a series
of observers. By precisely analyzing and processing feed-
back data, these observers accurately identify and estimate
unknown variables within the system, enhancing the overall
robustness and stability. The state observer is defined as

˙̄̂xi,n = (Pi ⊗ Im) ˙̄̂xi,n + (Qi ⊗ yi) +

n∑
l=1

(Ri,l ⊗ f̂i,l(
˙̄̂xi,l))

+ (Ui ⊗ ui) + ϖ̂i

yi = (V T
i ⊗ Im)ˆ̄xn (2)

where ⊗ represents the Kronecker product, and ˆ̄xi,l =

[x̂Ti,1, . . . , x̂
T
i,l]

T represents the estimated value of the actual
state with l = 1, ..., n. The vector Qi = [qi,1, ..., qi,n]

T is
such that the matrix Pi is a strictly Hurwitz. The parameters
are defined as follows: Ri,l = [0, . . . , 1, . . . , 0]Tn×1 where the
l-th element is 1, Ui = [0, ..., 0, 1]Tn×1, Vi = [1, 0, ..., 0]Tn×1

and Pi = [−Qi, Ri,1, . . . , Ri,n−1].
We denote by ψi = [(xi,1 − x̂i,1)

T , ..., (xi,n − x̂i,n)
T ]T

the error of state observation and have that

ψ̇i = (Pi ⊗ Im)ψi + ϖ̃i +

n∑
l=1

Si,l ⊗ (fi,l(xi,l)− f̂i,l(x̂i,l))

(3)

We also denote the error of function approximation by

φi(t) =
n∑

l=1

Ri,l ⊗ (fi,l (x̄i,l)− f̂i,l(ˆ̄xi,l)) and write φi(t) =[
φT
i,1(t), ..., φ

T
i,n(t)

]T
. Suppose that φi(t) is bounded, thus

there exists an unspecified parameter φ0
i > 0 such that the

inequality ∥φi(t)∥ ≤ φ0
i holds. Using RBF NNs to approx-

imate the unidentified nonlinear function of the MASs (1),
an optimal weight vector W ∗

i,l is derived as:

fi,l(x̄i,l) =W ∗T
i,l Ei,l

(
ˆ̄xi,l

)
+ σi,l(t) (4)

where σi,l(t) represents the bounded approximation error,
i.e., there is a parameter σ0,l > 0 such that |σi,l(t)| ≤ σ0,l.

Let ŴT
i,l be the estimation of W ∗T

i,l , then the estimated
smooth nonlinear function is f̂i,l = ŴT

i,lEi,l. The optimal
weight W ∗

i,l for l = 1, . . . , n is designed as:

W ∗
i,l = arg min

Ŵi,l∈
⌣
Ω

sup
x̄i,l∈Ωi,l

ˆ̄xi,l∈Ω̂i,l

∣∣∣f̂i,l − f
∣∣∣ (5)

where Ωi,l, Ω̂i,l and
⌣

Ω represent compact sets corresponding
to x̄i,l, ˆ̄xi,l, Êi,l.

The state observers is then revised as: ∀1 ≤ r < n

˙̂xi,r = x̂i,r+1 + ŴT
i,rEi,r

(
ˆ̄xi,r

)
+ qi,rψi,1 + ϖ̂i,r

˙̂xi,n = ui + ŴT
i,nEi,n

(
ˆ̄xi,n

)
+ qi,nψi,1 + ϖ̂i,n (6)

Next, we define the estimate of unknown external pertur-
bations as ϖ̂i = [ϖ̂T

i,1, ..., ϖ̂
T
i,n]

T . To facilitate consensus
control, we incorporate an auxiliary variable τi,l = ϖi,l −
κi,lxi,l ,where κi,l is a designed positive parameter.

Given the above concepts, the perturbation observer is:

ϖ̂i,l = τ̂i,l + κi,lx̂i,l
˙̂τ i,l = −κi,l(ŴT

i,lEi,l(ˆ̄xi,l) + τ̂i,l + κi,lx̂i,l + x̂i,l+1) (7)

where xi,n+1 = ui and Ŵi,l is the estimation of W ∗
i,l.

C. Directed Graph

Given MASs with N followers and a single leader, the
interactions among agents are represented by a directed graph
G = (V, E), where V = {1, ..., N} represents the set of
nodes, E ⊆ V × V represents the edges, and (Vi,Vj) ∈ E
indicates that agent j can receive information from agent i.
The matrix A = [ai,j ] of G is specified as:

ai,j =

{
0, if (Vi,Vj) /∈ E
1, if (Vi,Vj) ∈ E

(8)

We define the Laplacian matrix L as L = D −A, where
D = diag(d1, ..., dN ) is the in-degree matrix of graph G,
di =

∑N
j=1,j ̸=i aij . To elucidate, the diagonal matrix B =

diag (C1, ..., CN ) is defined such that if the leader can relay
information to agent i, then the condition Ci > 0. If not,
Ci = 0 holds.

D. Problem Formulation

Fig. 1. Schematic representation of the control framework.

Fig. 1 illustrates our framework of adaptive event-triggered
consensus tracking control. The following lemmas and as-
sumptions are necessary to facilitate the later discussions.
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Lemma 1 (from [21]). For any positive definite matrix Hi =
HT

i > 0, with a symmetric positive matrix Fi and a strict
Hurwitz matrix Pi, it satisfies PT

i Fi + FiPi = −2Hi.

Lemma 2 (from [22]). Inequality 0 ≤ |χ| − χ tanh( χ
χ0

) ≤
0.2785χ0 holds for any parameter χ ∈ R and χ0 > 0.

Assumption 1 (from [15], [23], [26]). The unmeasured
external perturbations are all bounded, i.e., inequality
∥ϖi,j∥ ≤ ϖ0

i,j holds, where ϖ0
i,j is a positive parameter.

Assumption 2 (from [24]). In the MAS, the leader’s target
reference signal is not only smooth but also measurable, with
both yr(t) and ẏr(t) being bounded.

Problem 1 (Consensus tracking of MASs). Given a class
of nonlinear MASs following equation (1), suppose that the
communication of agents is modeled by a directed graph G,
each follower is subject to unknown external perturbations
ξ and required to track the leader’s reference signal yr, then
our goals are two-fold: (i) design an adaptive control law to
ensure that the tracking errors are uniformly bounded; (ii)
evaluate the performance of different event-triggered thresh-
old control strategies in terms of control update frequency,
resources conservation and controller’s lifespan.

III. EVENT-TRIGGERED CONTROLLER DESIGN

This section is initiated by the general procedure of
controller design for Problem 1. First, the graph-based errors
zi,r and boundary layer errors ei,r for the i-th follower are:

zi,1 =

N∑
j=1

ai,j(yi − yj) + bi(yi − yr)

zi,r = xi,r − ᾱi,r

ei,r = ᾱi,r − αi,r (9)

where r = 2, ..., n. The terms αi,r and ᾱi,r respectively
denote the virtual control and its filtered counterpart.
Step 1: The Lyapunov function is determined as

Vi,1 =
z2i,1
2

+
τ̃2i,1
2

+
1

2ηi,1
W̃T

i,1W̃i,1 +
1

2oi
Θ̃2

i + V0

V0 =
1

2
ψT
i (Fi ⊗ Im)ψi (10)

where ψi = [ψT
i,1, ..., ψ

T
i,n]

T , ηi,1 > 0 and oi > 0 define
designed parameters. Then, define an auxiliary function as

Z̄i,1 (Ti,1) =−
N∑
j=1

ai,j (x̂j,2 + fj,1 (x̄j,1) +ϖj,1 + ψj,2)

+ (di + bi) (fi,1 (x̄i,1) +ϖi,1 + ψi,2)− biẏr.
(11)

Z̄i,1 is approximated by RBF NNs: Z̄i,1 = K∗T
i,1Ei,1+δi,1,

where δ̄i,1 defines an unknown positive parameter, Ti,1 =

[yr, ẏr, x̂
T
i,1, x̂

T
j,1, ϖ̂

T
i,1, ϖ̂

T
j,1]

T denotes the input of RBF NNs
and K∗T

i,1 is the optimal weight, just like the W ∗T
i,1 in (4)(5),

with |δi,1 (Ti,1)| ≤ δ̄i,1.

Utilizing Young’s inequality, with a positive designed
parameter ci,1, the subsequent inequality can be derived:

zi,1Z̄i,1 ≤ Θ∗
i

2c2i,1
z2i,1E

T
i,1Ei,1 +

c2i,1
2

+
z2i,1
2

+
δ̄2i,1
2

(12)

By Young’s inequality and Assumption 1, one has

ψT
i (Fi ⊗ Im)φi ≤

1

2
∥Fi ⊗ Im∥2

∥∥φ0
i

∥∥2 + 1

2
∥ψi∥2 (13)

ψT
i (Fi ⊗ Im) ϖ̃i ≤

1

2
∥Fi ⊗ Im∥2

∥∥ϖ̃0
i

∥∥2 + 1

2
∥ψi∥2 (14)

The virtual and adaptive control laws are formulated as

αi,2 =
1

di + bi
(ri,1zi,1 −

zi,1
2

− Θ̂i

2c2i,1
zi,1E

T
i,1Ei,1) (15)

˙̂
W i,1 =− hi,1Ŵi,1 − ηi,1τ̃i,1κi,1Ei,1

(
ˆ̄xi,1

)
(16)

where hi,1 and ri,1 are designed parameters. Then, consid-
ering Lemma 1 and the above formulas, one has

V̇i,1 ≤ri,1z2i,1 + (di + bi) zi,1 (zi,2 + ei,2) + τ̃i,1ϖ̇i,1

+ (
3− 2κi,1

2
)τ̃2i,1 + ιi,1 +

hi,1
ηi,1

W̃T
i,1Ŵi,1

+ Θ̃i(
1

2c2i,1
z2i,1E

T
i,1Ei,1 −

˙̂
Θi

oi
)

− ψT
i (Hi ⊗ Im)ψi + (1 + κ2i,1 + κ4i,1)∥ψi∥2 (17)

where ιi,1 =
c2i,1
2 +

δ̄2i,1
2 +

κ2
i,1σ

2
0,1

2 + 1
2

∥∥φ0
i

∥∥2∥Fi ⊗ Im∥2 +
1
2

∥∥ϖ̃0
i

∥∥2∥Fi ⊗ Im∥2. Then, with a small positive designed
parameter mi,2, process αi,2 through the first-order low-pass
filter, resulting in ᾱi,2 as follows:

ᾱi,2 (0) = αi,2 (0)

mi,2 ˙̄αi,2 + ᾱi,2 = αi,2 (18)

Step r: Choose the Lyapunov function as

Vi,r =
z2i,r
2

+
τ̃2i,r
2

+
1

2ηi,r
W̃T

i,rW̃i,r (19)

where ηi,r > 0 is a parameter. By utilizing RBF NNs,
one has Z̄i,r = K∗T

i,rEi,r (Ti,r) + δi,r, where δ̄i,r > 0 is
an unknown parameter, with |δi,r(Ti,r)| ≤ δ̄i,r, the control
strategy and adaptive parameters are formulated as follows:

αi,r+1 =ri,rzi,r −
zi,r
2

+
αi,r − ᾱi,r

mi,r
− qi,rψi,1

− Θ̂i

2c2i,r
zi,rE

T
i,rEi,r (20)

˙̂
W i,r =− hi,rŴi,r − ηi,r τ̃i,rκi,rEi,r

(
ˆ̄xi,r

)
(21)

where Ti,r = [yr, Θ̂i, ˆ̄x
T
i,r, ˆ̄x

T
j,r, ϖ̂

T
i,r, ϖ̂

T
j,r]

T
, ri,r and hi,r are

designed parameters. By the Young’s inequality, one gets

V̇i,r ≤ri,rz2i,r +
(
κ2i,r + κ4i,r

)
∥ψi∥

2
+ zi,r (zi,r+1 + ei,r+1)

+
hi,r
ηi,r

W̃T
i,rŴi,r + (

3− 2κi,r
2

)τ̃2i,r + τ̃i,rϖ̇i,r

+
Θ̃i

2c2i,r
z2i,rE

T
i,rEi,r + ιi,r (22)
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where ιi,r =
c2i,r
2 +

δ̄2i,r
2 +

κ2
i,rσ

2
0,r

2 and ci,r0 > 0. In line with
Step 1, the filter is implemented as:

ᾱi,r+1 (0) = αi,r+1 (0)

mi,r+1 ˙̄αi,r+1 + ᾱi,r+1 = αi,r+1 (23)

where mi,r+1 denotes a slight positive designed parameter.
Step n: Define the Lyapunov function as

Vi,n =
z2i,n
2

+
τ̃2i,n
2

+
1

2ηi,n
W̃T

i,nW̃i,n (24)

where ηi,n denotes a designed positive parameter. By RBF
NNs, one has Z̄i,n = K∗T

i,nEi,n+δi,n, where δ̄i,n denotes an
unknown positive parameter, with |δi,n (Ti,n)| ≤ δ̄i,n. With
designed parameters ri,n, hi,n, λi, the control strategy and
adaptive parameters are formulated as follows:

αi,n+1 =ri,nzi,n − zi,n
2

+
αi,n − ᾱi,n

mi,n
− qi,nψi,1

− Θ̂i

2c2i,n
zi,nE

T
i,nEi,n (25)

˙̂
W i,n =− hi,nŴi,n − ηi,nτ̃i,nκi,nEi,n

(
ˆ̄xi,n

)
(26)

˙̂
Θi =− λiΘ̂i +

n∑
k=1

oi
2c2i,k

z2i,kE
T
i,kEi,k (27)

We now develop three ETC strategies that provably ensure
consensus tracking for the MASs. Theoretical analysis is also
provided for their convergence.

A. Fixed-threshold strategy

The ETC controller is reformulated as

wi (t) = αi,n+1 − π̄i tanh(
zi,nπ̄i
µi

) (28)

where the triggering condition is designed as

ui (t) =wi (ts) , ∀t ∈ [ts, ts+1) (29)
ts+1 = inf {t ∈ R||ϑi (t) | ≥ πi} , t1 = 0 (30)

where ϑi(t) = wi(t)− ui(t) is the controller error and ts is
the controller’s triggering time with s ∈ Z. The parameters
π̄i, πi and µi are designed to be positive with π̄ > πi.
The control signal ui (ts+1) is applied to the system when
condition (30) is activated. During the interval t ∈ [ts, ts+1),
i.e. |wi (t)− ui (t)| < πi, the controller maintains a constant
value of wi (ts). For a function ϵi(t) that continuously
changes over time and satisfies ϵi (ts) = 0 and ϵi (ts+1) =
±1 with |ϵi (t)| ≤ 1, it follows that wi (t) = ui (t)+ϵi (t)πi.
By Lemma 2, −ϵi(t)πizi,n−π̄izi,n tanh( zi,nπ̄i

µi
) ≤ 0.2875µi

holds, then we differentiate Vi,n by the Young’s inequality

and (25)-(27), with ιi,n =
c2i,n
2 +

δ̄2i,n
2 +

κ2
i,nσ

2
0,n

2 + 0.2785µi

and a positive parameter ci,n, and get the result below:

V̇i,n ≤ri,nz2i,n + (
3− 2κi,n

2
)τ̃2i,n + τ̃i,nϖ̇i,n

+
Θ̃i

2c2i,n
z2i,nE

T
i,nEi,n + ιi,n

+
hi,n
ηi,n

W̃T
i,nŴi,n +

(
κ2i,n + κ4i,n

)
∥ψi∥

2
(31)

B. Relative-threshold strategy

Within the fixed-threshold strategy, the threshold πi is a
constant value, irrespective of the control signal’s intensity.
However, it is preferable to set a variable threshold for
the triggering condition to achieve system stabilization [25].
Notably, when the control signal ui is huge, a greater error
is tolerated, allowing for longer update intervals. Conversely,
when ui approaches 0, the system states stabilize towards
equilibrium and a smaller threshold enables more accurate
control, improving the overall performance. Then, we pro-
pose the ETC controller:

wi (t) =− (1 + ∆i)(αi,n+1tanh(
zi,nαi,n+1

µi
)

+ π̄∗
i tanh(

zi,nπ̄
∗
i

µi
)) (32)

The triggering condition is designed as
ui (t) =wi (ts) , ∀t ∈ [ts, ts+1) (33)
ts+1 = inf {t ∈ R||ϑi (t) | ≥ ∆i|ui(t)|+ π∗

i } (34)

where ts represents the time when the controller is updated,
s ∈ Z, µi, ∆i, 0 < ∆i < 1, π∗

i > 0, and π̄∗
i > π∗

i /(1−∆i)
are all positive designed parameters. From (34), we have
wi(t) = (1+ρ1,i(t))ui(t)+ρ2,i(t)π

∗
i in the interval [ts, ts+1],

where ρ1,i(t) and ρ2,i(t) denote time-varying parameters
satisfying |ρ1,i(t)| ≤ 1 and |ρ2,i(t)| ≤ 1. Thus, one has

ui(t) =
wi(t)

1 + ρ1,i(t)∆i
− ρ2,i(t)π

∗
i

1 + ρ1,i(t)∆i
(35)

According to the above analysis, similar to (31), it can
be obtained the same derivative result of V̇i,n with different

ιi,n, where ιi,n =
c2i,n
2 +

δ̄2i,n
2 +

κ2
i,nσ

2
0,n

2 + 0.557µi.

C. Switched-threshold strategy

We now introduce a switched-threshold strategy. The
relative-threshold approach adjusts the threshold based on
the control signal’s magnitude, allowing for longer update
intervals when the signal is huge and more precise control as
the signal nears zero, thus improving performance. However,
a very large control signal can lead to significant measure-
ment errors and abrupt changes during updates. In contrast,
the fixed-threshold strategy maintains a consistent upper limit
on measurement errors, regardless of signal size. Then we
propose the control strategy whose switching gate G and the
triggering condition are designed below:

ui (t) = wi (ts) , ∀t ∈ [ts, ts+1) (36)

ts+1 =

{
inf {t ∈ R||ϑi (t) | ≥ ∆i|ui(t)|+ π∗

i } , |ui| ≥ G

inf {t ∈ R||ϑi (t) | ≥ πi} , |ui| < G
(37)

With t ∈ [ts, ts+1), we get
ϑ̄i = sup|ϑi(t)| ≤ max{(∆i|ui(t)|+ π∗

i ), πi} (38)

Since the switched-threshold strategy employs an identical
control law for both the fixed-threshold and relative-threshold
strategies, the ultimate bounds for tracking and stabilization
errors remain consistent with those of the above two.
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In summary, we have established an adaptive consen-
sus tracking control framework which integrates state-
disturbance observer design, learning based dynamics ap-
proximation, backstepping method and three ETC strategies.
Finally, we prove that all error signals are bounded by
employing Lyapunov stability theory. In addition, we also
confirm the soundness of the proposed control strategies that
effectively avoid Zeno behaviors.

Theorem 1. For the MASs in equation (1) under the event-
triggered controllers in equation (28)(32), if the initial con-
dition satisfies V (0) ≤ Ω, the error signals zi,r, c̃i,r, W̃i,r,
Θ̃i, ei,r, and ψi,r are all uniformly bounded. Furthermore,
the consensus tracking errors between the outputs of the
followers and the leader’s trajectory can be constrained
within a predefined range.

Proof. With i = 1, ..., N , define the overall Lyapunov
function of the MASs (1) as

V =
N∑
i=1

n∑
r=1

Vi,r +

N∑
i=1

n−1∑
r=1

e2i,r+1

2
(39)

Define the parameters ri,1, ri,2, ri,r and ri,n as ri,1 =
− (di + bi)+ r

∗
i,1, ri,2 = −di+bi

2 −1+ r∗i,2, ri,r = − 3
2 + r

∗
i,r

and ri,n = − 1
2 + r∗i,n with r = 3, ..., n − 1. Based on the

Young’s inequality, while ∥ϖ̇i,r∥ ≤ κ∗i,r ∥τ̃i,r∥, one has

V̇ ≤
N∑
i=1

{
n∑

r=1

r∗i,rz
2
i,r +

n−1∑
r=2

e2i,r+1

2
+
di + bi

2
e2i,2

+

n−1∑
r=1

ei,r+1ėi,r+1 + 2

n∑
r=1

κ∗i,r τ̃
2
i,r +

λi
2oi

(Θ∗
i
2 − Θ̃2

i )

+

n∑
r=1

hi,r
2ηi,r

(W *T
i,rW

*
i,r − W̃T

i,rW̃i,r) +

n∑
r=1

ιi,r

− ψT
i ((Hi − (1 +

n∑
r=1

(κ2i,r + κ4i,r))In)⊗ Im)ψi

}
(40)

where κ∗i,r = (3 − 2κi,r)/2, r∗i,r and κ∗i,r are unknown pa-
rameters for stability analysis, with r = 1, ..., n. And ℏ(•) is
the eigenvalue of the given matrix. Select the matrix Hi such

that ℏmin[Hi − (1 +
n∑

r=1
(κ2i,r + κ4i,r))In] = ℘i/2ℏmax(Fi),

where ℘i is a positive parameter. Differentiate ei,2 and
ei,r+1 with respect to time, one has ėi,2 = − ei,2

mi,2
+ Γi,2,

ėi,r+1 = − ei,r+1

mi,r+1
+ Γi,r+1, where Γi,2 = − ri,1żi,1

di+bi
+

Θ̂i

2c2i,1(di+bi)
żi,1E

T
i,1Ei,1 +

żi,1
2(di+bi)

+ Θ̂i

c2i,1(di+bi)
zi,1E

T
i,1Ėi,1

and Γi,r+1 =
ėi,r
mi,r

+ qi,rψ̇i,1 +
Θ̂i

2c2i,r
żi,rE

T
i,rEi,r − ri,r żi,r +

żi,r
2 + Θ̂i

c2i,r
zi,rE

T
i,rĖi,r. Inspired by [24], we have

Mi,r =

{
N∑
i=1

n∑
r=1

(z2i,r + τ̃2i,r +
1

ηi,r
W̃T

i,rW̃i,r) +

N∑
i=1

1

oi
Θ̃2

i

+

N∑
i=1

ψT
i (Fi ⊗ Im)ψi +

N∑
i=1

n−1∑
r=1

e2i,r+1 ≤ 2Ω

}
(41)

where Mi,r is compact in Rdim(Ci,r), there exists an in-
equality ∥Γi,r+1∥ ≤ Li,r+1, where Li,r+1 denotes a positive
parameter. Applying the Young’s inequality, one can get
Γi,r+1ei,r+1 ≤ Ξ

2 +
L2

i,r+1e
2
i,r+1

2Ξ , where Ξ is a positive
parameter, with r = 1, ..., n − 1. Select the parameters as

1
mi,2

= di+bi
2 +

L2
i,2

2Ξ +m∗
i,2 and 1

mi,r+1
= 1

2+
L2

i,r+1

2Ξ +m∗
i,r+1,

where m∗
i,r+1 denotes an unknown positive parameter, with

r = 2, ..., n− 1. With l = 2, ..., n and r = 1, ..., n, define

β =min
{
−2r∗i,r, -4κ∗i,r, 2m∗

i,l, hi,r, ℘i, λi
}

(42)

γ =

N∑
i=1

n∑
r=1

(ιi,r +
hi,r
2ηi,r

W *T
i,rW

*
i,r) +

N∑
i=1

(

n−1∑
r=1

Ξ

2
+

λi
2oi

(Θ∗
i )

2
)

(43)

To confirm the stability of the MASs, it is crucial to
appropriately select parameter values while adhering to the
following conditions: −r∗i,r > 0, − κ∗i,r > 0, hi,r >
0, ℘i > 0, λi > 0 and m∗

i,l > 0. Then, we have

V̇ ≤ −βV + γ (44)

When set β > γ/∆, we get V̇ < 0 on V = ∆. Further,
if at time t = 0 the condition V ≤ ∆ holds, it follows
that V ≤ ∆ for entire t > 0. This demonstrates that the
error signals zi,r, ei,r, τ̃i,r, W̃i,r, Θ̃i and ψi,r are uniformly
bounded. It is straightforward to derive the following:

1

2
∥Υ1∥2 ≤ V (t) ≤ e−βtV (0) +

γ

β

(
1− e−βt

)
(45)

where Υ =
[
ΥT

1 ,Υ
T
2 , . . . ,Υ

T
M

]T
. Then, we have ∥Υ∥2 ≤

2e−βtV (0) + 2γ
β

(
1− e−βt

)
.

Consequently, as time progresses, all consensus tracking
errors will converge to a compact set defined as ℑ =
{Υ1| ∥Υ1∥ ≤

√
2γ/β}. This means that the tracking errors

can be modified and reduced to an arbitrarily small range by
increasing the parameter β. From (30), one has

α̇i (t) = ẇi,n+1 −
π̄iżi,n

cosh2
(

zi,nπ̄i

µi

) (46)

According to [27]–[29], one gets

d

dt
|ϑi (t)| = sign (ϑi (t)) ϑ̇i (t) ≤ |ẇi (t)| (47)

Based on the stability analysis, it is imperative that there
exists a positive parameter Π such that |ẇi(t)| ≤ Π . Based
on (29)(30), we have ϑi(ts) = 0 and limt→ts+1

ϑi(t) = πi.

Additionally, for the time interval t ∈ [ts, ts+1), the lower
bound for the inter-execution time is given by t∗ ≥ πi/Π .
Following the same analysis in the proof of fixed-threshold
strategy, according to (33)(34), the relative-threshold and
switched-threshold strategy satisfy t∗ ≥ (∆i|ui(t)|+ π∗

i )/Π
and t∗ ≥ max{πi, π∗

i }/Π , respectively. Consequently, the
Zeno behavior is proficiently avoided.

903



IV. ILLUSTRATIVE EXAMPLE

In this section, we provide an simulation to demonstrate
the validity and effectiveness of our theoretical approach.
The MASs being examined consist of one leader and four
followers, with each agent’s dynamics characterized by:

ẋi,1 = xi,2 + fi,1 (x̄i,1) + ξi,1

ẋi,2 = ui + fi,2 (x̄i,2) + ξi,2

yi(t) = xi,1 (48)

where fi,1 (x̄i,1) = 0.8xi,1e
−1.4x2

i,2 , fi,2 (x̄i,2) =
−0.5x2i,1 cos (xi,2), ξi,1 = 0.8xi,1 sin (xi,2) cos

2 (t) and
ξi,2 = 0.2xi,2 cos (xi,1) cos

2 (t), i = 1, ..., 4. The leader’s
trajectory signal is defined as yr = −0.5 sin(4t) cos(2t).

The communication topology is shown in Fig. 1. The
connection matrix linking the leader to the followers is
represented as B = diag(0, 1, 0, 0). And the matrix A and
L are given as:

A =


0 1 0 0
0 0 0 0
0 1 0 0
1 0 0 0

 , L =


1 −1 0 0
0 0 0 0
0 −1 1 0
−1 0 0 1


The starting conditions for the four followers and their

associated state observers are determined as follows:

x̄1,2(0) = [0.2, 0]
T ˆ̄x1,2(0) = [0.3, 1.7]T

x̄2,2(0) = [−0.2, 0]T ˆ̄x2,2(0) = [−0.5, 1.7]T

x̄3,2(0) = [0.1, 0]T ˆ̄x3,2(0) = [0, -4]T

x̄4,2(0) = [−0.3, 0]T ˆ̄x4,2(0) = [0, -4]T

The designed parameters are: for fix-threshold strategy,
πi = 2.5, π̄i = 4, µi = 5.4, for relative-threshold strategy,
π∗
i = 2, π̄∗

i = 4, ∆i = 0.245, for switched-threshold strategy
G = 6, for the first order low pass filter, mi = 0.005, for
other parameters, hi,1 = hi,2 = 50, ri,1 = ri,2 = −100,
ci,1 = ci,2 = 100, ηi,1 = ηi,2 = 0.01, qi,1 = 350, qi,2 = 0.5,
λi = 120 and oi = 25.
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Fig. 2. Consensus tracking performance.

In Fig. 2, shortly after the process begins, all followers
within the system consistently follow the leader, successfully
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Fig. 3. Trajectories of tracking errors zi,1(i = 1, 2, 3, 4.)

achieving adaptive consensus tracking. Fig. 3 demonstrates
that the tracking error has reached zero. The total triggering
number for the sample-data strategy is 5,000 times, and
the triggering numbers for the three threshold strategies are
detailed in Table I. Fig. 4 illustrates the range of events
activated by each of the three strategies. The data reveal that
the fixed-threshold strategy results in the greatest number of
activations. Conversely, the relative-threshold strategy pro-
duces the fewest activations, whereas the switched-threshold
strategy falls in between, the number of triggers falls and
both types play an indispensable role in this strategy.

TABLE I
COMPARISON OF THREE EVENT-TRIGGERED STRATEGIES.

Fixed-threshold Switch-threshold Relative-threshold

Follower 1 364 344(255 + 89) 310
Follower 2 296 281(220 + 61) 277
Follower 3 358 342(255 + 87) 308
Follower 4 453 420(306 + 114) 380

V. CONCLUSION

This study introduces an observer-based control frame-
work to tackle the consensus tracking issue in nonlinear
MASs. RBF NNs are utilized to model the unidentified
dynamics, which is then leveraged to build observers to
measure unidentified system states and external perturba-
tions. Then we present three ETC strategies and analyze
their stability using Lyapunov methods. Our approach suc-
cessfully mitigates complexity issues through the integration
of a filtering mechanism at each design stage. Simula-
tion results demonstrate that the fixed-threshold strategy
enhances system performance and minimizes the number of
triggering instances. Meanwhile, the relative-threshold strat-
egy further optimizes resource conservation. The switched-
threshold strategy achieves a commendable balance between
performance improvement and resource utilization. In our
forthcoming research, we intend to broaden the existing
framework to tackle optimal control issues associated with
stochastic nonlinear MASs.
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