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Distributed Resilient Consensus and Demand Tracking in Battery
Energy Storage Systems under Adversarial Attacks

Shiheng Zhang and Yiding Ji*

Abstract— Battery Energy Storage Systems (BESS) are crit-
ical in balancing power supply and demand by dynamically
adjusting charging and discharging power. However, their
deployment in public networks renders them vulnerable to
adversarial attacks, which can disrupt system coordination and
potentially lead to failures. In order to resolve these challenges,
this work develops a resilient consensus method that inte-
grates the Mean Subsequence Reduced with demand tracking,
structured within a leader-follower control framework. The
proposed algorithm guarantees that all non-adversarial agents
achieve resilient state-of-charge (SoC) consensus and equitable
power distribution, even under malicious battery storage unit
conditions. Additionally, we introduce an error tracking factor
for leader agents to facilitate accurate demand tracking by
the BESS. We establish convergence conditions, demonstrating
that the system converges to a final value determined by the
communication graph, initial values, and BESS parameters. The
performance of our approach is validated by a simulation under
adversarial conditions, confirming its robustness and reliability.

Index Terms—resilient consensus, distributed control, de-
mand tracking, adversarial attacks, energy storage systems

I. INTRODUCTION

Renewable energy, such as wind, solar, and hydropower,
has seen remarkable growth in power generation recently.
However, these sources often suffer from significant uncer-
tainty and intermittency due to varying seasonal and climatic
conditions, causing imbalances between power supply and
demand. Incorporating demand-side resources into power
system regulation has emerged as a viable strategy to tackle
the issue, leveraging the vast diverse entities operating at low
voltage levels [1]. Specifically, BESS, composed of multiple
Battery Storage Units (BSUs), plays a critical role in main-
taining power balance [2]. BSUs, equipped with bidirectional
charging and discharging capabilities, enable dynamic power
regulation by absorbing surplus energy during low-demand
periods and supplying it when demand peaks. This allows
BESS to actively contribute to addressing power regulation
and tracking energy demand problems.

Despite the advantages of BESS, the geographic dispersion
of BSUs and their ownership by various stakeholders pose
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challenges to centralized control, particularly in large-scale
networks. In this context, distributed control within Multi-
Agent Systems (MASs) offers a promising solution that
achieves low communication overhead and high scalability
[3]-[10]. BESS can be modeled as an MAS, with each
BSU functioning as an independent agent. These agents
communicate local information and make decisions based on
localized computations, enabling the execution of complex
tasks that individual BSUs cannot accomplish alone. This
distributed approach is increasingly adopted in demand re-
sponse scenarios [11]-[13], particularly for coordinating the
State of Charge (SoC) among BSUs [14]-[16]. Effective SoC
coordination is essential for achieving consensus in charg-
ing and discharging operations, thus preventing overheating
from overcharging and extending battery lifespan. Moreover,
synchronized disconnection from the power system enhances
overall capacity utilization [17]. The main objectives of this
coordination process are: (1) achieving SoC consensus; (2)
proportionally distributing charging and discharging power.

While existing SoC control methods offer valuable so-
lutions, they usually assume a fully reliable system and
do not account for potential adversarial attacks [18]-[20].
Since BSUs are often deployed in public networks, they
are vulnerable to failures and malicious interventions. In
such scenarios, some BSUs may operate in an adversarial
setting and disseminate deceptive information to neighboring
units, compromising system integrity [21]. To mitigate the
risks posed by adversarial threats, resilient consensus has
gained considerable research interest [22]-[26]. Notably,
authors of [27] introduced a resilient algorithm from the
MSR method, which reduces the impact of malicious nodes
by employing median estimates under robust network con-
ditions. Work [28] extended this approach by integrating
optimization techniques, providing explicit formulations for
convex combinations of local optimal points, and establishing
the existence of a transition matrix. However, the final state
in these approaches is stochastic in nature, which complicates
the issue of precise demand tracking.

In light of the concerns mentioned above, this paper pro-
poses a leader-follower control framework aimed at accurate
demand tracking for SoC consensus, and proportionally dis-
tributing charging power in the presence of malicious BSUs.
Compared to conventional SoC coordination methods [14]—
[16], we introduce an error tracking factor for leader BSUs,
enabling accurate tracking of power demand. In contrast to
existing resilient consensus methods [21], [27], [28], our
strategy guarantees convergence within a leader-follower
control framework. Furthermore, unlike existing methods



that often rely on centralized control schemes, our approach
is fully distributed and robust to adversarial conditions.
The technical contributions of our work are outlined
as: (1) The development of a distributed leader-follower
control framework for BESSs, which ensures exponential
consensus convergence in the presence of malicious nodes.
(2) A distributed compensation mechanism is designed to
achieve accurate demand tracking without requiring global
information exchange. (3) A rigorous theoretical analysis
is provided to establish provable convergence and stability,
using the properties of the network topology and initial
conditions through a backward matrix product framework.
The remainder of our work is organized below. In section
II, the notations, leader-follower control framework, com-
munication network and problem settings are introduced.
Section III details the control method that addresses the
resilient consensus problem. Section IV confirms the the
convergence of our method. Section V validates the proposed
method through numerical simulations. Finally, Section VI
concludes the paper and proposes future research directions.

II. PRELIMINARY KNOWLEDGE AND PROBLEM
FORMULATION

Let R, Z, Z~( and Zx>( represent the set of real num-
bers, integers, positive integers and non-negative integers,
respectively. Additionaly, |-| and ||-|| denote the 1-norm and
2-norm, respectively, and (-,-) represents the inner product.
The notation |7 | indicates the cardinality of the set 7, while
T1 U Tz and 71\ 72 denote the union and difference of two
sets, respectively. The (7, j)-th element of the matrix A is
denoted by A;;. Then A € R™*™ is termed row stochastic
if vi,j € {1,...,n}, A;; > 0 and A1,, = 1,,. For a vector
E € R™ ! its i-th component is denoted by E;. And FE is
called stochastic if Vi € {1,...,n}, B; >0 and ET1 = 1.

In a Battery Energy Storage System (BESS), Battery
Storage Units, namely BSUs, are divided into three distinct
categories: normal BSUs, leader BSUs, and malicious BSUs.
Normal BSUs transmit and receive information through the
communication network, meanwhile, adhere to the desig-
nated control law. Leader BSUs receive regulatory demand
signals P* € R from the aggregator and are assumed to be
immune to attacks. In contrast, malicious BSUs exhibit two
problematic behaviors: (i) transmitting arbitrary information
to neighboring units and (ii) arbitrarily updating their states
regardless of the prescribed rules. The control framework
for demand response of BESS comprises a physical and a
communication layer, as depicted in Fig. 1.

The aggregator disseminates control information to the
leader BSUs on receiving a demand signal from the power
system in the communication layer. Subsequently, the BSUs
exchange local state and iteratively adjust their charg-
ing/discharging power following the proposed distributed
algorithm until balance is achieved. The physical layer es-
tablishes a connection between the BSUs and the power grid
via a microgrid, which charges when the demand P* > 0
and discharges when P* < 0.
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Fig. 1. Leader-Follower Control Scheme for Demand Tracking of BESS.

Remark 1. Power systems are equipped with protective
measures to isolate malicious BSUs by disconnecting af-
fected loads at the physical layer upon detecting adversarial
attacks. However, such measures cannot be implemented at
the communication layer, thus it is still necessary to design
algorithms to address these challenges within that layer.

For a BESS with n BSUs, the communication network
is modeled by a directed graph G = (V,&). Set V =
(1,2,...,n) corresponds to the BSUs, and set £ C V x V
represents the directed edges between BSUs. (j,i) is an
incoming edge of i, which denotes that BSU j transmits
information to BSU ¢ with j defined as the in-neighbor of
i. The in-neighbor set of node i is represented as N

{j €V|(j,i) € £}, and the out-neighbor set is N~
{j €V|(i,j) € E}. If there is a directed edge sequence
(i05%1)y .-, (Ig—1,1) € &, then a directed path from i
to 75 exists. The sets of leader BSUs, normal BSUs, and
malicious BSUs are denoted by V., Vr and V 4, respectively.
For convenience, define |V;| = 7 € Zs( and assume
that the malicious BSUs are bounded by F' € Z, ie.,
VAl =X €Z>o < F,and n > 3F +1, see, e.g., [27], [28].
The dynamics of each BSU i € Vx UV, are given by:

Pi(k+1) =P (k) I
T
Ei(k+1) = Ei(k) + mpz(k) ()

where T' > 0, E;(k) € R represents the energy storage state
in kWh, and P;(k) € R denotes the charging/discharging
power at step k that is constrained by

0<E; <E;,P,<P, <P, (3)
where E; is the maximum energy storage capacity, P; and P
are the maximum discharging and charging power, respgc-
tively. The State of Charge (SoC) is SoC; ( ) (k)/E;,
also we define F;(k) = SoC;(k) and P;(k /E

e e
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Definition 1 (Source component). Given a directed graph
G, a set of nodes C is a source component if given any pair
of nodes in C, a directed path exists between them.

Definition 2 (Reduced graph). A reduced graph Gpr
(Vr,Er) with respect to a directed graph G = (V,€) is
obtained by removing all malicious nodes, all their edges
and at most F' additional incoming edges from each non-
malicious node of G. The adjacency matrix of Gr is defined
as: Ri; = 1ifi=joredge (i,j) € Er; otherwise R;; = 0.
The set of reduced graphs w.rt. G is denoted by R(G).

Assumption 1. [28] Each reduced graph of G includes at
least one nonempty source component.

Problem 1 (Resilient Consensus with Demand Tracking).
Given a BESS with n BSUs where \ BSUs are malicious, de-
sign a controller such that normal and leader BSUs track the
power demand and achieve SoC consensus, specifically, (i)
the total power of normal and leader BSUs converges to the
aggregator’s demand, that is, limy_, ZiEVRUVL Pi(k) =
P*; (ii) for all normal and leader BSUs i,j7 € Vr UV,
SoC consensus is achieved, that is, limkﬁooEi(k)
1imkﬁoo£7j(k); (iii) for all normal and leader BSUs i,j €
Vr UV, charging and discharging power is asymptotically
proportional to its respective maximum capacities, that is,

IITI. RESILIENT CONSENSUS CONTROL WITH DEMAND
TRACKING

In this section, we introduce the State of Charge and
Demand Tracking with MSR (SoCDT-MSR) algorithm to
address Problem 1. The algorithm comprises three essential
steps: (1) exchange of storage and power information with
neighboring agents; (2) removing potentially malicious in-
formation from the network; (3) updating agent states based
on the remaining information.

We are motivated by two primary advantages in utilizing
the MSR method. First, it effectively mitigates the impact
of malicious nodes in a distributed network without prior
knowledge of their locations or quantities. Second, the MSR
method exhibits low computational complexity and relies
exclusively on local information, enabling efficient opera-
tion in a fully distributed environment. Its straightforward
network topology further supports deployment in large-scale
networks, where centralized approaches may be infeasible.

Then we propose Algorithm 1 where each BSU i in
Vr UV, undergos three processes at each time step k:

1) Interact Process: BSU ¢ transmits its storage information
E; (k) and power information P; (k) to out-neighbors
NT; receives Ej (k) and P; (k) from in-neighbors A/;".

2) Remove Process: BSU i sorts E; (k) and P; (k) respec-
tively, then discards the F' largest values and the F' lowest
values than P;(k), getting the subset £;(k) C N~ from
the remaining BSUs. A similar procedure is applied to
E;(k) to construct the subset M;(k) C Ny .

3) Update Process: BSU i updates P;(k) and E;(k) based
on the remaining values:
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j(k’),i € Vg

(4a)

+ ) ai(k)P(k) — ¢(k),i € Ve (4b)
JELi(K)
Ei(k+ 1) = wi; (k) Ei(k)
+ Z wi; (k) E; (k) + coP; (k) (4c)
JEM; (k)

where ¢g € (0, 1) is the charging parameter and ¢ (k) is:

o) =Dy, Pilk) = P )
The weight coefficients a;; (k) and w;; (k) are calculated by:

1 . . .
COED if i#7,
(k) = T, i =7,
aij (k) ey TEITHT)
0, otherwise
1 . . .
CTGEDE if i# ],
=] 1 s =4,
wij (k) el THEERD
0, otherwise

The above two equations form the lazy Metropolis ma-
trix, which is preferred in distributed algorithms for its
compliance with the detailed balance condition, ensuring
convergence to the correct equilibrium distribution. The
agents are also driven to explore the state space by allowing
equal probability transitions to any neighboring node. On the
other hand, the error factor ¢(k) adaptively tracks the global
demand P*, correcting local-global deviations and ensuring
stable leader influence. Its boundedness and decreasing na-
ture ensure asymptotic stability.

Remark 2. For the implementation of the algorithm, network
construction should be elaborated. Specifically, the parame-
ter F' determines the dimension of the network n, as outlined
in Assumption 1. Subsequently, a weakly connected topology
comprising n — F nodes is established. An additional set
of F' nodes is then incorporated to enable bidirectional
communication with all other nodes. Finally, the in-neighbor
of each node is adjusted to at least 2F + 1 [28], [29].

IV. CONVERGENCE ANALYSIS

We first review intermediate results concerning the tran-
sition matrix. Based on this foundation, we then provide
the convergence analysis. We do not distinguish between
|[Vr U V| and n— A, and, index the leader and normal BSUs
as {1,2,...,7,7 + 1,...,n — A}. Inspired by [28], [29],
we define two matrices W (k) and A(k), then reformulate
equation (4) as the following form:

P(k+1) = A(k)P(k) — ®(k) (62)
E(k+1) = W(k)E(k) + coP(k) (6b)
Here P(k) = [Pi,...,Pr(k), Pria(k),..., Puoa(k)]7,
E(k) = [Bi,..,Bo(k), Erga(k), .o Bpa(B)]",



Algorithm 1: SoOCDT-MSR Algorithm
Input: F, E;, B, P, .
Output: P;(k+1),E;(k+1)
1 Initialization: Set P;(0) and E;(0) to an arbitary
value that satisfy the constraint (3);
2 for k=0,1,... do
Interact Process:
Transmit E;(k), P( ) to j €N,
Receive E;(k), P;(k) from j € N;;
Remove Process:
Li(k) < remove F' largest and smallest P;(k);
M, (k) < remove F largest and smallest E;(k);
Update Process:
10 Compute a;;(k) and w;;(k);
1 Update P;(k +1) =

e e N N R W

> aij(k)Pi(k),i € Vr

JELi (k)
aij (k)

t

(lu(k)]f’l(k) + >
B JEL; (k)
12 | Update E;(k+1) =
wii (k) Ei(k) + >
jeM; (k)

S

wlj(k)EJ(k‘) + COPi (k)’

13 end

Result: P;(k + 1), E;(k + 1)

(I)(k) = [¢(k)7¢(k)a¢(k)’07 te ;O]T~ The matrix
T [V |
A(k) = [Ay(E)](n—r)xm-»x) satisfies: (1) A(k) is

row stochastlc (2) A;j(k) is not zero if (j,i) € & or

j =1 3) if A”(k:) is not zero, A;;(k) > &, where
& = 2(qu\ N |+1 2F) The above properties also hold
for W(k) (W, (k )](n Mx(n—y)- There exist two

reduced graphs Ra (k:) Rw(k) € Gr with corresponding

matrices Ra(k) and Ry (k) allowing that A(k) >
ERL(k), W(k) > éRw (k). The backward product is defined
as A(k,t) = A(k)---A(t), T'(k,t) = W(k)---W(¢) for

t <k, with A(k,k+1) = I'(k,k + 1) = I,_»). Then we
present the following lemma, whose proof is quite similar
to those in [28], [29] and skipped here for simplicity. The
convergence of Algorithm 1 is established in Theorem 1.

Lemma 1. If Assumption 1 holds, MSR method guarantees
that for all time t and k > t: limg_ oo A (k,t) = ()17,
limp ool (k, ) = 7(t)17T, where o(t), n(t) € RN are
stochastic time-varying vectors.

Theorem 1. If Assumption 1 holds, then the BESS achieves
resilient SoC consensus, power distribution, and demand
tracking through Algorithm 1, despite the presence of
malicious BSUs. That is, Yi,j € Vg UV, conditions
limg oo ZiEVRUVLH(k) = P* limg_5S0C; (k) =
limy_,00S0C; (k) and limy,_, o, P;(k) = limy,_, o0 Pj (k) hold.

Proof: From(6a), we get
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(k) — ¢(k),i € V.

P(k+1) =Ak)(A(k—1)P(k—1) —®(k — 1)) — ®(k)

=A(k)A(k—1)---A(0)P(0)

k
—> (A(K)Ak 1)

t=0

A(t+1)) D(¢)

k+1

ZAkt

ZZEVRUVL Pl(k)

ZP (k+1)

=A(k,0)P (t—1) (7

Take the derivative of ¢( )= — P*, then

bk +1) =1"P(k+ 1)z (8)
where Z = diag(2- 0 E2 . E ~ ) is a diagonal matrix that
normalizes the power Values by the inverse of the maximum
energy storage capacities £;. Then substitute (7) into (8),

) k+1
ok +1) = (A( t—-1)z

ZAkt
k+1

= 17 (Y Ak 17 6(t — 1) 7 = o (k)
t=1
where Z is a diagonal matrix whose entries are strictly less
than 1, and A(k,t) is row stochastic. Both matrices have
eigenvalues confined to the interval (0, 1), ensuring that ¢ >
0 holds. Therefore, ¢ is exponentially stable and goes to zero
as k — oo. According to Lemma 1, for any k >t > 0, the
backward product A(k,t) contracts at an exponential rate
due to the assumption of joint strong connectivity over a
finite time interval. Specifically, we have constants C' > 0
and 0 < n < 1 such that ||A(k,0)|| < Cn*. Then, we obtain

1P(R)[| = Ak, 0)P(0)[| < C*[|P(0)]], ©)

which indicates that the power ratio decays exponentially.
Then we take & — oo of (7) and apply Lemma 1 to obtain

k+1
Jim_ P(k+ 1) = 197 (0)P(0) — ; 1T () ®(t — 1)
~ k+1 N
= <<wT(0),P(0)> S RCHOK I 1)>> 1. (10
P;(k) converges to (/7 (0), P(0))— S5 (0T (1), ®(t — 1))

as k — oo. This value is determmed by the maximum
energy storage capacities F;, initial powers P;(0), and the
communication graph G. From (6b), we get

E(k+1) =W(k)W(k —1)---W(0)E(0)

k
+Y (WEW(k— 1)
= k+1

( +Cozrkt

Taking the limit as £ — oo and applymg Lemma 1, we obtain
k+1

)+ co Z 17T
k+1

>+coz< 13t—1)>>1. (12)

W(t +1))coP(t)

(t—1). (1)

lim E(k+1)=17%(0 P(t—1)
k—o0

:<< ()



Thus, E; (k) converges to a consensus value (77 (0), E(0))+
Co Zf;l (T (t), P(t — 1)), determined by the maximum
energy storage capacities E;, initial storage states F;(0),
powers P;(k), charging parameter ¢y and the graph G. W

V. SIMULATION RESULTS

In our empirical study, we first show that benchmark SoC
methods fail to converge and stability is not guaranteed when
malicious BSUs exist, as shown in Fig. 2. Note that final
states converge to malicious nodes, which should be avoided.

— Malicious Nodes

| [ Vaius Noces

State Value
State Value

15 20

Time (s)

10

L L
10 12

Time (s)

L L
0 2 4 ) 8

(a) Constant Value (b) Time-varying value

Fig. 2. Convergence of benchmark SoC algorithm with malicious nodes.

We consider a small-scale BESS comprising 7 BSUs. In
this configuration, node 1 serves as the leader BSU, while
node 7 is the malicious BSU. Nodes 2 through 6 are normal
BSUs that are not under attack. A reduced graph is also
shown in Fig. 3, satisfying Assumption I with F' = 1. The
maximum capacity F;, maximum discharge power P;, and
maximum charge power P; for each BSU are summarized
in the table. The states of the malicious BSU are generated
arbitrarily, with its charging/discharging power and energy
storage state at time k set as Pr(k) = 20sin (%¥) and
E7(k) = 5sin (Z&)+5. The parameter cj is set to 3.3x 1074,

(XS
g

Communication
Network

Leader BSU 1

¥ SEEae—

—‘ BSU 4

Communication network of a small-scale BESS.

Fig. 3.

On receiving a regulation demand of P* = 30kW, we run
Algorithm 1 and obtain two values depicted in Fig. 4. The
power ratio relative to maximum capacity, P;(k), achieves
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IDs EZ(O) Pi (O) Ei & Pi

1 20kWh OkW 50kWh | -50kW | 100kW
2 25kWh | -5kW | 50kWh | -50kW | 100kW
3 10kWh SkW 45kWh | -40kW 80kW
4 15kWh 1kW 45kWh | -40kW 80kW
5 5kWh 8kW | 40kWh | -30kW 60kW
6 12kWh 4kW 40kWh | -30kW 60kW
7 / / / / /

consensus in roughly 30 seconds and stabilizes at around
0.18. Due to varying maximum capacities, the real power is
not uniform across all BSUs. The total real power of non-
malicious BSUs, P;(k), is shown in Fig. 5.

0.8

i€V UVR

0.6

BSU 1
BSU 2
BSU3
BSU 4
BSUS5
BSU 6
Malicious BSU

0.4

0.2

Power Ratio
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-0.2

0.4

20 25

Times (s)
BSU 1

/\
BSU 2

BSU 3
BSU 4
BSU 5
BSU 6
Malicious BSU

30 45 50

Real Power

: : : :

25 30 35 40 45
Time (s)

Fig. 4. Consensus of power ratio and convergence of real power.

50

Initially, the BESS struggles to track the demand due to
incomplete filtering of malicious information. As the number
of iterations increases, Algorithm 1 filters out malicious data,
then the total power aligns with the demand at approximately
28 seconds and stabilizes at 30 kW. The SoC convergence
and real energy storage is shown in Fig. 6. The SoC state
E;(k) reaches consensus in approximately 35 seconds and
stabilizes around 0.55. It continues to increase as the positive
real power P; > 0 indicates that the BSUs are in a charging
state. The whole process are unaffected by malicious BSUs.
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Demand tracking performance of the BESS.
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Fig. 6. SoC consensus and convergence of real energy storage.

VI. CONCLUSION

We proposed a distributed resilient consensus algorithm
SoCDT-MSR for BESS operating with malicious BSUs. Our
algorithm is established in a leader-follower control frame-
work, which facilitates the BESS to achieve consensus on
state of charge (SoC), track demand effectively, and distribute
power utilizing the Mean Subsequence Reduced method. We
have proved that our algorithm converges over finite time,
which also ensures its correctness. The performance of our
approach is then demonstrated through various numerical
simulations. Future research will extend the framework to
accommodate more complex demand-side resources in non-
linear control settings. As systems may encompass various
heterogeneous demand-side resources, it is also critical to
design a universal algorithm to manage them effectively.
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