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An Efficient Bayesian Policy Exploration Approach for Reinforcement
Learning Model Predictive Control
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Abstract— Reinforcement Learning Model Predictive Control
(RL-MPC) has achieved significant progress in recent years.
However, existing approaches still have some limitations. This
paper proposes a Bayesian policy exploration method for RL-
MPC that substantially enhances its performance. Specifically,
we implement Bayesian posterior estimation of value functions
and introduce an optimistic exploration strategy tailored for
efficient exploration of RL-MPC, which improves the sample
efficiency of RL policy exploration. Then an optimistic Bayesian
exploration strategy is proposed, which encourages the agent to
leverage existing model information to achieve superior control
performance. The soundness and effectiveness of our method
are evaluated through an empirical study of controlling a drone
to reach targets subject to uncertain model parameters and
environmental perturbations. The results validate that our ap-
proach has superior performance compared with benchmarks.

Index Terms— reinforcement learning, model predictive con-
trol, Bayesian estimation, optimistic policy exploration.

I. INTRODUCTION

Model Predictive Control (MPC) has been extensively
studied due to its applicability in many engineering appli-
cations, providing reliable control performance and ensuring
fulfillment of design constraints [1]-[5]. However, it is often
not feasible to construct a precise mathematical model for
real-word dynamic systems since they are intrinsically non-
deterministic, complex and subject to disturbances. Although
various robust and stochastic MPC approaches have been
developed, they mainly focus on satisfying the constraints,
often overlooking the impacts of stochastic uncertainties on
the overall performance of the closed-loop system [6]-[10].

Reinforcement learning (RL) is an intelligent decision
framework that does not rely on models of the given system
to generate action policies. Instead, it utilizes observed state
transitions and reward functions derived from interactions
with the real system. MPC is particularly well-suited to
execute action-value functions and policies in RL, as it
naturally incorporates prior knowledge and explicitly handles
constraints imposed on the system. Recently, the integration
of RL and MPC has attracted substantial attention in both
learning and control communities. [11] first applied MPC
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to approximate value functions in RL and manipulated the
MPC scheme holistically with RL methods to maximize
closed-loop performance. Notably, the developed approach
effectively captures the optimal action-value functions and
policies for the actual system, even when no accurate
model is available. This framework was extended in [12]
by ensuring safety guarantees on the system’s closed-loop
behaviors. RL-MPC also has convincing performance in
various applications, such as traffic networks [13], renewable
energy [14], as well as control of autonomous system [15].

Despite the comprehensive investigation of RL-MPC,
some open problems remain to be tackled. Specifically,
current methods heavily depend on the MPC solutions such
as accumulative cost functions at current and future moments
of the prediction horizon to approximate the value functions.
However, due to model uncertainty and noises, the approx-
imation may deviate from the real values, which causes the
agent to explore an excessive number of samples before
convergence. This, in turn, reduces the sample efficiency and
limits applicability of the framework on many scenarios. To
the best of our knowledge, there is currently no established
results to facilitate efficient update of the state-action value
function estimates based on the collected state costs.

Moreover, conventional RL-MPC methods typically im-
plement the first step of the optimal control sequence cal-
culated by MPC as the current action [16]. However, this
contradicts with the core idea of RL exploration, which seeks
to discover and implement new policies beyond the existing
ones. Although some RL-MPC approaches have attempted to
incorporate exploration by sampling actions from a broader
space, see, e.g., [17], their exploration strategies still suffer
from heavy randomness and fail to effectively leverage the
model information, thus generating suboptimal policies.

To mitigate those issues, this paper proposes a Bayesian
policy exploration method to enhance the performance of
RL-MPC. Based on real-time rewards, we introduce posterior
Bayesian estimation techniques to improve the accuracy
and efficiency of value function approximation. Additionally,
we propose an optimistic exploration strategy for RL-MPC,
which calculates the gradient of the control objective with
respect to the parameters the current model. This enables the
agent to better exploit the updated model parameters for ac-
tion exploration, ultimately improving control performance.

This paper is organized as follows. Section II reviews the
preliminary knowledge of RL and MPC, then formulates
the key problem for investigation. Section III analyzes the
inefficiency issues of existing RL-MPC policy exploration
methods, then develops a Bayesian framework for value



function estimation and optimistic policy exploration to mit-
igate the issue. Section IV implements our method to control
a drone with uncertain parameter and under disturbances and
presents simulation results. Finally, Section V concludes the
work and outlines several directions for future extensions.

II. PRELIMINARIES AND PROBLEM FORMULATION

MPC is typically framed as an optimal control problem. At
each time step, the controller forecasts future system states
over a finite prediction horizon using the system’s dynamic
model, subsequently determining the initial control action
by optimizing the anticipated accumulation of rewards over
this horizon. More specifically, this optimal control problem
can be solved iteratively in a receding horizon optimization
manner, where the objective is to minimize a predefined cost
function and simultaneously satisfy the constraints:

N—1
Ao (z0) + Z Lo (2, ur)
k=0
Tr+1 = fo (Tr, ur), 1)
ho (z, ux) <0,
o =S

where )y is the initial state cost serving as a storage function
from Theorem 2 in [18]; v € [0, 1] is the discount factor
for stage cost; NV is the MPC horizon; xz; € R™ is the
state trajectory prediction (m is the dimension of the state
space); ux € R is the sequence of control inputs; fo(zk, ug)
represents the system dynamics; ¢y (zy, ug) is the stage cost.

Markov Decision Process (MDP) [19] provides a generic
framework for RL problems. A MDP is denoted by a tuple
(S, A, R, P) where S € R™ is the state space, A € R™ is
the action space, R : R"s — R is the reward function and
P sk41 | Sk, ax] : R™ xR™ xR™ — [0, 1] is the transition
probability, which is often unknown a priori in RL settings.

Instead of designing a control law from the model of the
dynamic system, RL generates a parameterized control policy
mg(s) : R — R™ from the collected data, which aims to
maximize the expected discounted accumulative rewards:

> A (s ak)}

k=0
where 7 is the stochastic trajectory of the closed loop
system under policy 7y, 7y represents the discount factor, F
represents the expectation operation. In order to effectively
optimize the performance objective (2) and find the optimal
policy, sensitivity-based RL methods use approximations of
the optimal value functions V,(s), and optimal action-value
function Q, (s, a) of the real system, respectively, defined as:

J (1) := Errory [ 2)

Vi(sk) = Err, [Z v Er (s, ai)] (3a)
i=k
Qu(Sks ak) = r(sk, ar) +vE [Vr, (sk+1)[sk,ax]  (3b)

Based on the above concepts, several algorithms can be
designed, such as Q learning [20] and policy gradient [17].

Conventional deep RL methods often apply Deep Neural
Networks to approximate the optimal value functions and
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learning policies. In contrast, MPC based function approxg
imation parameterizes the output of the MPC solution as a
value function estimator. Such a scheme was first introduced
in [11] and adopted below to fit the settings of this work.

Problem 1 (Optimal value function approximation by MPC).
Given an MDP with unknown transition dynamics, then the
goal is to approximate the optimal value function V* of RL
using the following MPC scheme parameterized by 0:

Z-1
Vo(s) = llln):lclr Ao (z0) + Z Ak (o (zr,ur) + Hgak)
o k=0
+ N (Vf (xn) + Ky o)
s.1. Tpy1 = fg (J:k.,uk) R (4)

ho (z, uk) < o,
f
h0 (Jj]\/‘) S ON,
o =S
where ~ € [0,1] is the discount factor for stage cost;
K and K, are the weight on slack variables oy and oy,
respectively; hl) (xn) and hi) (zN) are constraints on states

and control input, respectively; ng (xN) is the approximated
value function at the terminal state of the MPC horizon.

In addition, the action-value function is defined as
Qo(s,a) = minVy(s) where we let uy = a and the other
u,xr

constraints in (4) be satisfied. Accordingly, the optimal value
functions and policies are derived under the above scheme:

(&)

The above scheme establishes a parameterization of the
MPC, meanwhile encapsulates the associated costs and con-
straints characterize the optimal action-value functions and
policies of RL. In the following section, we will develop an
efficient policy exploration approach to address Problem 1.

mo(s) = argmin Qp(s,a), Vo = min Q(s,a)

III. BAYESIAN POLICY EXPLORATION IN RL-MPC

In this section, we first comprehensively analyze the ineffi-
ciency issues of existing RL-MPC exploration methods. Next
we propose an efficient Bayesian posterior state-action value
function estimation approach based on the observed state
rewards from history. Then an optimistic Bayesian policy
exploration strategy is proposed, which involves information
of the current estimated model to improve sample efficiency.

A. Inefficient exploration of existing RL-MPC methods

Conventional RL-MPC algorithms usually utilize explo-
ration to enhance existing policies by executing new actions
that may not align with the current policy. The exploration
process allows the agent to improve its performance and a
common exploration technique [17] is to add a stochastic
perturbation term to the MPC cost function. Specifically, a
term d " ug is added to the MPC cost as follows:

ad:=mp(s) +d (6)

where d € R" denotes random perturbations. The cost
then results in a perturbed MPC policy 7y and retains the
satisfaction of the constraints. However, random perturbation



may not lead to optimal exploration, and therefore cause a
significant degradation of performance and information gain.
Qr(s,a)
A

T[fake

TTMPC

Fig. 1: A scenario of suboptimal exploration in RL-MPC.

For instance, consider the scenario where the state s
is fixed, the relationship between the optimal action value
function @7, the estimated action value function Q,r, and
the action a is illustrated in Fig. 1, and Q7 is unknown.
The primary RL objective is to select actions that maximize
Qr(s,a). However, as shown above, introducing a random
perturbation to the actions result in two major drawbacks:

e blind exploration: In Fig. 1, the error between the es-
timated action value function Qﬂ and the optimal action
value function @)} varies between the positive and negative
directions of mypc, which indicates the output action
of the MPC in the current state. Notably, the estimation
error in the positive direction demonstrate reduced magni-
tude, while their negative counterparts exhibit significantly
greater amplitude. To efficiently sample actions that com-
pensate for the discrepancy between Q. and Qr, it is es-
sential to increase the exploration in the positive direction.
However, most conventional exploration methods typically
sample actions uniformly in both directions, which causes
inefficient sampling in the negative direction, where Qﬂ is
sufficiently accurate. The blindness of existing exploration
strategies is a key limitation that adversely affects both
sample efficiency and training performance.

locally optimal policy: As illustrated in Fig. 1, the current
estimate Qﬂ has a small estimation error near 7 yq.. If the
step size of the random exploration is not sufficiently large,
the agent will falsely conclude that 74k iS an optimal
policy. However, the action value function @7 implies that
the agent is capable to achieve higher rewards by exploring
actions in the positive direction. Consequently, the agent
risks converging to a locally optimal policy, which hinders
further exploration and refrains from greater rewards.
The above mentioned estimation error extends beyond
the mere difference between the values of Qﬂ and Q}.
In the context of RL-MPC where action value functions
are employed to select optimal actions, a similar trend in
the changing behaviors of Qr and Q.- will likely yield
comparable optimal actions in the output. Furthermore, for
the sake of a more generalized analysis, the notations used
in the preceding discussion and accompanying schematic
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. . . . .3
diagram may slightly differ from those employed in earlier
sections of the article, when no confusion is iccurred.

B. Bayesian Approximation for RL-MPC

As previously discussed, existing RL-MPC methods pri-
marily employs collected data to identify an optimal param-
eter 6 such that Q9 = Q) and consequently my = 7. This
approach relies on approximating the optimal state value
function and action value function, as described in equation
(3b). However, the intrinsic stochastic nature of real systems
often complicates the accurate estimation of these value
functions, which in turn hinders the determination of optimal
parameters. This challenge also causes approximation errors,
which deteriorates the performance of the RL-MPC scheme.

5@(57‘1) = Q*(s,a) 7@9(8,&) @)

To effectively capture the uncertainty and efficiently mini-
mize estimation errors, we draw inspiration from data-driven
control and learning [21], [22], then propose a novel estima-
tion scheme. The action value functions are approximated
following a Gaussian prior distribution based on the MPC
output, rather than directly determined by the MPC solution.

Q(Sva) NN(:U7k(7)) 3
where 1 represents the mean value, and k(- -) represents the
covariance between state action pairs, e.g., (s, a) and (s, a’).

We further define the system cost £(s¢, a;) at time ¢ based
on the temporal difference equation as follows [20].

(€))

Note that the expected value function at time 41 is replaced
by a single sample in (9), such that the estimator Q is
inherently stochastic. In order to describe the stochasticity of
(9), we introduce the following statistical generative model:

sty ar) =Q(s0,ar) = Q50415 a+)
+ N((s¢, 1), (5141, 04)) (10)
where a, = argminQ(si41,a.), and N ~ N(0,%) is
at

sty ar) = Q(s1,ar) — VYZIin Q(st41, ).

an independent noise to measure the discrepancy between
the observed stage cost and the temporal difference. For
simplicity, the mean is set as 0 and the other values are set
similarly. The covariance matrix is chosen as ¥ = od(s—s'),
where o is a positive constant, ¢ is the Dirac function, and
s[-] is a slice indexed for the multi-dimensional state s.

For convenience, one component w; is defined to replace
the state action pair (s¢, a¢), so (10) is further expressed as

U(we) = Q(we) — YQ(wes1) + N(we, wet1) (11)
According to (11), the relation between the observed stage
costs £(w;) and the estimated action value function Q(wy)
can be regarded as a latent variable model, with Q(wt) being
input latent variables and ¢(w;) being observable output.

The latent variable model in Equation (11) characterizes
the evolution of Q(wt)), that is, the differences between ad-
jacent time moments. However, it is insufficient to accurately
estimate Q(wt) To address the issue, Theorem 1 establishes



an analytical expression of Q(wt) based on history data
£(wy), allowing more efficient and accurate exploration.

Theorem 1. Given the stack vector of observable stage
rewards Ly, = [0(wy), l(wa), -+, L(w,)]T € R collected
by time t, if the temporal difference equation is (10), then the
posterior Bayesian estimate of the RL-MPC optimal action-
value function satisfies the following Gaussian distribution:

Q(w) | Li_1 ~ N (i, 1) (12)

Proof. Given L, the stack of Q(wt) and N(w¢, wiy1) can
be constructed as follows respectively

Q: = [Q(w1), Q(wa), -, Q(w,)]T € R*?

N, = [N(wo,w1), N(wy,ws), -+, N(wi—1,w;)]"  (14)

Next, an intermediate matrix is introduced and combined
with (13), (14) to derive the the generative model (10):

13)

1 —v 0 ... O
O 1 - ... O

Ht — ) c §Rt71><t (15)
0o 0 ... 1 —v

Ly =H,Q + N,y (16)

The kernel function representing the covariance between
the current state w and previous states w; for ¢ =1---¢ is

ki(w) = (k (wl,w),...,k(wt,w))T e pixt 17)
which yields the stack of kernel functions collected by ¢:
Kt = [kt (wl),...,kt (wt)} E%tXt (18)

Due to the properties of multidimensional Gaussian vari-
ables [23], Q; and N, are expressed in the stacked forms:

Qi ~ N (Qr,y (W), K) (19)
N; ~ N(0,3) (20)

where w; = [wy, ..., w], Xy = diag{Z1, -, 2t}
To derive the the Bayesian posterior estimate of state

action value function Q(w) from stage loss functions Ly_1,
their joint Gaussian distribution is first represented as [24]:

(][ 85 &5

Lis ur, Covi? Cov’

where pg = Qn,(w) represents the prior mean value of
current state value function and is the optimal state action
value function output by MPC solution; pt; represents the
mean value of L;_;. The covariance matrices are derived as:

Cov® = E(Q(w)Q(w)") = k(w, w) (22)
Cov" =E(L;1L{,)
:E((HtQt + Ntfl)(HtQt + Nt71>T)
=E(H,Q.Q/H/ + H,Q,N{_,+ 23)

N, Q/H/ + N,_;N{ )
=E(H,Q.Q/H{ + N,_ 1N/ ;)
=H,.H +3,
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where X,_; is an identity matrix, N,_; Q7 = QN7 |, = 0
due to the independence of process noise and action value
functions. Also Qt, N;, H;, and L;_; are stacked vectors
introduced in (13), (14), (15) and (16), respectively.

Cov?" = E(Q(w)L{_,)
= E(Q(w)Q H + Q(w)N[_))
=ki (w)Hf
Cov™? = H,k,(w)
Following the conditional distribution of multidimensional

Gaussian variables (21), the Bayesian posterior estimate of
state action value function conditioned on L;_; is given as:

. -1
Q(w) | Li—1 ~ N(pg + Cov? Cov™  (Le—y — ),
Cov® — COVQLCOVL_lcOVLQ) (25)

We plug (22), (23) and (24) into (25), and adopt the
stacking form of kernel function shown in (18), then obtain

Q(w) | Ly ~ N (1, %) (26)
where the mean variable p is given as:

Qrp (W) + ke (w) " H (K H] +%1) (L1 — pr)
(27)

(24)

and the variance variable X is given as
k(w, w) =k (w)HY (HKH] +S,_1) "Hyk,(w) (28)
This concludes the proof. O

Theorem 1 indicates that the estimation of the optimal
action-value function can be dynamically adjusted in real
time, based on the stage costs collected throughout the
process. In addition to the improved efficiency, our approach
also increases the estimation accuracy by continuously refin-
ing the value function with the most current information.
C. Optimistic Bayesian policy exploration

Conventional RL-MPC methods often suffer from inef-
ficient policy exploration, which impedes the improvement
of their performance. That is to say, some random RL
exploration approaches, such as adding random Gaussian
noise, may promote the agent’s exploration to a certain
extent, however, they are usually not sufficiently efficient,
thus not suitable for model-based control. Drawing inspi-
ration from [25], we propose an optimistic Bayesian policy
exploration method for RL-MPC, which turns out to be more
efficient and is validated in the experiments presented later.

Suppose that the original policy follows a normal distribu-
tion NV (i1, Y). Then the main idea of optimistic exploration
is to perturb the original policy in a manner that enhances
the agent’s performance. This involves adjusting the policy
to either maximize or minimize the corresponding () func-
tion, depending on the specific objectives of the application
scenarios. Meanwhile, it ensures that the perturbation does
not cause significant deviation from the original policy. The
mathematical formulation of our approach is detailed as:

arg min
KL (1,2),N (pe,XE)) <6

ME7EE = Eath(uE,EE) [Q(S,G)(’UJ)]

(29)



where K'L(.,.) is the Kullback-Leibler divergence to ensure
that the distribution of exploration policy does not differ
wildly from the original policy. Next we repeat the lemma
from [25] that gives an explicit solution of (29).

Lemma 1. The mean pg and covariance X derived from
the minimization of (29) are explicitly of the following forms:

V25
9005, @)l |

HE = | + by [VGQ(Sv a’)]a:u

(30)
)

Yp=%

Lemma 1 calculates the gradient of (Q(s,a) with respect
to action a, which is essential for optimistic exploration.
In contrast, we utilize the rolling horizon MPC scheme to
approximate the state-action value functions, which differs
from conventional RL methods where Q(s,a) is typically
represented through the construction of a actor-critic neural
network. To bridge the gap between conventional RL and
the RL-MPC so as to analytically derive the exploration
policy, we propose an alternative policy exploration approach
specifically designed for RL-MPC, which is detailed below.

Our RL-MPC framework utilizes the initial system model
to return the MPC solution, after which RL is employed
to fine-tune the model parameters, thereby enhancing the
overall control performance. Meanwhile, real-time informa-
tion concerning states and deviations from the target is also
collected during the training phase. Then we leverage such
information to derive the following policy exploration to
approximate the mean value in (30):

wE = p+ aV,Fy(s,a)diff(s) 31

where Fj represents the dynamic model of system, « repre-
sents the conservative coefficient, diff represents the distance
between the current state and the target.

By implementing the aforementioned exploration strategy,
the agent “optimistically” utilizes the updated model param-
eters, facilitating a more targeted perturbation for exploration
in the RL-MPC procedure. This approach enables the agent
to navigate in a direction that enhances overall performance,
effectively mitigating the inefficient exploration issues dis-
cussed in the previous subsection. Simulations in the next
section further validate the sample efficiency of the policy.

Remark 1. Note that the RL-MPC approach proposed in this
paper is developed under the RL-driven EMPC framework
in [11]. The stability of the closed-loop system under such a
control scheme has been proven through strict dissipativity
based analysis in [11]. The stability of our scheme can be
shown similarly and is omitted here due to limit of space.

IV. EXPERIMENT RESULTS

To validate the performance of our method, we run simula-
tions for a perturbed drone model with uncertain parameters,
which is commonly seen in applications [26], [27]. The
drone is modeled as a discrete-time, linear time-invariant
(LTT) system subject to disturbances, whose dynamic model
is expressed in (32). The objective of the drone is to
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reach a designated target location, with the RL-MPC rewar(51
measured by both the distance to the target and energy
consumption. The second LSTD-Q algorithm is selected as
the reinforcement learning backbone for training [28].

Ti4+1 = A.]?t + But + cv (.Tt) wy + G + N (32)

where the state includes the 3D positions and velocities,
along with the roll and pitch attitudes and rates:

T

x:[pz Py Pz Uz Uy UV Ap Gp Tp Tr]

where A is the state transition matrix, B is the control
input matrix and G is the additional external input and
CU (x4)wy is the wind disturbance, for details of these
variables, please refer to [26]. In addition, N is the external
disturbance imposed on the position of the system, i.e., p,,
py and p,. The learnable parameters are set as [d, g, K],
where ¢ is the backoff parameter of constraint (hg (x, ux) =
(1 4+ 0)h(xk,ur))), g is the gravitational pull constant, K,
is the vertical thruster coefficient, the setting of learning
parameters remains the same as [26] for fair comparisons.

— RL-MPC
BRL-MPC
0.70 -
—
8
S 0.68-
[
>
S 0.66 -
o
E
< 0.64-
O
0.62- \
0.60 L 1 1 1 1 1 1 1 1
25 50 75 100 125 150 175 200
Episode

Fig. 2: Performance comparison between RL-MPC and BRL-
MPC, where BRL-MPC can converge at around 8th episode.

We ran five experiments, each with different random seeds,
and the primary results are presented in Fig. 2, where the
solid line represents the mean cost. The Bayesian RL-MPC
(BRL-MPC) approach proposed in this work, indicated by
the red dotted line, employs Bayesian estimation of the
optimal value function and converges at around the S8th
episode. This method also demonstrates enhanced resilience
to disturbances in position information during the training
process, resulting in improved sample efficiency compared to
conventional RL-MPC methods. Additionally, Fig. 3 details
the learning process of BRL-MPC in terms of four metrics.

We conducted an additional experiment to demonstrate the
performance of BRL-MPC with optimistic policy exploration
(BRL-MPC-OE) and the results are depicted in Fig. 4. In
summary, the cumulative cost of RL-MPC and BRL-MPC is
0.617 and 0.619, respectively, while it is 0.529 for BRL-
MPC-OE. The results indicate that optimistic exploration
enables the agent to explore more efficiently and results in
a lower cumulative cost, which further validates that our
method can accomplish the task with superior performance.
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V. CONCLUSIONS

This paper introduced a Bayesian policy exploration ap-
proach for reinforcement learning model predictive control
(RL-MPC). Our method improves the accuracy of value
function estimation and sample efficiency through posterior
Bayesian estimation. Additionally, we have developed an op-
timistic Bayesian policy exploration strategy that facilitates
efficient policy exploration of agents. A series of simulations
were conducted, whose results validate the efficiency and
effectiveness of our proposed policy exploration approach.
For future research directions, we intend to investigate the
stability and adaptiveness of the RL-MPC algorithms.
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