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Effective Fixed-Time Control for Constrained Nonlinear System

Chenglin Gong, Ziming Wang®, Guanxuan Jiang®, Xin Wang® and Yiding Ji®t

Abstract—In this paper, we tackle the state transforma-
tion problem in non-strict full state-constrained systems by
introducing an adaptive fixed-time control method, utilizing
a one-to-one asymmetric nonlinear mapping auxiliary system.
Additionally, we develop a class of multi-threshold event-
triggered control strategies that facilitate autonomous controller
updates, substantially reducing communication resource con-
sumption. Notably, the self-triggered strategy distinguishes itself
from other strategies by obviating the need for continuous
real-time monitoring of the controller’s state variables. By
accurately forecasting the subsequent activation instance, this
strategy significantly optimizes the efficiency of the control
system. Moreover, our theoretical analysis demonstrates that
the semi-global practical fixed-time stability (SPFTS) criterion
guarantees both tracking accuracy and closed-loop stability
under state constraints, with convergence time independent
of initial conditions. Finally, simulation results reveal that
the proposed method significantly decreases the frequency of
control command updates while maintaining tracking accuracy.

Index Terms— Adaptive control, event-triggered control,
fixed-time control, nonlinear systems, neural networks

1. INTRODUCTION

Over recent decades, driven by advances in nonlinear
control theory and practical demands, the design of con-
trollers for uncertain nonlinear systems has attracted con-
siderable attention [1]-[5]. The backstepping technique is
often utilized as an effective method for controlling nonlinear
systems, providing a promising approach to enhance transient
performance through designed parameter adjustments. Non-
linearity poses significant challenges in controlling nonlinear
systems, imposing limitations on controller design. Radial
basis function neural networks (RBFNNs), recognized for
their strong approximation abilities and linear parameter-
ization, are frequently used to manage nonlinearities by
mapping inputs through fixed nonlinear transformations and
linearly combining the results [6], [7]. Recently, integrating
backstepping techniques with neural networks in nonlinear
systems has led to numerous notable outcomes.

fCorresponding author.

Chenglin Gong and Xin Wang are with the College of Electronic and
Information Engineering, Southwest University, 400700, Chongqing, China.

Ziming Wang and Yiding Ji are with the Systems Hub, Robotics and
Autonomous Systems Thrust, The Hong Kong University of Science and
Technology (Guangzhou), 511458, Guangzhou, China.

Guanxuan Jiang is with the Information Hub, Computational Media
and Arts Thrust, The Hong Kong University of Science and Technology
(Guangzhou), 511458, Guangzhou, China.

Finantial support: National Natural Science Foundation of China grants
62303389 and 62373289; Guangdong Basic and Applied Research Funding
grants 2022A151511076 and 2024A1515012586; Guangdong Research Plat-
form and Project Scheme grant 2024KTSCX039; Guangzhou-HKUST(GZ)
Joint Funding grants 2024A03J0618, 2024A03J0680 and 2025A03J3960.

In practical engineering, constraints are imposed on both
system output and states. Thus, state-constrained systems
have gained significant attention. [8] introduced a level
control method for nonlinear systems with state constraints,
while [9] tackled the issue of hard state constraints within
nonlinear control systems. Furthermore, [10] developed
adaptive control techniques for uncertain nonlinear systems
under full-state constraints, requiring strict adherence. How-
ever, practical applications often permit limited dynamic
fluctuations. Therefore, this paper focuses on controlling
nonlinear systems under non-strict full-state constraints to
better meet practical engineering needs.

Control designs often enhance system performance and
robustness by optimizing settling time. Research has pro-
gressed from implicit Lyapunov theorems [11] to coopera-
tive control methods [12], improving transient performance
and disturbance rejection, though often without constraints
on stability boundaries. In response, [13] proposed stricter
upper-bound estimations. In practice, high convergence speed
is crucial for detection accuracy and interference resilience.
Although [14] effectively used fixed-time control’s rapid
convergence in engineering systems, it compromised signal
stability and disturbance rejection. This study introduces a
state-constrained fixed-time control framework to improve
the stability of the system.

In real-world applications, systems often face a range of
external disturbances, requiring dynamical, real-time adjust-
ments to data transmissions to maintain stability, highlighting
the need for autonomous decision-making in controllers. Tra-
ditional frameworks use fixed-period or pre-defined triggers.
Event-triggered control (ETC) principles were established in
[15], while [16] demonstrated stability control via nonlinear
feedback without triggering. [17] introduced an event-driven
framework addressing the common use of periodic sampling
or time-triggered systems in engineering. The self-triggered
mechanism in [18] advanced by predicting future sampling
points and updating actuator timing based on current states.
As these theories evolved, ETC strategies were refined, as
discussed in [19]-[24]. This paper intends to develop a
systematic framework to analyze the different performances
among various ETC strategies and the main technical con-
tributions are summarized as follows:

o An event-triggered adaptive co-design framework that
eliminates dependencies on stable controllers and ISS
requirements, using a nonlinear mapping technique to con-
vert constrained systems into pure-feedback architectures
via logarithmic transformation, addressing initial state ef-
fects on convergence time;

o Development of multi-threshold event-triggered strategies
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for controller updates, with systematic evaluation and
analysis validating their effectiveness in enhancing control
accuracy and optimizing communication efficiency;

o Simulation results demonstrate that the multi-threshold
event-triggered strategies effectively optimize resource
consumption while maintaining robust tracking perfor-
mance. These advantages highlight the potential of these
strategies to enhance system efficiency and reliability.
The remainder of the paper is structured as follows:

Section II describes the system model and RBFNNs. Section

IIT establishes the constrained system and the ETC strategies.

Section IV gives a simulation example. Finally, Section V

concludes the paper and lists a few future directions.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. System Model

We design the non-strict feedback nonlinear systems as:

&; = hi(Tit1)
= g(t) + hn () (D
Yy==1=n
where T,, = [11, 22, ..., xn]T € R™ denote the system states
with 1 < ¢ < n — 1. h; presents the unknown uncertain
smooth function. g(¢) is the system input and y(¢) € R is
the system output. All the states x; satisfy: —ps1 < x; <
ps2, s =1,2,...,n, where ps1 and pso are positive designed
constants, which establish state constraints for this system.

B. RBFNNs

We use radial basis function neural networks (RBFNNs)
to approximate the unidentified nonlinear function of the.
According to [25], for any unknown continuous equation
U(W), it has UMW) = HTQ(W) + (W) . H represents
the ideal constant weight while (W) denotes the myopic
error, QW) = [Q (W), Qa(W), ..., Q2 (W)]" is the ba-
sis function vector. By defining Z; as the receptive field
center and D as the Gaussian width, we derive Q;(W) =
cxp(—|IW — Z||/D).

The subsequent lemmas and assumptions are essential for
supporting the discussions that follow.

Lemma 1. [6] For any real variable x and vy, with the
positive constants r1,72,73, the following inequality holds

1

|71 Jy|™ < 2| ritre 4 T8 -

r1+ T2 T+ T

Lemma 2. [6] For a general dynamical system i(t) =

I(z(t)), £(0) = 0 where the origin is SPFTS with x € R,

and () : Ry x R™ — R™. Design positive parameters a,b >

0,1 >0 p<1 qg>1andc > 0 such that V(z) =

—aVi(x) — bVP(z) + ¢ holds.

|y|" T 2)

Lemma 3. [22] For any given constants 1 € R and ny > 0,
it holds that 0 < |n1| — ntanh(%) < 0.278575.

Assumption 1. [26] The constant R*, which requires de-
termination, imposes the bound |A;(w;)| < R* on the term
A;(w;). The application of Young’s inequality to strategically
reduce R* is essential to satisfy the convergence criterion.
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III. CONTROLLER TRIGGER PROGRAM
A. Controller Design

Design the following full-state constraints:

s, TTs

= log 2210

Psy —Ti (3)

W, = & Wite” w1+2$.'
v P-<1+P.92 L

with ¢ = 1,2,...,n. In this system, the logarithmic function
serves dual purposes: it simplifies controller design while
ensuring strict state boundaries; it also reduces response
latency and improves robustness against initial configuration
deviations in dynamic interference environments.

Define A;(w;) = (¥ + e ™ + 2)/(ps, + ps,), Where
1 =1,2,...,n, to handle (3). So we get w; = A;(w;)a;.
Then, the following auxiliary systems have been introduced
to facilitate processes in accordance with traditional methods

Li(wit1) = As(wi)hi(Zig1)

— Wi41

“4)

Using the auxiliary system constructed above, we rewrite
the constrained system (1) as:

Wi = wiy1 + Li(wi-‘rl) (5)
Wy, = Ap(wy)g(t) + Ln(Wn)
Define the tracking error z; as
Z1 = W1 — Wg ' (6)
Zi = W; — Oj—1,1 = 2,3,...,’[7,
where wg log L “1+ =, the expected reference signal is

represented as x,., and al denotes the intermediate controller.
Define ki ,, k2, and 7, as designed positive constants

with o = 1,...,n. Establish the Lyapunov function V; and
V;, based on the backstepping technique, we get

u? N
Vi < —kon27? — ky a2y +2122+?+?1+ —p1p1 (D)

‘};S*ikl,oz Zk2oz +ié O
o=1

+ zizig1 + Z = PoPo
o=1 o

®)

Note that the proof of (7) and (8) is shown in APPENDIX.
Then, we construct the final Lyapunov function as

1 1 5
n— — 9
where €, = 2f,/(2fn — 1), fn > % Then, combining (5)-
(8) and calculating the differentiation of (9) yields

n—1 n—1 n—1 7.L2

2 2 o

fE%mwf§%u¢wEX—
o=1

+ZT0950¢0_2 721

+ Zn(—kz,nsz’ bt Ap(wng(t)) + Un(Zn))

1. . (10)
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Then, the time-based controller and adaptive update law
are designed as

Qpn = m( k1, nZQq ! giz Zn@nQZ(Zn)Qn(ZnI)l)
Sén - 21:% Z%QZ( )Qn(Zn) - Tn@n (12)

B. Multi-threshold event-triggered strategies

This paper proposes four different triggering condition
for system (1) to optimize the communication efficiency.
Firstly, we define e(t) = d(t) — g(t) is the measurement
error between the adaptive controller d(¢) and actual system
controller g(t), with g(t) = d(t;), Vt € [tj,tj41).

Case 1: Fixed-threshold strategy

Under fixed-threshold strategy, ¢/ is a constant. The adap-
tive controller and triggering condition are designed as

d(t) = v, — 0 tanh(2a?)
= inf{t € R|e(t) |> ¥}, t1 = 0

13)

trt1 (14)

where ®, ¥ and ¥ > 1) are all positive designed parameters.
There exists a parameter () which, when V¢ € [t;,t;41),
satisfies B(t;) = 0,841 = #£1,|8(¢)] < 1. Combining
Lemma3 and these equations into (10) yields:

V< Zkloz Zkzoz +Z

n

—> " 25,6, 4 0.2785RD
€o
o=1

15)

Case 2: Relative-threshold strategy

The relative-threshold strategy dynamically modifies trig-
gering thresholds according to the amplitude of the control
signal. For larger signals, it utilizes adjustable fault-tolerant
thresholds to lengthen update intervals, while for smaller
signals, it applies precision-focused thresholds to improve
responsiveness. This approach aims to balance stability with
performance effectively. The adaptive controller and trigger-
ing condition are designed as

d(t) = —(1+ 0)(ay, tanh =g + 91 tanh %) (16)
tpr1 = inf{t € R|le(t) |> 0 |g(t)| + U1} (17)
where @, ¥;,0 < 6 < 1 and ¥; > U1/(1 —0) are

positive designed parameters. There exists continuous time-
varying parameter ((t)1, 3(t)2 which, when Vt € [t;,t;41),
satisfies |B1] < 1 and |B2] < 1. Since & > 0, there-
fore atanh(a/®) > 0, from (16) we get d(t) < O,
it follows that d(t)/(1 + f1(t)0) < d(t)/(1 + 6) and
|B2(t)91/(1 + B1(t)0)| < ¥1/(1 — 6). Combining Lemma3
and these equations into (10) yields:

n n n 2
V=D kesdt = Y ko D00
o=1 o=1 o=1
n T
=Y @@, + 0.557RD
o=1 €o
Case 3: Switched-threshold strategy
This switched-threshold approach integrates fixed and
relative threshold strategies. The fixed-threshold strategy,

(18)
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|g(t)] > G, maintains computational errors within predefined
limits to ensure stability. Conversely, when |g(t)] < G,
the approach transitions to a relative threshold, adjusting
thresholds proportionally to the signal amplitude for high-
precision tracking. By combining these strategies, the trig-
gering condition is designed as follows:

o Jinf{t e Rlle(t) |2 019()| + 91} g(t)] <@
MU ) inf{t € Rlje(t) |> 0} lg(t)| > G

where G is a user-designed parameter and 6, ¥; and ¥ are
the same parameters defined before. Then, we have

& = sup le(t)] < max {8lg(t)] + d1, 0}, V¢ € [t ¢541) 20)
As with fixed-threshold strategy and relative-threshold

strategy, define |3(t)] < 1,8(t)1 < 1,8(¢)2 < 1. Similar
to (15) and (18), we obtain:

V S — zn: klyozgq — zn: ]ﬂgyozgp + zn:(ﬁ
o=1

- Z Gopo + 08335 R
o= 1

Case 4. Self-triggered strategy

This self-triggered approach calculates the subsequent
trigger time t;y; by considering the present control sig-
nal g¢(t), its rate of variation, and dynamic parameters
0,91, max{|d(t)|,7}. By removing the need for constant
threshold monitoring typical of traditional event-triggered
control, this framework maintains adaptive accuracy. The
adaptive controller and triggering condition are designed as

d(t) = —(1 + 0)(c, tanh 2282 4 §; tanh 201) (22)

R 9lg(H)|+91
Lo =1+ max{[d(t)[,} (23)

where @, 91,0 < 6 < 1, 7 and ¥J; > 91 /(1 — ) are positive
designed parameters. Similar to the (21), one gets

n n n
. U
V<— § ky 0227 — § ko o22P + § (=2
o=1 o=1 o=1

n

19)

2L

(24)

-yl @0% +0.557R®
o= 1
C. Stability Analysis
Given the structural similarity of the four aforementioned
cases, this paper systematically integrates the final formula
to eliminate redundant computations with term A.

n n n
. u
V<- E k10229 — E ko o22P + E (=2
o=1 o=1 o=1

n (25)
7—(J ~
- @o‘ﬂo +4
o= 1
0.2785R® Fixed-threshold strategy
A 0.557R®  Relative-threshold strategy 26)
] 0.8355R® Switched-threshold strategy
0.557TR®  Self-triggered strategy
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Theorem 1. Consider a closed-loop system consisting of a
system (1) with time-varying constraints, a virtual control
law, an actual controller (11), and an adaptive law (12).
The stability of the closed-loop system is then maintained to
establish the tracking error performance at a fixed time.

Proof. for any f,, > 1/2, we can get 7,¢,9, < —Z2@2 +

fnTo
2

( n 22 q n ZQ p n ()52 g
o=1 2 o=1 2 o=1 2€O
3 q 3

@2, then we get

-
B . o:ln o 27)
_ Z . ( o2 ) _ o
2\ 2¢ 2e
o=1 ¢ o=1 ¢
(U2 N foTo o
o 4 o ° %5 A
+oz:; ( S+ O) -
where m = min {29, o, 2Pk2 4, 70,0 = 1,2,...,n}.
%2\ P
Conjunction Lemmal, we can get (22:1 Fa ) <>

% + (1 —p)pﬁ. Bringing this inequality to (27) and
simplifying it by calculation yields

n ~9 q n

3 TO ~

V< —aVI-bVP+ Y (;i) -> 5 @2 +c1 (28)
o=1 o o=1 o

2 2
where ¢ = 7w/(n + 1p)q, b=m, ¢ = 22:1(% + % +
foTe 32) 4 (1 — p)p™7 + A. Assume that there exists an
unknown parameter -y, satisfying |@,,| < vm, then discuss

the following two cases:

Case 1. 7y, < \/2¢,: In this case, we have 377 _, To(52> )7 —
>y 325 < 0. Then (28) is rewritten as:

>

V < —aVi—bVP + ¢ (29)

-2
Case 2. v, > \/2¢,: In this case, we have 22:1 To(222 )9 —

2¢e,
~2
n ~92 n o7 n ~2 .
Zo:l 27;)0 SDO S Zo:l T0(2goo )q - Zo:l 27—500 fYO' Then (28) s
rewritten as:

. n ,72 q n T ,72
< —aV I —-bVpP o | =2 - 2% (30
v eayn(32) -5 oo
o=1 o=1
Combining the two cases above, we get:
V< —aVl—-bVP +ec (31)
where
1, if v, < v/2¢,
= n ~2\ 4 N2 . 32
61+ZTO(;;) - e, 1f’yoz\/ﬁ( )
o=1 ° o=1 °

According to Lemma2 and [27], we can conclude
that the signals of the considered -closed-loop sys-
tem are bounded and converge to tight sets w €

min {V(w) < (ﬁ)é, ((1_70[)}))1) } And the setting time
is T < Thae = . Then, based on the

1 1
al(¢=1) T BI(1=p)
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definition of V, it can ll)e concluded that the inequality

=yl < 2(55) " is satisfied. This implies that
by selecting suitable parameters, the tracking error can be

minimized to a smaller range within a fixed time interval. [

IV. ILLUSTRATIVE EXAMPLE

In this section, we present a simulation example to assess
the effectiveness of the proposed control algorithm. The
nonlinear dynamic system under consideration is shown as

1 = COSXo

o= g+ %m%x% + %sinz(xlxg)g (33)
+32% + 55 (u+0.18)?

y= I

Given the desired trajectory z,. = 0.5sin(0.1¢) cos?(0.6t),
it is required that component z; in the system achieves
optimal dynamic response performance during reference tra-
jectory tracking. In this paper, to ensure the boundedness of
System (1), parameters p11 = 1,012 = 2,p21 = 8,p22 =9
are configured. The update rate ¢; is set to f; = 6, fo =
3,11 = 10,9 = 10, with other parameters specified as u; =
1,U; = 1,q = 1.05,p = 1.5. Initial values are assigned
21(0) = 0.05,22(0) = 0.5.Subsequently, explanations of
four triggering strategies are presented: In the fixed threshold
strategy: k11 = 800, K10 = 19,9 = 3,® = 900,9 = 5; in
the relative threshold strategy: k11 = 800, K;2 = 18,0 =
0.1,9; = 15,® = 900,49, = 0.1; in the switching threshold
strategy: k11 = 800,K;2 = 19,9 = 9 = 10, =
900,¢ = 4,G = 80,0 = 0.1,9; = 2,® = 900; and in the
Self-trigger Threshold Strategy: k11 = 1200, K12 = 3,0 =
0.51,9; = 15,91 = 2,7 = 650, & = 900.

TABLE 1
TRIGGERING COUNTS OF THE DIFFERENT STRATEGIES

Fixed-threshold strategy 439
Relative-threshold strategy 565
Switched-threshold strategy | 1514347

Self-triggered strategy 798

Results are shown in Figs.1-3. Fig.1 compares the target
reference trajectory with the tracking output of the system
under different ETC strategies. Trajectory error analysis
demonstrates high-precision stable control, with tracking ac-
curacy ranking: relative > switched > fixed > self-triggered
ETC strategy. The analysis shows that the more frequently
the triggers occur, the better the tracking performance. Fig.2
reveals the changes of controllers. The controller remains un-
changed when the triggering condition is not satisfied. Fig.3
illustrates the trigger interval distribution of multi-threshold
event-triggered strategies. As shown in Table I, trigger counts
vary notably across strategies, yet all significantly reduce
triggering frequency in 20,000 test cycles while maintaining
tracking performance and minimizing computational costs.
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The consistency tracking performance of signal z1 and restricted signal w1, along with their corresponding desired signals x,- and w;, under (a)

fixed threshold, (b) relative threshold, (c) switched threshold and (d) self-triggered strategies, respectively.
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Fig. 2. The change of the actual controller g under different ETC strategies, where (a), (b), (c), and (d) represent the fixed threshold, relative threshold,

switched threshold and self-triggered strategies respectively.
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Fig. 3. The trigger interval for event triggering under different ETC strategies, where (a), (b), (c), and (d) represent the fixed threshold, relative threshold,

switched threshold and self-triggered strategies respectively.

V. CONCLUSION

This paper integrates an adaptive fixed-time control algo-
rithm with event-triggered control strategies to track fully
state-constrained nonlinear systems. A state transformation
using an asymmetric nonlinear mapping auxiliary system en-
sures closed-loop stability and tracking accuracy within pre-
set durations. The proposed multi-threshold event-triggered

strategies have been rigorously validated through comprehen-
sive numerical simulations. The results demonstrate that the
four types of triggers not only achieve excellent tracking ac-
curacy but also significantly reduce trigger frequency, thereby
conserving computational resources and optimizing overall
system efficiency. For future directions, we are inspired
by [28], [29] to extend the proposed framework to tackle
optimal control problems of discrete event systems.
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APPENDIX

Step 1: Construct the first Lyapunov function: V; = z%+
25 P2, where e1 = 2f1/(2f1 — 1) with f; > 1/2, and ; =
(1 — @1 1s the estimation error with ¢ being the estimate of
1 defined later. Combine (3)-(6) with the above ‘equation:
Vi = 21 (—ko 1222 4 2y oy + Uy (2)) — 2222
where Uy (Z1) = Ly (w2) + %21 + kg,lzfpfl, and ko7 is a
positive designed constant. U;(Z;) can be approximated by
RBFNNSs with accuracy A1, so that Uy (Z71) = H{ Q1(Z,,) +
w(Zl), ||w(Z1)|| < A1, where \y >0, Z; = [wl,ws,u’)s].
Based on the Young’s inequality, one obtains: lel(Zl) <
(1/(2u?))z? ZolﬁT(Zl)Ql(Zl) +u? /2422 /24 A2 /2, where
p1 = ||H1||” are unknown constants, and wu; is a positive
designed constant. With positive constants ky 1, k21 and 7,
design the virtual control law «; and adaptive law c,él as
- 2%Z1¢1QT(Z1)91(21) +ws (35)

2219T( Zn) 0 (Z1) — 111 (36)

Bringing (35)-(36) into (34), we can get the equation (7).
Step i: the i-th Lyapunov function is V; = Vi1 + 5 124
32 /2¢; where g = 2f1/(2f, —1) and fl > 1/2 we have

V— Zklozq Zkgozp—i-z

1 2
+Z e

2q
o] = —kl’lzl

b1 =3

1. (37)
e WYiPi

+ zi(_kQ,iZizp_l + zit1 + o + Ui(Z;))

Similar to (34), Ui(Zi) =z 1+1L; (’J}i+1) — Qi1+ %Zz +
K2 Zz2p

! where ¢y = Y20_! 8;‘1; L(Wey1+Ls(Woy1))+

1—1 Oai—1 A i—1 Oai—1 o+1 . o
Dom1 6 Pot 200 Bz . With positive ki ;, k2 ;

S

and T;, design virtual control law «; and adaptive law cﬁi as
2q-1 %zi@Q;f(Zi)Qi(Zi) (38)
(39

w)S%(Z;)

o; = —k1,%;

Qéi = 2u2 ZQQT(

— Tii
Bringing (38)-(39) into (37), we can get the equation (8).
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