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Abstract— Robot swarms have recently shown great promise
in monitoring the operation of heterogeneous sensor networks
(HSNs). However, current methods suffer from prohibitive
search costs and inaccurate detection of critical nodes that
require maintenance. In this study, we develop a hybrid control
approach that integrates two control stages to efficiently identify
maintenance-requiring nodes within a widely deployed HSN
using robot swarms, providing reliable support for subsequent
maintenance tasks. First, we introduce a coverage control
strategy based on the Voronoi tessellation of the task envi-
ronment, rapidly identifying areas with high signal intensity
(SI) in the HSN. Next, we define the Node Influence metric
to quantitatively measure the urgency of maintenance for each
node based on SI and the robustness of the connections between
nodes. Then, we switch to another control profile to identify
nodes that potentially require maintenance. We also prove the
convergence and correctness of the method. Finally, results from
numerical simulation and experiments are provided to validate
the efficiency, scalability, and transferability of our approach.

Index Terms— Robot swarms, node detection, hybrid control,
coverage control, heterogeneous sensor networks.

I. INTRODUCTION

Monitoring complex environments requires a variety of
sensors, and the advance of multi-sensor fusion technology
enables different types of sensors to collaborate and form
heterogeneous sensor networks (HSNs) [1], [2]. HSNs are
increasingly prevalent in real-world applications involving
intricate tasks, such as search and rescue operations, lo-
gistics distribution, and environmental governance [3]–[5].
However, sensors deployed in the environment may deviate
from their original positions due to vibrations, impacts, and
other factors, leading to changes in the network topology.
Such topological variations may result in a shift in the
structural importance of certain nodes that are essential for
maintaining the connectivity of HSNs. In this study, we refer
to these nodes, whose importance emerges from the evolving
topology itself, as maintenance-requiring nodes (MRNs).

When HSNs experience failures or performance degra-
dation, the original role assignments based on initial de-
ployment configurations often become obsolete, rendering
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maintenance strategies derived from them ineffective. Conse-
quently, it becomes imperative to identify the nodes that have
become critical in the new topology to ensure the stability
and continued functionality of HSNs [6].

Although the MRNs are inherently dynamic, the standard
for their evaluation should remain consistent. Therefore, the
first challenge is to develop a robust and unified evaluation
standard to accurately determine whether a node needs
maintenance. Some common metrics defined from network
theory, such as degree centrality, betweenness centrality, and
eigenvector centrality [7], have inherent limitations: they
are not suitable for sparse networks or networks with a
large diameter [8], and incur a high computational cost in
large-scale networks [9]. Although some new metrics, such
as vulnerability level [10], have recently been proposed to
define MRNs, they often do not accurately reflect the robust-
ness of connections between nodes in weighted networks.
Specifically, nodes with the same vulnerability level may be
located at either the network’s core or periphery, which will
mislead the robots and cause unsuccessful detection [11].

The second challenge is that if a large-scale HSW is
deployed over a large area, manual inspection of thousands of
nodes is impractical. To address this challenge, deploying a
robot swarm (RS) to systematically explore the task area and
collect comprehensive information from all nodes for eval-
uation represents a promising and effective approach [12]–
[15]. RSs implement distributed control strategies that enable
efficient inspection of numerous nodes, facilitating node
detection through a divide-and-conquer approach [16], [17].

Various spatial partitioning methods have been proposed
to achieve target coverage in the field of RSs [18], [19].
However, these methods tend to be inefficient as the scale of
the network increases. Furthermore, many detection schemes
require prior knowledge of the HSNs, such as network
topology or node kinematics [20], which may not be feasible
in certain scenarios. For instance, if urban base stations
are damaged after an earthquake, the information of their
location, coverage, and connectivity may be dramatically al-
tered, rendering prior knowledge irrelevant [21]. The urgency
of rescue operations often makes it impractical for RSs to
traverse all targets for MRN detection.

In light of these challenges, this work focuses on identi-
fying nodes within HSNs that exhibit high signal intensity
(SI) but low connection robustness, as failures in these
nodes could lead to widespread network disconnections.
We propose a two-stage distributed control framework for
efficiently identifying MRNs in HSNs using RSs. In the
first stage, we introduce a coverage control technique based
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on Voronoi tessellation to effectively distribute the robots
across the target area. Subsequently, a gradient-based control
profile is implemented for the RSs to locate target areas
based on SI. In the second stage, the RS evaluates the Node
Influence (NI) of each node using onboard detection devices,
employing global coordination to pinpoint the MRNs. The
main contributions of this paper are summarized as follows:
• We develop an innovative hybrid control scheme for RSs

to explore HSNs and detect nodes requiring maintenance;
• we propose a two-stage strategy for area exploration fol-

lowed by node detection, which outperforms conventional
coverage control and exhaustive detection methods. Our
method significantly improves node identification speed
and efficiency, without prior information about HSNs;

• We introduce a novel metric NI to quantitatively assess
the urgency of maintenance for each node based on SI of
the HSN and the strength of node connections. Compared
to existing metrics, NI significantly improves detection
accuracy and is more applicable in various scenarios.
The remainder of this paper is organized as follows.

Section II models the RSs and HSNs, then formulates the key
problem. Section III details the solution procedure compris-
ing a two-stage hybrid control strategy, then briefly analyzes
the correctness of the proposed method. Section IV presents
simulation results that demonstrate the practical performance
of our approach. Finally, Section V concludes the paper and
outlines several future research directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider an RS with I identical robots, indexed by
{1, 2, . . . , I}, moving in a two-dimensional convex and com-
pact plane Q ⊂ R2. Let pri(k) ∈ R2 denote the location of
the ith robot at time k. The instantaneous configuration of the
RS is P r(k) = [pr1(k), . . . , p

r
i(k), . . . , p

r
I(k)]. The position of

the ith robot follows the first-order model:

pri(k + 1) = pri(k) + Tsui(k), (1)

where ui(k) is the control input at time k, ui(k) ≤ v
represents the control bound, v ∈ R>0 is the maximum linear
velocity of the robot, and Ts is the sample time.

Robots communicate with each other within a circular area
of radius Rc ∈ R>0. We apply Euclidean distance to measure
the distance between two points in Q. For the ith and jth

robots,
∥∥pri(k)− prj(k)

∥∥ ≤ Rc represents a bidirectional
communication link within their communication range.

Robots are also capable of detecting sensors within a disk
of radius Rd ∈ R>0, acquiring information on positions,
neighboring nodes and the environment. The perception
capacity decreases as the distance between robots and sensors
increases, which follows the differentiable function below:

f(q, pri(k))=

{
δe−λ∥q−pr

i(k)∥
2−α ∥q−pri(k)∥≤Rd,

0 ∥q−pri(k)∥>Rd,
(2)

where q ∈ Q is at any point within the task area, δ ∈ (0, 1)
is a coefficient representing the maximum perceptual ability,
λ ∈ (0,∞) is the attenuation coefficient, and α = δe−λR2

d

is a constant that returns the boundary to zero.

Given a plane Q ⊂ R2, an HSW consists of N sensors
that may exchange information with each other through the
wireless module they assembled and have different com-
munication capacities. We employ the Gaussian function,
represented as g(q, psn) = exp(− 1

2σ2
n
∥q − psn∥

2
), to describe

the signal intensity (SI) among the sensors, where σn is the
speed of SI attenuation that determines the sensing range
and psn ∈ Q is the position of the nth sensor in the HSN.
This allows us to view Q as a non-uniform SI field and
compute the SI at any q as ϕ(q) =

∑N
n=1 γng(q, p

s
n), where

γn is the heterogeneous feature parameter for the nth sensor.
The adoption of HSWs setting, where sensors differ in both
SI and sensing ranges, not only aligns with the variability
commonly observed in real-world sensor deployments but
also enhances the generality of our model. Thus, our pro-
posed framework not only applies to idealized homogeneous
networks but to a broader range of practical scenarios.

Formally, an HSN is abstracted as an undirected graph
G = (V, E) where V = {1, 2, . . . , N} denotes the set of
vertices and E ⊆ V × V denotes the set of edges. Several
notions are defined to capture the properties of HSNs.

Definition 1 (Path). Given G, a path between the nth and
mth node, denoted by π(n,m), is a sequence of vertices
where there is an edge between every two adjacent vertices.
We denote by Π(n,m) the set of all paths between the nth

and mth node. With a slight abuse of notations, we also
denote by Π(n, S) =

⋃
m∈S

Π(n,m) as the set of all paths

between the nth node and a set of nodes S ⊆ V in G.

Definition 2 (Path length). The length of a path π(n,m) is
the number of its edges, denoted by |π(n,m)|.

Definition 3 (Communication distance). The communication
distance between the nth and mth node in G is defined as
d(n,m) = min

π(n,m)∈Π(n,m)
|π(n,m)|.

Definition 4 (Neighbors). Suppose that the nodes in G ex-
change information within an unknown radius Rs

n. Then, for
the nth and mth node, if ∥psn − psm∥ ≤ Rs

n, we set d(n,m) =
1 and refer to the mth node as a 1-hop neighbor of the nth

node. Subsequently, the set of d(n,m)-hop neighbors of the
nth node is N d(n,m)

n = {m ∈ V : |π(n,m)| = d(n,m)}.

As sensor networks are susceptible to various internal and
external disturbances, some nodes may require maintenance
during operation. This work aims to detect such nodes and,
accordingly, formulates the central problem to be addressed.

Problem 1 (Detection of MRNs in sensor networks). An
HSW of N sensors is deployed in a convex and compact
region Q ⊂ R2. These sensors have varying locations psn,
sensing ranges σn, and SI g(q, psn), rendering Q an uneven
SI field. Then consider a team of I robots in Q, with limited
communication range Rc, detection range Rd and detection
capability defined in (2). They start from P r(0) to search for
MRNs and subsequently update their locations following (1).
Our goals are two-fold: (i) establish a criteria to define
MRNs; (ii) synthesize a control strategy to detect MRNs.
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III. HYBRID CONTROL FRAMEWORK

Our framework for MRN detection adopts a two-stage
hybrid control strategy that integrates SI-guided area ex-
ploration and NI-guided sensor detection. Specifically, the
robots are guided by the SI of the HSN to search the
space and identify high SI areas in the first stage, ensuring
comprehensive coverage of the environment. In the second
stage, individual robots perform local searches following the
NI to locate the MRNs within the identified high SI areas.
This design allows for efficient identification of MRNs while
avoiding an exhaustive examination of nodes in the HSN.
The overall framework is illustrated in Fig. 1.

Fig. 1: Overview of the hybrid control framework.

A. Criteria for Maintenance Requesting Nodes

We establish criteria to identify MRNs that may severely
damage the network communication when they become
disconnected. We first introduce a probability to quantify the
node’s topological vulnerability, defined as follows:

P(n) =
|Π(n,N 1

n)|
N∑

d(n,m)=1

|Π(n,N d(n,m)
n )|

. (3)

where n,m ∈ V . Disconnection of a node isolates its one-
hop neighbors and removes them from the HSN. Thus, this
probability indicates the ratio between the communication
path from the target node to its one-hop neighbors and the
path from the target node to all communicable nodes within
the HSN. This ratio directly reflects the number of isolated
nodes resulting from node failure. Specifically, a higher ratio
implies a greater dependence on the communication path
between the node and its one-hop neighbors, leading to a
higher number of isolated nodes upon failures. Conversely,
a lower ratio indicates more indirect connections through
multi-hop neighbors, which enhances the network robustness
and reduces the number of isolated nodes after failures.
For efficient real-time communication and computational
feasibility, we consider nodes up to two hops away.

Notably, we exclude nodes located on the periphery of
the network from analysis. These peripheral nodes exhibit
weaker connections within the network topology, thus their
disconnection has a marginal impact on the overall network
functionality. Instead, we prioritize high SI areas to direct the
robots towards more centrally located nodes. Consequently,

we define the NI metric to evaluate the importance of nodes
based on their connection strength and SI:

µ(n) = P(n)ϕ(psn). (4)

B. Stage I: Signal Intensity Guided Area Exploration

In stage I, we develop an SI-guided exploration strategy
for robots to rapidly identify high SI areas, which potentially
contain MRNs. The perceptual level of an individual robot
toward a specific location is inversely correlated with the SI
of that location; thus, a higher SI indicates a lower level of
perception by the robot at that point. This mechanism nat-
urally directs robots to prioritize movement toward high-SI
areas, enhancing the system’s spatial exploration efficiency.

For the RSs, we define the perceptual level on location q at
time k by φ(q, k), and the initial values are set as φ(q, 0) =
ϕ(q). To minimize ineffective exploration in areas with weak
signals, we establish a lower threshold ϕ0 for SI. Locations
with SI values below ϕ0 are considered fully known and do
not require further exploration. Note that this threshold only
applies to the initial perceptual level defined as:

φ(q, 0) =

{
ϕ(q) ϕ(q) ≥ ϕ0,
0 ϕ(q) < ϕ0.

(5)

Then, the update of a robot’s perceptual level towards a
specific point follows the dynamic equation below:

φ(q, k + 1) = (1− f(q, pri(k)))φ(q, k). (6)

We set its increment as ∆φ(q, k) = −f(q, pri(k))φ(q, k).
Given that φ(q, k) is a decreasing function, ∆φ(q, k) is thus
negative. Based on this, our objective is to maximize the
magnitude of the change between two moments, represented
as min∆φ(q, k). Therefore, the objective of this section is
to maximize the following function within the global scope
of the tasks area composed of Voronoi cells:

H(P r(k), k) =

∫
Q
f(q, pri(k))φ(q, k)dq. (7)

To ensure the orderly operation of the RS within the task
environment, it is essential to establish clear dominance for
each robot. We apply Voronoi tessellation to partition the
area into distinct domains for each robot as follows:

Vi(k)={q ∈ Q | ∥q − pri(k)∥ ≤
∥∥q − prj(k)

∥∥ ,∀j ̸= i}. (8)

By optimizing locational costs, we enhance the coor-
dination among the robots. Then, a gradient-based ap-
proach is utilized to maximize the cost function [22], i.e.,
maxH(P r(k), k), can be derived as follows:

∂H(P r(k), k)

∂pri(k)
=

∫
Vi(k)

∂f(q, pri(k))

∂pri(k)
φ(q, k)dq

= MVi(p
r
i(k)− CVi), (9)

where MVi and CVi respectively represent the mass and
centroid within Vi(k), as shown below:

MVi
=

∫
Vi(k)

2δλe−λ∥q−pr
i(k)∥

2

φ(q, k)dq, (10)

CVi
=

1

MVi

∫
Vi(k)

2δλe−λ∥q−pr
i(k)∥

2

φ(q, k)qdq. (11)
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Therefore, the control law is expressed as:

usi
i (k) = −κsi(pri(k)− CVi). (12)

Note that the control strategy comprises two independent
stages. To enable the timely initiation of the second stage,
the SI-guided area exploration must be completed within a
finite time. This requirement is formalized in Theorem 1.

Theorem 1. The SI-guided area exploration stage completes
in a finite time.

To analyze the performance of our control law on RS, we
establish Theorem 2 for the area exploration process:

Theorem 2. Under the control law (12), the trajectories
taken by RS, from any initial configuration P r(0), invariably
converge to the critical points of H.

During this stage, the robots asymptotically converge to
the centroids of their respective Voronoi cells, thus moving
towards high-SI regions that potentially require investigation.
This also ensures efficient spatial distribution of the RS.

C. Stage II: Node Influence Guided Sensors Detection

Following the first stage, the ith robot disperses towards
the centroid of the area with high SI, meanwhile employs
its onboard equipment to detect nodes within the range Rd

that are subsequently added to the set Di(k) = {n ∈ V :
∥psn − pri(k)∥ ≤ Rd} ∩ Vi(k). The second detection process
aims to pinpoint the MRNs within Di(k).

Within its autonomous domain, the ith robot calculates
max

n∈Di(k)
µ(n), however, attains only a local optimum. This

is attributed to the fact that the maximum value identified
by a robot within its designated area is not guaranteed to be
the maximum value in another robot’s autonomous region,
indicating that local optima do not necessarily correspond
to global optima. This situation is exemplified by µ(m) >
max

n∈Di(k)
µ(n), where m ∈ Dj(k). For global optimization,

we set the influence threshold θ of the HSN as:

θ = min
i∈{1,...,I}

max
n∈Di(k)

µ(n). (13)

Nodes with NI values larger than the threshold are identi-
fied as MRNs, which are then included in the set Mi = {n ∈
Di(k) : µ(n) > θ}. The ith robot computes the barycenter
of the MRNs within Mi as in (14) and moves towards BMi

to monitor vulnerable nodes for potential maintenance.

BMi
=

1

|Mi|
∑
n∈Mi

psn. (14)

The control law for this stage is defined as:

uni
i (k) = −κni(pri(k)−BMi

), (15)

where κni = v ∥pri(k)−BMi
∥−1.

The MRNs detection based on NI can be considered as
sorting several nodes, which determines the worst bound
of finite-time convergence k. For example, bubble sort ex-
hibits O(n2) time complexity, while merge sort operates at
O(n log n). Using bubble sorting as an example, identifying
the maximum NI value among n nodes at time k requires, in

the worst-case scenario, comparisons. n(n−1)/2. Extending
this to selecting minimum NI values across I robots incurs
I(I−1)/2 comparisons in the most unfavorable case, which
can also guarantee task completion within a finite time. This
result is formally presented in the following theorem:

Theorem 3. The whole hybrid control procedure is com-
pleted in a finite time.

This result ensures that the entire hybrid control pro-
cess—from initial SI-guided exploration to final node detec-
tion—terminates within a bounded time, which is essential
for practical deployment in large-scale sensor networks with
time-sensitive maintenance needs. Furthermore, we assess
the convergence properties of the NI-guided control law to
ensure the reliability of node localization.

Theorem 4. Under the control law (15), the trajectory of
the ith robot is asymptotically stable and converges to BMi

.

This result implies that each robot, upon entering the NI-
guided detection stage, converges to the barycenter of nearby
MRNs. This stable behavior enables efficient localization of
critical nodes. Due to space limitations, a proof is omitted
here but will be provided in a forthcoming extended version.

D. Hybrid Control Law

We have implemented a hybrid control framework to
facilitate the integration of the two stages and define the
conditions for task completion. We start by defining the error
of the ith robot at moment k in the two following processes:

|esii (k)| = |pri(k)− CVi |,
|enii (k)| = |pri(k)−BMi

|.
(16)

To ensure that the control strategy permanently switches
from stage I to stage II, we define a flag Γi(k) governed by:

Γi(k+1)=

{
1, if Γi(k) = 0 and |esi

i (k)| ≤ ϵsi,

Γi(k), otherwise.
(17)

Initially, Γi(0) = 0. Once the SI error |esii (k)| falls below
the threshold ϵsi, the control law switches to uni

i (k) and
remains there thereafter, which is formally stated as:

ui(k) =

{
usi
i (k), if Γi(k) = 0,

uni
i (k), if Γi(k) = 1.

(18)

The detection process terminates when |enii (k)| ≤ ϵni

holds, indicating that the robot has effectively approached
the barycenter of the identified MRNs. In particular, the
proposed hybrid control law (18) incorporates a rigorously
designed switching flag (17) to govern transitions between
control modes. This mechanism ensures that, once the pre-
defined switching condition is met, the system irreversibly
transitions from the control law (12) to (15). This one-
way transition effectively eliminates the possibility of Zeno
behavior—characterized by an infinite number of control
switches in a finite time—which often undermines the stabil-
ity of hybrid systems. By enforcing this irreversible switch-
ing logic, the framework guarantees finite-time convergence
and ensures that control actions remain implementable.
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Fig. 2: The deployment of the robot swarm executing the proposed hybrid control framework.

IV. SIMULATION RESULTS

This section provides simulation results to validate that
our hybrid control approach is effective in exploring the
deployed area of robot swarms and detecting the structurally
vulnerable nodes in an HSN. To this end, we consider a
square operational area Q, each side measuring 10km. Our
simulation environment is discretized as a grid of resolution
x = y = 0.002km, and the simulation is conducted in
discrete time with a sampling period Ts = 1min.

In this task area, 150 nodes are randomly distributed.
These nodes are segmented into five clusters, each compris-
ing 30 nodes, and assigned distinct communication radii of
0.5km, 0.75km, 1km, 1.25km, and 1.5km, respectively. The
SI among nodes adheres to the function ϕ(q, 0), defined by
the parameters γz = 0.5 + 0.25z and σz = 2 + z, with the
cluster index z = 0, 1, 2, 3, 4.

The RS comprises 5 robots, each with initialized positions
within the defined bounded area. These robots are equipped
with a communication radius of Rc = 4km and a detection
radius of Rd = 1km and are programmed to achieve a

maximum forward velocity of v = 72km/h. The sensing
capabilities of these robots are delineated by the equation (2),
with parameters δ = 1 and λ = 0.02. Furthermore, we have
configured the control law gains at κsi = 0.6 and κni = 1,
while establishing an acceptable error margin delineated by
ϵsi = 0.002km and ϵni = 0.002km.

We start by implementing the control law (18). The
subfigures (a)∼(c) depict the trajectories of robots guided by
the SI field toward the centroids of their respective Voronoi
cells in Fig. 2. The background color in the simulation
visually indicates the level of perception that the robots
have of a specific area: blue signifies low SI, denoting a
high perception level of the area by the robot, whereas
yellow indicates high SI, meaning a lower perception level
of the area. The subfigures (i)∼(l) depict the navigation
process based on NI, which drives the robots towards the
barycenters of their associated MRNs. In terms of trajectory
characteristics, stage I features smooth trajectories, while
stage II involves piecewise-linear trajectories. The integration
of these two distinct trajectory types exemplifies the hybrid
nature of the proposed method.
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We proceed to evaluate the performance of the proposed
method. The assessment relies on the error metric defined
in (16), with the corresponding results illustrated in Fig. 3.
The switching flag delineates the control process into two
distinct stages, each characterized by a monotonic decrease
in the error metric. This consistent decline not only confirms
the convergence properties of the approach but also substan-
tiates its effectiveness across distinct control regimes.

Fig. 3: Performance of the RS’s tracking error.

To further contextualize its performance, we conducted
comparative analyses with both the centroidal voronoi tes-
sellation (CVT) [22] and exhaustive search (ES) algorithms.
When relying solely on CVT for MRN detection, the control
procedure tends to terminate prematurely, often failing to
accurately localize the MRNs. In contrast, the ES requires
robots to inspect all nodes. While this method guarantees
completeness, its efficiency is highly sensitive to the initial
spatial distribution of the robots. In an ideal setting—where
five robots each inspect 30 nodes—the full detection process
can theoretically be completed within 31min. We conducted
100 simulations under varying HSW topologies and random-
ized initial configurations of the RS position. A statistically
significant result is summarized in TABLE I.

TABLE I: Comparison of performance of various strategies.

Index this paper CVT ES

End time 11.02min 10.85min 88.47min
Detection efficiency 9.07 9.22 1.69

Accuracy ratio 100% 48.67% 100%

V. CONCLUSION

In this work, we developed a novel hybrid control frame-
work that integrates area exploration and node detection
to efficiently identify structural vulnerability in HSNs. We
began by designing a coverage control strategy based on the
sensing capacity of the robots and the distribution of the
HSN’s signal intensity. Then, we defined a node influence
metric and proposed a barycenter-driven control method for
node detection based on the index. Finally, we conducted
empirical studies to demonstrate the performance of the
method. For further research, we will extend our framework
to consider time-varying sensor networks and heterogeneous
robot swarms with different sensing and control capabilities,
where distributed control is essential.
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multi-agent planning: A survey,” ACM Computing Surveys, vol. 50,
no. 6, 2017.

[4] N. Hossein Motlagh, P. Kortoçi, X. Su, L. Lovén, H. K. Hoel,
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