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Abstract— Many existing studies on multi-agent systems
(MASs) control have primarily focused on output or consensus
tracking problems, often neglecting the impact of external
disturbances and the efficient use of control resources. In
this paper, we propose a novel adaptive dual-observer control
scheme that implements a switched-threshold event-triggered
strategy to optimize communication resource utilization. A neu-
ral network is leveraged to approximate the nonlinear dynamics
of MASs, and the adaptive control strategy is designed to
achieve consensus tracking. Then we provide stability analysis
to ensure that each agent’s output can effectively follow the
leader’s trajectory with a controllable bounded tracking error.
Additionally, our scheme is capable to pre-select the lower
bound of triggering intervals, which prevents Zeno behaviors, a
critical aspect for the practical implementation of controllers.
Finally, simulation results on a radar transmitter formation
problem validate the effectiveness of our proposed approach.

Index Terms— Observer design, event-triggered control, con-
sensus tracking, multi-agent systems, nonlinear control

I. INTRODUCTION

In the past two decades, the study of multiagent systems
(MASs) has witnessed considerable growth, driven by their
extensive applications in various application scenarios [1]–
[4]. These systems provide effective solutions for coordina-
tion and control in complex environments. This paper specif-
ically addresses the challenge of signal consensus tracking of
radar transmitter formation within the MASs framework. In
modern vehicular systems [5], radar signal transmitters play
a crucial role, facilitating essential functions such as obstacle
detection, autonomous driving assistance, and distance mea-
surement. However, reliance on a single radar transmitter
poses significant risks, including signal degradation over
distance and susceptibility to environmental interference and
equipment failures. Building on previous research [2], [3],
[5]–[10] this paper explores how multiple follower agents,
initially distributed across different locations, effectively and
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stably track the signal emitted by a leader agent, enhancing
the overall performance and robustness of the system.

External disturbances are prevalent in practical applica-
tions and adversely impact system performances. Distur-
bances arise from electromagnetic interference of devices,
other vehicles,environmental factors, and coupling effects
from adjacent subsystems. To strength system’s resilience
against disturbances, the disturbance observer-based control
(DOBC) method was in [11]. A detailed introduction of
the DOBC method is provided in [12], which serves as
a foundation for a deeper understanding of the approach.
Subsequent works [7], [13] employed Lyapunov stability
theory in conjunction with the DOBC methodology to es-
tablish global stability results for nonlinear systems un-
der mismatched conditions. Furthermore, [14] examines the
effects of both matched and mismatched disturbances on
control performance within the MASs framework, utilizing
directed graphs. Notably, previous studies [7], [11]–[16]
have overlooked unmeasurable states, which are commonly
encountered in real-world systems. Consequently, this paper
introduces dual observers comprising both state and dis-
turbance observers to simultaneously tackle the challenges
posed by unmeasurable states and external disturbances.

Time-triggered control schemes have been widely studied
to tackle communication challenges in MASs, however, they
often cause excessive resource consumption. Event-triggered
control has emerged as an efficient alternative, offering
advantages over periodic pulse control [17]. This approach
is divided into two types based on triggering conditions:
fixed threshold and relative threshold triggering. [18] pro-
vides a thorough summary of these types and proposes a
switched event-triggered mechanism that combines various
strengths. Furthermore, [19] extends the mechanism under
state constraints and fixed time conditions. However, both
[18] and [19] focus solely on nonlinear systems. Our work
seeks to apply the switched event-triggered strategy within
MASs to reduce each agent’s controller triggering frequency,
conserving resources and optimizing control performance.

Inspired by these insights, we propose an efficient control
framework for the radar signal formation problem, which
considers unknown states and environmental uncertainties
during the control process. Our approach leverages back-
stepping [20], filtering [21], [22], and neural networks [23],
[24]. The contributions of this paper are outlined as follows:

1) We introduce a novel dual-observer based control mech-
anism to address the leader-following consensus tracking
control problem in radar formations, independent of the
initial positions of the radar transmitting devices.
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Fig. 1. Our efficient dual observer based consensus tracking control framework for MASs.

2) Given unknown states and external disturbances in ap-
plications, our approach comprises both state and disturbance
observers to enhance controller feasibility. The integration
backstepping and neural networks also significantly reduces
the complexity of controller design.

3) We employ a switched event-triggered strategy that ef-
fectively reduces the triggering frequency, optimizes control
resource utilization and extends the controller’s operational
lifespan, thereby achieving efficient control.

The remainder of the paper is organized as follows.
Section II reviews relevant preliminaries and formulates the
consensus tracking problem for investigation. Section III
develops a dual observer based control approach to address
the problem, followed by the stability analysis. Section IV
includes a case study of radar formation to illustrate the
performance of our approach. Finally, Section V concludes
the work and proposes some future research directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first present a comprehensive overview
of preliminary knowledge such as graph theory, multiagent
systems (MASs) model, dual observers and switched event-
triggered control mechanism. Then we formulate the adaptive
consensus tracking control problem in the MASs setting.

In order to describe the information transformation be-
tween the leader and N followers, according to [25], a
directed graph G = (V, E) are introduced with nodes V =
{v1, ..., vN} and edges E ⊆ V × V . If (vi, vj) ∈ E holds, vj
can transmit information to vi. The matrices A = [ai,j ], D =
diag(d1, ..., dN ) and L ∈ RN×N represent the adjacency,
degree and Laplacian matrices of G, with L = D − A.
The matrix B = diag(b1, ..., bN ) represents the information
transformation between the leader and its neighbor agents. In
this paper, the error term is equal to the difference between
the actual value and the estimative value, ◦̃ = ◦ − ◦̂.

This work investigates the consensus tracking of MASs of
leader-follower settings. The ultimate objective is to ensure
that the output signal of each follower aligns effectively and
synchronously with the reference signal generated by the
leader. The dynamics of each agent is modeled as a nonlinear
equation ẋ = f(x, u) where x ∈ R and u ∈ R are system
state and control input, respectively. f is local Lipschitz with
f(0, 0) = 0. As noted in [26], a nonlinear system possesses
the bounded input bounded state attribute if, given any initial
state and any continuous input being uniformly bounded,
the solution exists and is consistently bounded. The specific
dynamics will later be approximated by a neural network.
Then we leverage the MASs model from [27] as:

ẋi,k = xi,k+1 + fi,k(x̄i,k) + di,k

ẋi,n = ui + fi,n(x̄i,n) + di,n

yi = xi,1

(1)

Here the indexes are: i ∈ {1, ..., N}, j ∈ {1, ..., n} and
k ∈ {1, ..., n − 1}. x̄i,j = [xi,1, ..., xi,j ]

T are the system
states, which are not measurable. ui ∈ R denotes the control
input of the MASs. The output of the i-th follower is
expressed as yi ∈ R. The function fi,j(x̄i,j) represents C1

class nonlinear smooth equation vectors. And di,j represents
unknown external disturbances imposed on the MASs.

Given that the MASs have unmeasurable states and are
exposed to disturbances, we consider a dual observer frame-
work for estimation, which is designed as follows:

1) State Observer: It is often intricate to implement the
output-feedback control profile of MASs when system states
are not measured precisely. To tackle this issue, we first
construct the state observer of MASs model (1):

˙̂xi,k = x̂i,k+1 + f̂i,k(ˆ̄xi,k) + qi,kψi,1 + d̂i,k
˙̂xi,n = ui + f̂i,n(ˆ̄xi,n) + qi,nψi,1 + d̂i,n

ŷi = x̂i,1

(2)

3469

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on September 29,2025 at 03:10:38 UTC from IEEE Xplore.  Restrictions apply. 



where x̂, f̂ , d̂ and ŷ are the estimates of x, f , d and y,
respectively. qi,k is a observer gain, which enables the system
to correct estimation errors more rapidly, thereby improving
the system’s response speed, while also ensuring the stability
of the observer, preventing the observation errors from di-
verging over time. ψi = [(xi,1 − x̂i,1)

T , ..., (xi,n − x̂i,n)
T ]T

represents the error of state observation.
2) Disturbance Observer: Mismatched disturbances in-

creases complexity of controller design and adversely im-
pacts the performance and stability of MASs. Therefore,
it is essential to enhance disturbance rejection capabilities
to achieve high-precision control in the presence of such
disturbances.To address the dynamical disturbances present
in system (1), we construct a disturbance observer as follows:

d̂i,l = τ̂i,l + κi,lx̂i,l (3)
where for l ∈ {1, ..., n}, τi,1 represent an auxiliary variable
and κi,l is a designated positive constant.

To reduce the frequency of controller activation, we in-
troduce a switched event-triggered strategy as [18]. This
strategy balances the controller performance by incorporating
both fixed and relative thresholds. It allows extended update
intervals when signal magnitudes are large while enhancing
precision as signals approach zero. Thus, this approach
optimizes the system performance across a broad spectrum
of signal magnitudes. The adaptive control law wi is detailed
in Section III and the triggering event is defined as:

ui(t) = wi(tk)

tk+1 =

{
inf {t ∈ R||µi| ≥ φ} , |ui| < G

inf {t ∈ R||µi| ≥ δ|ui|+ φ} , |ui| ≥ G

(4)

where tk denotes the triggering time when the controller is
updated, with k ∈ Z. µi = ui−wi denotes the measurement
error of controllers. Here, φ and δ are positive design
constants, with the constraint 0 < δ < 1, and G represents
the designed switching gate. Additionally, αi,n denotes the
virtual controller, while zi,n represents the tracking error,
both of which will be further elaborated upon in Section III.

We consider the relationship between the length of each
transmitter and the spatial arrangement of adjacent transmit-
ters, which is crucial for adaptive consensus tracking control.

Problem 1 (Adaptive consensus tracking of radar transmit-
ters). Given a team of radar transmitters modeled as MASs
consisting of N followers and one leader where their mutual
communication is represented by a directed graph, then
subject to unknown external perturbations d, each follower
is expected to accurately and efficiently track the reference
signal yr generated by the leader to achieve consensus.

Furthermore, the following results from the preliminaries
of [27] are leveraged to facilitate the controller synthesis.

Lemma 1. Inequality 0 ≤ |χ| − χ tanh( χ
χ0

) ≤ 0.2785χ0

holds for any specified parameter χ ∈ R and χ0 > 0.

Assumption 1. In this MASs, the leader’s desired reference
signal yr is measurable, smooth and bounded, and the
unmeasured external disturbances are all bounded.

III. DUAL OBSERVER BASED CONSENSUS CONTROL

In this section, we develop an efficient dual observer based
control approach to achieve consensus tracking for radar
transmitters in the presence of model and environment uncer-
tainties. First, a class of neural networks (NNs) is designed to
approximate the unknown nonlinear system dynamics. Next,
we combine the output of the NNs and the estimation from
the state observer to design a virtual controller following
the backstepping method. Then a switched event-triggered
adaptive control strategy is proposed to solve the leader-
following consensus tracking problem, reducing triggering
frequency and achieving high efficiency. Finally, we prove
the convergence and stability of our approach. The general
framework of our approach is illustrated in Fig. 1.

Given the multiagent systems (MASs) model (Equa-
tion (1)) in Section II, we define the graph-based errors zi,k
and the boundary layer errors ei,k as: for k ∈ {1, ..., n− 1},

zi,1 =
N∑
j=1

ai,j(yi − yj) + bi(yi − yr)

zi,k = xi,k − ᾱi,k

ei,k = ᾱi,k − αi,k

(5)

The terms αi,k and ᾱi,k denote the virtual control and its
filtered counterpart, respectively. In the context of adaptive
control, we employ radial basis function neural networks
(RBFNNs) to approximate nonlinear functions and to man-
age uncertainties inherent in MASs. This approach enables
the system to adapt effectively to changes while maintaining
optimal performance under uncertain conditions. Using NNs
to approximate the unknown nonlinear dynamics in MASs
(1), we consider σi,l(t) as the bounded approximation error.
The unknown smooth nonlinear function is then expressed
as fi,l(x̄i,l) = W ∗T

i,l Ei,l(ˆ̄xi,l) + σi,l(t). We also define Ωi,l,
Ω̂i,l and Ω̆ as compact sets corresponding to x̄i,l, ˆ̄xi,l and
Êi,l, respectively. In addition, we let Θ∗

i = max{∥W ∗
i,l∥}.

Then the optimal weight W ∗
i,l for 1 ≤ l ≤ n is designed as:

W ∗
i,l = arg min

Ŵi,l∈
⌣
Ω

sup
x̄i,l∈Ωi,l

ˆ̄xi,l∈Ω̂i,l

∣∣∣f̂i,l(ˆ̄xi,l)− f(x̄i,l)
∣∣∣

(6)

The aforementioned error terms are established to facil-
itate subsequent stability analysis. If the derivative of the
Lyapunov function, composed of these error terms, is zero at
the equilibrium point and positive elsewhere, with a negative
time derivative, it indicates that the errors are controlled
within a specific range, thereby ensuring the asymptotic
stability of the system. To formalize this, we define a
Lyapunov function with a designed positive constant ηi,k as:

Vi,k =
z2i,k
2

+
τ̃2i,k
2

+
1

2ηi,k
W̃T

i,kW̃i,k (7)

Following the framework in [19], we enhance the robust-
ness and adaptability of the system by employing backstep-
ping method to recursively design adaptive controllers. This
approach allows us to decompose the system into multiple
subsystems, each governed by a virtual controller.
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The design process initiates with the simplest subsystem
and progressively advances to address more complex con-
trollers. We introduce an auxiliary function processed by
NNs to produce an optimal weight Ei,k, analogous to Wi,k.
Furthermore, ᾱi,k is derived by applying a first-order low-
pass filter to the virtual controller αi, k. At each step, we
incorporate the designed constants ri,k, hi,k, mi,k, ci,k and
the NN input as Ti,k = [yr, Θ̂i, ˆ̄x

T
i,k, ˆ̄x

T
j,k, ϖ̂

T
i,k, ϖ̂

T
j,k]

T
. Then

the virtual controller and adaptive parameter are as:

αi,k+1 =ri,kzi,k − zi,k
2

+
αi,k − ᾱi,k

mi,k
− qi,kψi,1

− Θ̂i

2c2i,k
zi,kE

T
i,k (Ti,k)Ei,k (Ti,k)

˙̂
W i,k =− hi,kŴi,k − ηi,k τ̃i,kκi,kEi,k

(
ˆ̄xi,k

)
(8)

Our event-triggered control law integrates relative-
threshold and fixed-threshold strategies, where a switching
gate determines which strategy to deploy. When the values
of control signal are large, the relative-threshold strategy is
utilized to increase the triggering interval, mitigating the
excessive influence of signal spikes on the controller and
enhancing its robustness against disturbances. Conversely,
when the controller signal values fall below the gate thresh-
old, the fixed-threshold strategy takes over to set a triggering
interval which steadily reduces the number of controller
activations and conserves control resources. The overall con-
troller synthesis process is summarized in Algorithm 1. Next,
we propose adaptive event-triggered controllers following
these strategies with constants φ (φ > φ/(1− δ)) and Γ:

wi (t) = αi,k+1 − φ̄ tanh(
zi,kφ̄

Γ
) (10a)

wi (t) =− (1 + δ)(αi,k+1 tanh(
zi,kαi,k+1

Γ
)

+ φ̄ tanh(
zi,kφ̄

Γ
)) (10b)

Finally, we apply Lyapunov stability theory to demonstrate
that all signals in the controlled system remain bounded.
Furthermore, we also validate the performance of the event-
triggered control and confirm the absence of Zeno behavior.

Theorem 1. Consider the MASs (1), the dual observers are
designed by (2) and (3), the virtual controller and adaptive
parameter are constructed as (8). Provided that the initial
conditions are confined to a compact set, then (i) all signals
of the closed-loop system remain uniformly bounded; (ii) the
consensus tracking errors between follower outputs and the
leader’s trajectory signal are reduced within a designated
range; (iii) Zeno behaviors are effectively prevented.

Proof: We first prove (i) and (ii). In terms of (7), we
define the overall Lyapunov function for the MASs as

V =

N∑
i=1

n∑
k=1

Vi,k +

N∑
i=1

n−1∑
k=1

e2i,k+1

2
(11)

Taking the derivative of V , with negative unmeasured
parameters r∗i,k, κ∗i,k, positive parameters m∗

i,k, hi,k ℘i, λi,
ιi,k, oi, Ξ and applying Young’s inequality gives:

V̇ ≤ −βV + γ

β = min
{
−2r∗i,k, -4κ∗i,k, 2m∗

i,k, hi,k, ℘i, λi
}

γ =

N∑
i=1

[ n∑
k=1

(ιi,k +
hi,k
2ηi,k

W *T
i,kW

*
i,k) +

n−1∑
k=1

Ξ

2
+

λi
2oi

Θ∗
i
2

]
(12)

When set β > γ/Ω, we get V̇ < 0 on V = Ω. Further,
if at time t = 0 the condition V ≤ Ω holds, it follows that
V ≤ Ω for entire t > 0. This demonstrates that the error
signals are uniformly bounded. It is straightforward to derive
the following equation 1

2∥Υ1∥2 ≤ V (t) ≤ e−βtV (0)+ γ
β (1−

e−βt), with Υ = [ΥT
1 ,Υ

T
2 , ...,Υ

T
N ]

T .
Then we show (iii). Based on the above stability analysis,

it is imperative that there exists a positive parameter ℏ such
that |ẇi(t)| ≤ ℏ following results in [27]. Furthermore, for
the time interval t ∈ [tk, tk+1), the lower bound for the
inter-execution time is given by t∗ ≥ max{φ, δ|ui|+ φ}/ℏ.
Consequently, the Zeno behaviors are avoided.

Algorithm 1: Switched event-triggered control
Input: N , n, T , t, φ, δ, G
Output: ui

1 for i in [N] do
2 # initial agent;
3 for k in [n− 1] do
4 Calculate the tracking error zi,k, the virtual

controller and the adaptive parameter Ei,k

by (5) and (8);
5 for t in [T ] do
6 if |ui| < G and |µi| ≥ φ then
7 Calculate wi(t) by Eq.(10a);
8 let ui(t) = wi(t);
9 if |ui| ≥ G & |µi| ≥ δ|ui|+ φ then

10 Calculate wi(t) by Eq.(10b);
11 let ui(t) = wi(t);
12 else
13 let ui(t) = ui(t);

IV. CASE STUDY

We present a case study to evaluate the performance of our
proposed control scheme on a radar formation problem. In
this scenario, each radar transmitter is modeled as an agent
of a multiagent system, including four followers and one
leader. The communication topology is depicted in Fig. 1.
Following the design outlined in [28], the trajectory signal
of the leader is yr = −0.5 sin(3t+ 0.5

√
t) cos(6t+ 0.3

√
t).

Practically, multiple radar transmitters are employed and
it is essential to maintain a specific distance between each
transmitter. So we design the initial positions of the followers
to maintain these distances as: x1(0) = −0.2, x2(0) = 0.2,
x3(0) = −0.4 and x4(0) = 0.4. To validate the reliability
of the state observer, we also ensure that the initial positions
of the observers differ from those of the agents, specifically:
x̂1(0) = 0.3, x̂2(0) = −0.3, x̂3(0) = 0.5 and x̂4(0) = 0.1.
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Fig. 2. The outputs of the leader signal and the followers signals.

The communication topology is shown in Fig. 1. The
connection matrix linking the leader to the followers is
represented as B = diag{0, 1, 0, 0}. And the adjacency
matrix A and the Laplacian matrix L are presented as

A =


0 1 0 0
0 0 0 0
0 1 0 0
1 0 0 0

L =


1 −1 0 0
0 0 0 0
0 −1 1 0
−1 0 0 1


In addition, the system dynamics and disturbance are

modeled as fi,1 (x̄i,1) = 0.8xi,1e
−1.4x2

i,2 , fi,2 (x̄i,2) =
−0.5x2i,1 cos (xi,2), di,1 = 0.8xi,1 sin (xi,2) cos

2 (t) and
di,2 = 0.2xi,2 cos (xi,1) cos

2 (t), i = 1, ..., 4. Based on
the parameter selection guidelines outlined in the stability
analysis, the quantitative values of the designed constants
are determined as follows, for observer constants qi = 333,
κi = 6, for triggered strategy constants φ = 2.5, δ = 0.25,
G = 6, φ = 4, for other constants ηi,1 = ηi,2 = 0.01,
ri,1 = ri,2 = −80, hi,1 = hi,2 = 5, ci,1 = ci,2 = 120 and
mi = 0.003. The following are the illustrative results and
the corresponding analysis of the table and figures.

The following table includes the ten-time average trigger
frequency for each agent under the switched event-triggered
strategy. The control frequency reduction (CFR) rate indi-
cates a significant decrease in the number of triggers, while
maintaining satisfactory tracking performance. On average,
control efficiency is improved by 93.48%, showing effective
reduction of control resource utilization under our strategy.

Agents Fixed Relative Switched Total CFR rate
Agent 1 26 624 650 10000 93.50%
Agent 2 28 599 627 10000 93.73%
Agent 3 25 632 657 10000 93.43%
Agent 4 35 641 676 10000 93.24%

The simulation results are depicted in Figs. 2 to 4. Fig. 2
illustrates the tracking performance of the leader radar’s tra-
jectory signal in relation to the four radar transmitter agents,

each starting from different initial positions. The results
demonstrate that the proposed method ensures satisfactory
tracking performance. To further validate the effectiveness
of the state observers, Fig. 3 presents the state observation
results for each agent, confirming that the adaptive state
observers can effectively detect unmeasurable system states.
Additionally, Fig. 4 shows the observation error of external
unknown disturbances, which remains bounded. Based on
these simulation results, we conclude that the proposed
method is effective for multiagent systems (MASs) subject
to unmeasured system states and external disturbances.

Fig. 3. The outputs of state observers

Remark 1. Simulation results validate the effectiveness of
our proposed adaptive dual observer based leader-following
consensus control scheme for nonlinear MASs, achieving
satisfactory tracking performance despite the presence of
unknown disturbances. Furthermore, parameters of simu-
lation significantly influence the results; tuning observer
gains, triggering thresholds, and control constants affect the
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activation frequency and system stability. Properly calibrated
parameters enhance resource utilization, disturbance rejec-
tion and the overall performance of the closed loop system.

Fig. 4. The errors of disturbance observers

V. CONCLUSION

Motivated by the challenges associated with signal track-
ing of radar systems under external disturbances, we pro-
pose an adaptive observer based leader-following consensus
control scheme using a switched event-triggered strategy
for nonlinear multiagent systems. The dual observer accu-
rately estimates the states of each agent and the external
disturbances. Next, we introduce a special neural network
to approximate the dynamics of the system. Based on that,
an adaptive control strategy is developed, which switches
between two strategies under the triggering condition. The
designed controllers ensure that the system achieves both
bounded and asymptotic consensus tracking performance.
A case study of radar transmitter formation control is pro-
vided to demonstrate the practical performance of our dual-
observer approach. For future research, we plan to extend our
framework to more complicated settings with communication
delays, state constraints, and fixed-time convergence.
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