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Abstract— Recent years have seen a growing research interest
in applications of Deep Neural Networks (DNN) on autonomous
vehicle technology. The trend started with perception and
prediction a few years ago and it is gradually being applied
to motion planning tasks. Despite the performance of net-
works improve over time, DNN planners inherit the natural
drawbacks of Deep Learning. Learning-based planners have
limitations in achieving perfect accuracy on the training dataset
and network performance can be affected by out-of-distribution
problem. In this paper, we propose FusionAssurance, a novel
trajectory-based end-to-end driving fusion framework which
combines physics-informed control for safety assurance. By
incorporating Potential Field into Model Predictive Control,
FusionAssurance is capable of navigating through scenarios
that are not included in the training dataset and scenarios
where neural network fail to generalize. The effectiveness of
the approach is demonstrated by extensive experiments under
various scenarios on the CARLA benchmark.

I. INTRODUCTION

Autonomous Vehicle Technology (AVT) is a rapidly devel-

oping field that aims to facilitate safe and efficient navigation

through complex and dynamic traffic environments. One

of the key challenges in this area is to design intelligent

systems that can perceive, predict, and plan for various

driving scenarios based on sensory data from cameras, radar,

lidar and other devices. Deep Neural Network (DNN) is a

powerful class of machine learning model that can learn

high-level feature representations from large-scale data, and

has demonstrated remarkable performance in autonomous

driving domains such as perception, prediction and planning.

The modular AVT architecture in Fig.1(a) is explain-

able [1] and entails mass deployment [2]. However, recent

trends started to recast modular AVT architecture into a

single network. End-to-end autonomous driving in Fig.1(b)

can potentially learn more complex and nuanced behav-

iors that are difficult to capture by hand-crafted rules or

algorithms in modular systems. For example, end-to-end

systems learn how to handle rare or unexpected situations

such as road hazards, pedestrians and traffic violations, by

observing human drivers and mimicking their actions. End-

to-end autonomous driving reduces the computational cost
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Fig. 1. Popular frameworks of Autonomous Driving [4]. Green shaded is
the proposed framework pipeline of FusionAssurance. Compared to other
frameworks, FusionAssurance is less modular and its DNN output can be
guided by safety controller.

and latency of processing the sensor input. This improves the

responsiveness and safety of the vehicle, especially in high-

speed or dynamic scenarios. End-to-end autonomous driving

also avoids error propagation and inconsistency issues that

may arise from integrating multiple modules with different

assumptions and representations [3].

However, DNN-based planner does not guarantee reliabil-

ity, safety and optimality due to out-of-distribution [5] and

generalization issues. Since learning-based motion planner

has limitations in achieving perfect accuracy, it also has

natural drawback in generalizing existing known scenarios.

On the other hand, out-of-distribution problem is a challenge

in machine learning that occurs when the test data differs

from the training data in some way. This can lead to poor

performance, overconfidence or incorrect predictions by the

machine learning model. Real-world driving scenarios are

dynamic, complex and therefore often unpredictable. The

performance of data-centric motion planner is contingent on

the quality and quantity of the training data. The network

may not perform well in situations that are absent from the

training data or simulations.

To address these issues, we propose an innovative mapless

trajectory-based end-to-end driving framework which takes

advantage of Model Predictive Control and Potential Field

for safety assurance. The main contributions are as follows:

• The proposed framework enables integrated decision-

making and control of lane keeping, adaptive cruise

control and overtaking for data-centric motion planners.

• The proposed method allows the accommodation of

diverse driving behaviors by tuning parameters in the

safety control module without the need to retrain the

entire neural network.

• The proposed framework allows agents to navigate

through unseen dynamic and complex scenarios where
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DNN planner failed to generate feasible trajectories.

Our method surpasses preceding methodologies and has

the best performance on CARLA 42 routes benchmark.

II. RELATED WORK

End-to-end Autonomous Driving can be generally cate-

gorised as trajectory-based method and direct control-based

method. Trajectory-based models are usually combined with

a controller (e.g. PID) to execute the planned motion. Direct

control-based network has its control actions directly opti-

mised as network output. Although the two approaches differ

in their methodologies, they can benefit from each other in

the aspects of feature extraction and sensor fusion.

Direct control-based end-to-end models are usually

achieved by reinforcement Learning (RL) [6]–[8] or im-

itation learning (IL) [9]–[13]. Latent DRL [6] creates a

latent representation as an embedding space and applies

RL to learn the latent observation. GRI [7] presents RL

algorithm which efficiently both expert demonstration and

environment exploration under predicted maps and traffic

condition. CIL [10] and CILRS [9] are early IL methods

that use a conditional architecture with different network

branches for different navigation commands. LBC [11] and

Roach [13] train agents with privileged information and later

imitation learn the privileged agents. MILE [12] applies

Model-based Imitation Learning technique which learns a

driving policy, mapping, detection and traffic rules in bird’s

eye view (BEV) concurrently.

Transfuser [14], [15] has a trajectory-based end-to-end

multi-modal transformer to learn surrounding scene under-

standing in terms of depth estimation, road segmentation,

map and obstacle detection. It has a PID controller with for-

mal rules for safety mechanism. LAV [16] applies technique

of recording trajectory history of all surrounding vehicles and

the ego vehicle, which significantly enlarges the diversity

and quantity of the training dataset. IVMP [17] proposed

an end-to-end motion planning approach which deploys

network-predicted semantic map for better uncertain object

handling and trajectory prediction. To take advantage of

both trajectory-based and control-based networks, TCP [18]

designs a single network that produces control signals and

waypoints simultaneously. An adaptive ensemble network is

used to merge the two outputs for refinement.

Trajectory-based approaches have the advantage of pro-

ducing more interpretable results for neural network out-

put than control-based approaches, but they also have the

drawback of controller error which means that the actual

motion may deviate from the desired trajectory [19], [20]. In

comparison, our approach offers the benefit of interpretability

and overcomes the drawback of trajectory-based methods by

converting the control tracking error into intelligent decision-

making and control with the use of safety controller.

Safety controller has been well studied in modern control

theory and applications [21]–[23]. Rasekhipour et al. [24]

proposed a MPC which models road boundary, crossable

and non-crossable obstacles as Potential Function to find

optimal paths and perform obstacle avoidance in predefined

scenarios. Liu et al. [25] further implemented a Potential

Field based MPC on the CARLA simulator. The controller

takes the ground truth localization, map and perception in-

formation as input and incorporates the traffic control signal

as potential functions to achieve integrated decision-making

and control. Their work operates under the assumption that

ground truth perception and map information are given. Our

approach aims to solve the uncertainty produced by raw

sensor inference through neural networks.

Safety in learning-based planning remains to be a critical

problem. Wei et al. [26] proposed attention-based safety

mechanism in neural network by gating backbone features

for direct motion optimisation and coupling safe actions with

perception. Kalaria et al. [27] presented a RL method that

leverages IL and control barrier functions to ensure safety.

InterFuser [28] brought up the concept of safety controller for

end-to-end autonomous driving. Like other trajectory-based

methods, InterFuser uses transformer to decode feature from

multi-sensors and output obstacles and waypoints. InterFuser

further deploys a simple safety controller to keep distance

with target objects which lie in its predicted waypoints. In

contrast, our approach incorporates all detected obstacles as

input and determines the optimal control output through a

global optimization process.

One other related work is DIPP [29]. An end-to-end

planning network is trained under the guidance of a MPC

controller to learn better from its expert dataset. Our ap-

proach also use MPC which serves as an additional safety

layer for neural network. Users can tune the safety controller

parameter for different driving behaviors without retraining

the entire network. Since FusionAssurance applies to any

neural network planner, DIPP can also adapt our framework

to provide extra safety for its neural network.

III. METHODOLOGY

The general structure of the proposed safe autonomous

driving framework consists of two parts. The first is a

transformer-based network for perception and planning. The

second part is physics-informed safety controller which

consists of Model Predictive Controller with Potential Field

Functions. Safety controller takes the output of neural trans-

former and generates safe low-level control actions.

A. Network Model

The proposed neural network follows DETR’s [30] general

structure to fuse multiple sensor data. Specifically, Trans-

former is used to fuse three RGB cameras’ input (Ifront,
Ileft, Iright) and Lidar sensor input (Ilidar) together. Each

source is followed up with backbone to extract complex

features and then fed into the Transformer Encoder for

feature fusion in BEV. The learned feature is then decoded

into waypoints, BEV obstacle map, probability of junction

and traffic control signal.

Camera streams take pretrained ResNet [31] as backbone

to convert images to feature embedding. Feature resolution

changes to H
8 × W

8 × 256 from original image resolution

H × W × 3. Lidar stream on the other hand has different
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Fig. 2. Overall structure of FussionAssurance consists of two parts. 1) a transformer-based network that integrates the target location, multi-camera
data, and lidar data to generate the predicted waypoint, BEV obstacle map, traffic light state, and junction probability for autonomous driving. 2) a safety
controller that comprises Model Predictive Controller with Potential Functions. The safety controller takes the output of the neural network and sensor
data of GPS, Compass and Speedometer to produce safe and optimal low-level control actions.

data representation and PointPillars [32] is applied for feature

extraction and data resolution reduction. Lidar data consists

of three-dimensional (x, y, z) points that are stored without

any rule-based order, which implies that adjacent points in

visualization may have their data located far apart in the

point cloud. Therefore, point cloud data requires preprocess-

ing before being fed into a convolutional neural network.

Specifically, a simplified PointNet is employed to transform

3D lidar data into 2D pillar format. Point cloud data therefore

can be fed into standard 2D Convolutional Neural Network.

Lidar stream network takes point cloud ranged [−ly, 0, ly, lx]
as input and assigns it into pillars sized 0.25m×0.25m. The

feature resolution would be 8ly×4lx×64 after PointNet and

ly × lx
2 × 512 after 3-layer CNN.

Following the implementation of ViLT [33], single-modal

spatial features are linearized and attached with modal-type

embedding. Each modal embedding is then concatenated

into a one-dimensional token embedding for sensor fusion

feature learning. Sinusoidal positional encoding is used to

capture the sequential or spatial relationships between feature

tokens. Standard Visual Transformer [34] encoder with self-

attention layer and feedforward layer are used. The self-

attention layer enables the encoder to learn the relationships

among the sensor tokens in the input sequence, by computing

a weighted average of all the tokens based on their similarity.

The feedforward layer applies a non-linear transformation to

each token individually to enhance its representation. The

output of each sub-layer is normalized and added to the sub-

layer input to preserve the information from the previous

layer. The Transformer has global attention for multiple

modalities and captures the global context of the scene.

The decoder receives the tokens from the RGB images

as values and keys, and the tokens from the LiDAR points

as queries of size H ∗ W , which are used to produce

features in bird’s eye view. Moreover, the decoder also takes

two other types of queries for predicting traffic signals and

waypoints w. Following the approach of InterFuser, a two-

layer multilayer perceptron (MLP) is deployed as the traffic

sign classifier, which determines the state of the traffic light

and the presence of a stop sign ahead. A single-layer gated

recurrent unit (GRU) [35] is used to generate successive way-

points wts in an auto-regressive manner, which is conditioned

on the goal location of the ego vehicle. Where ts denotes the

number of the predicted time steps.

B. Physics-informed Safety Controller

The proposed physic-informed controller is based on

Model Predictive Control and Potential Field Function. The

safety controller takes the output of transformer and decodes

them into trajectory waypoints, obstacle map, probability of

junction, red light and stop sign.

1) Vehicle Dynamics: In order to fully utilise the potential

of MPC, we leverage a simple but accurate model for the

vehicle dynamics which was proposed in [36].

xk+1 = f(xk,uk)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

px(k) + (vx(k) cosϕ(k)− vy(k) sinϕ(k))Δt
py(k) + (vy(k) cosϕ(k) + vx(k) sinϕ(k))Δt

ϕ(k) + ω(k)Δt
vx(k) + a(k)Δt

mvx(k)vy(k)+lω(k)Δt−kf δ(k)vx(k)Δt−mvx(k)
2ω(k)Δt

mvx(k)−(kf+kr)Δt
Izvx(k)ω(t)+lvy(k)Δt−lfkf δ(k)vx(k)Δt

Izvx(k)−(l2fkf+l2rkr)Δt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The above model demonstrates high numerical stability

and robustness in urban driving task scenarios which require

frequent changes of velocity. The state vector of the dy-

namics model is x = [px, py, ϕ, vx, vy, ω]
T , [px, py]

T is the

vehicle position in the global map coordinate, and [vx, vy]
T

denotes the velocity in the ego vehicle coordinate. Moreover,

φ indicates the ego vehicle orientation with respect to the

map coordinate, and ω indicates the yaw rate. The control

input of the system is u = [a, δ]T , where a and δ indicate the

acceleration and steering angle respectively. m is the vehicle

mass, lf and lr represent the distance from the mass center

to the front and rear axle, kf and kr to denote the cornering

stiffness of the front and rear wheels, and Iz is the inertia

polar moment. We define l = lfkf − lrkr for simplicity.
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2) Potential Field Function: The cost function of the

MPC incorporates repulsive potential field functions for the

detected objects, which enables obstacle avoidance capabil-

ity. In order to avoid surrounding obstacles smoothly and

computationally efficiently, elliptic functions are used to

describe the PF of obstacles where obstacles’ length and

width are linear to ellipse vertex and co-vertex. Having a

higher obstacle PF value lengthwise helps ego vehicle to

perform obstacle avoidance and ACC, and relatively smaller

PF value crosswise helps close fleets which move in similar

orientations not to interfere with each other. The main traffic

participants on the road are vehicles, cyclists and pedestrians.

Cyclists and pedestrians have smaller physical dimensions

but higher vulnerability, therefore bigger PF gain Ko is

assigned to these two classes.

FO =
n∑

i=0

Ko

(pxrot
− pi,x)

2

a2
+

(pyrot
− pi,y)

2

b2

(2)

[pxrot

pyrot

]
=

[pi,x
pi,y

]
+

[px − pi,x 0
0 py − pi,y

][ cos(θ) sin(θ)
−sin(θ) cos(θ)

]

(3)
where Ko controls the intensity of the obstacle repulsive

force, which varies under different scenarios. a and b are the

half-length of the major and minor axis, which defines the

shape of the ellipse. Specific values of obstacle’s length and

width are assigned to a and b to represent the physical size

of the obstacle. pi,x and pi,y denote ith obstacle’s position.

θ is the orientation of the target obstacle. pxrot
and pyrot

are the rotated position of the ego vehicle to align with the

ellipse.
An extra potential function is applied to the target front

obstacle to enhance Adaptive Cruise Control capability. The

problem is simplified only to consider the euclidean distance

between the ego vehicle and the target front vehicle.

FC =
Kc × uk[0] × xk[2]

Dsafety + 0.001
(4)

where Kc denotes the gain of the cost function, uk[0] is the

throttle control and xk[2] is the current speed of the ego

vehicle. Dsafety denotes the euclidean distance between the

ego vehicle and obstacle which lies in its moving trajectory.

The cost function penalizes acceleration and high speed when

there are obstacles in the front. By having the front obstacle

cost function, it helps agent to slow down without trying

to perform unnecessary overtaking actions for most simple

scenarios.
3) Model Predictive Control Formulation: The cost func-

tion is formalised to follow reference trajectory, reach target

velocity and improve driving comfort in the receding horizon

manner.

J(x,u, rnet) =

N∑
k=0

‖xref,k − xk‖2 +
N∑

k=1

‖uk − uk−1‖2

+

N∑
k=0

‖uk‖2 + FO(rnet,x) + FC(rnet,x)

(5)

where rnet is the transformed output of the neural network,

N is the length of the receding horizon, xref,k ∈ R
6 is the

reference trajectory point generated by spline interpolation

based on the network waypoint prediction at the time step k.

FO(rnet,x) and FC(rnet,x) are the artificial potential field

functions generated according to the perception information.

Therefore, the MPC controller is constructed as:

min
x,u

J(x,u, rnet)

s.t. xk+1 = f(xk,uk), ∀k ∈ {0, 1, ..., N}
−umin � uk � umax, ∀k ∈ {0, 1, ..., N}
−xmin � xk � xmax, ∀k ∈ {0, 1, ..., N}

(6)

The first constraint corresponds to the vehicle dynamics

given by equation (1). The second and third constraints

impose the bounds on the control inputs and system state

variables, which are derived from the physical properties of

the chosen vehicle model.

C. Neural Network and Safety Controller Integration

The output of the neural network is expressed in the

ego vehicle coordinate system, whereas the physics-informed

controller requires an input that is expressed in the global

map coordinate system. Therefore, a coordinate transfor-

mation needs to be performed for the waypoints and the

obstacles. The traffic information includes the probability of

encountering a red light, a stop junction, and being on-road

for the agent. Braking will be applied to the agent if the red

light probability is above a certain threshold and the throttle

will be disabled. Stop junction probability helps to agent

to slow down during junction. On-road probability Pon road

tells if the agent is on the road or at the junction. Pon road is

used to vary the gain of obstacle potential field and weight

position and yaw angle tracking terms in the cost function.

Ko =
K

Pon road + 0.5
(7)

wpx,py,ϕ = w × (Pon road + 0.5) (8)

where wpx,py,ϕ is the weight of position, yaw angle follow-

ing. Pon road has value close to 0 when neural network pre-

dicts that the agent is not on-road, which leads to equation 7

to amplify the potential function gain Ko and equation 8 to

reduce the weight of position and yaw angle tracking. The

above implementation results in MPC controller not precisely

following the predicted trajectory and allowing overtaking

actions when there are close obstacles at junction.

The overall design is therefore able to 1) precisely track

the trajectory for most of the time and 2) perform its own

decision-making of overtaking or obstacle avoidance when

neural network-generated trajectory is not optimal.

IV. EXPERIMENTS

This section presents a comprehensive overview of the

experimental setup, encompassing data collection, bench-

marking and metrics for evaluation. The proposed method

undergoes rigorous testing across a spectrum of intricate and

dynamic scenarios which include those depicted in Fig. 3.

Furthermore, Section IV-B aims to demonstrate the efficacy
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(a) Y Junction (b) Roundabout (c) Highway Exit

(d) T Junction (e) Parking Space (f) Reckless Pedestrian Crossing

Fig. 3. Test Examples of FusionAssurance completing various scenarios under different weather conditions.

of the proposed methods in selected corner cases where

former end-to-end driving algorithms encounter problems.

A. Environment, Data Collection and Benchmark

Autonomous driving framework and experiments are

conducted on the open-source simulator CARLA version

0.9.10.1. A dataset of 1M frames was collected from an agent

that followed rule-based policy with access to the privileged

information of CARLA as groundtruth. Data was collected

on all available 8 towns and 21 weather conditions at 2

Hz rate. Routes, dynamic objects and adversarial scenarios

were randomly generated as provided in [28] to increase the

diversity of the collected data. Each frame of dataset contain

information of Front, Left and Right Camera Images, Lidar

Point Cloud, GPS coordinates and corresponding ground-

truth object detection labels generated by simulator.

Evaluations and experiments were conducted on CARLA

42 routes benchmark as its convenience of visualization and

variety of scenarios. MPC controller uses optimiser heavily

and its performance highly depends on the CPU power, thus

visualization is important for hyperparameter tuning. The

benchmark requires the intelligent agent to follow predefined

routes without colliding or breaking traffic rules in the

presence of adversarial events. The benchmark randomly

generates target points and a list of goal locations in global

map coordinates for each run. The proposed method utilizes

these goal locations to guide the agent to drive without

manually setting high-level navigational commands. Three

metrics are introduced by the CARLA Leaderboard [37] to

evaluate our method, which are the route completion ratio

(RC), infraction score (IS) and driving score (DS). The

driving score is the product of the infraction score and route

completion ratio. It is overall a more comprehensive metric

to measure agent planning and safety control capability.

Fig. 4. Case when unfeasible trajectory is generated by neural network.

B. Effectiveness Analysis on Corner Cases

The CARLA leaderboard algorithms have demonstrated

their performance on the vast majority of scenarios. However,

there are still some corner cases that previous work failed

to pass. Our proposed method completes complex scenarios

(Figure 3) and corner cases that previous algorithms could

not handle. This section presents several corner cases that

the previous state-of-the-art algorithms failed to pass, and

illustrates the benefit of our framework. Some of these corner

cases occurred to the rule-based agent during data collection,

and were consequently learned by the neural agents that

adopted a similar policy.

1) Case 1(Fig. 4): This case shows an anomalous pre-

dicted trajectory and it occurs when the neural network is

not able to generalize for specific kind of scenarios. It can

be seen from the figure that the first available waypoint

is 4 meters in front of the ego vehicle and the target

vehicle is also 3.5m in the front. Collision might occur for

InterFuser’s safety controller as the target vehicle is not on

ego vehicle’s trajectory and the agent would not slow down.

The InterFuser’s safety controller simpily is not aware of

1779



(a) no physics-informed controller (b) with physics-informed controller

Fig. 5. The left figure shows the agent getting into a Deadlock situation
by the neural network planner. The right figure shows the guided trajectory
of FusionAssurance under the same planning network.

Fig. 6. Obstacles Potential Field value and control output for Case 2.

the existence of the target vehcile under such corner case.

Interfuser would directly drives towards the nearest waypoint

and red-dash bounding box is where the collision might

happen. Our proposed physics-informed safety controller

employs Potential Functions and Model Predictive Control

to generate a smooth and collision-free trajectory for the

agent, which allows the agent to navigate safely through the

scenario.

2) Case 2(Fig. 5): This case is at a T-junction where

an ego vehicle is driving into an intersection and oncoming

cars have the right of way. Despite the two vehicles sharing

different paths ideally, the rule-based target agent and trained

ego agent drive towards each other as the target vehicle takes

a wide turn and the ego vehicle takes a short turn. Two

vehicles result in a deadlock situation where two agents stop

and give way to each other but none of them are intelligent

enough to overtake another.

This is a typical case caused by a low-quality training

dataset where the recorded data perform a bad example for

the neural network. Our proposed physics-informed safety

controller overcomes this issue with the designed obstacle

potential field function and performs its own overtaking de-

cision. The physics-informed controller detects the potential

field of the vehicle from a far distance and incorporates it

in its receding horizon optimization. In Fig. 6, when the

target vehicle approaches the ego vehicle at time 115.5s, the

obstacle potential value starts to rise. the ego vehicle rapidly

decelerates and steers away from the target vehicle. The ego

vehicle continuously plans a new trajectory and returns to

the planned trajectory as the target vehicle diminishes at time

117.5s. The ego vehicle thus manages to execute overtaking

(a) MPC(wpx,py=15) (b) MPC(wpx,py=15)+PF(Ko=60)

Fig. 7. The trajectory of the agent with different parameters. (a) and (b)
shows the waypoints of agent using MPC and agent using MPC with PF.

Fig. 8. Trajectory comparison of three sets of parameters under Case 3.

decision and control by taking a wider turn than the original

predicted trajectory.

3) Case 3(Fig. 7): This case aims to analysis the effect

of different safety controller parameters on driving behavior.

The case happens when agent is taking a corner at single

carriageway. The MPC controller exhibits a corner-cutting

behavior where a portion of the ego vehicle crosses into the

opposite lane while following the trajectory. This behavior

poses a safety risk if there is an oncoming target vehicle that

makes a large turn.

With the assistance of Potential Field Function, the agent

keeps the target vehicle’s position in motion consideration.

As shown in Figure. 8, agent with Potential Field Function

has 0.6m larger safety distance when it is closest to the target

vehicle. By lowering the position tracking parameter wpx,py

to 10, agent has further 0.1m safety distance. Users can also

adjust the agent’s driving behavior by tuning the values of

target speed, weights for the position tracking wpx,py
and

gain of obstacle potential function Ko. In general, smaller

value of wpx,py and higher value of Ko tends to lead to more

overtaking actions.

C. Comparison with State of the Art

The evaluations are done on the CARLA 42 routes bench-

mark. CARLA 42 routes benchmark encompasses a diverse

set of 42 routes across 6 distinct towns. This comprehensive

testing suite combines 7 weather patterns with 6 daylight
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TABLE I

COMPARISON WITH STATE-OF-THE-ART ON CARLA 42 ROUTES

BENCHMARK.

Method
Route

Comple↑
Infraction

Rate↑
Driving
Score↑

InterFuser (reproduced) [28] 93.827 0.865 81.084
Latent Transfuser (pretrained) [14] 87.359 0.756 63.570
Transfuser++ (pretrained) [38] 91.989 0.982 90.203
TCP (pretrained) [18] 90.946 0.912 82.991
FusionAssurance (ours) 99.966 0.907 90.683

Note: Infraction rate does not consider travelled distance. Driving score is
more comprehensive for measuring infraction per unit distance. [IV-E]

scenarios to ensure each route presents a unique driving ex-

perience.. We take the state-of-the-art algorithms on CARLA

online leaderboard - InterFuser [28], TransFuser [14],

[15], TransFuser++ [38] and TCP [18] for comparison.

The CARLA benchmark imposes substantial penalties for

infractions and therefore most prior work adopt conservative

driving behaviors that prioritize avoiding infractions over

completing routes. The conservative driving behaviors often

lead to Deadlock situations where stuck agents are not

intelligent enough to overtake another.

As shown in Table I, InterFuser(reproduced) and Fu-

sionAssurance use the exact same training data for perfor-

mance comparison. FusionAssurance outperforms InterFuser

by 9.6% in driving score with higher route complement ratio

99.966% and fewer infractions with 0.907. TransFuser++
has the best infraction score but their driving behavior is

conservative. Similar to other previous work, TransFuser++

stops for all potential obstacles without much overtaking. It

often gets into Deadlock situation and its route complement

ratio is 9% less than our proposed method. Our proposed

method has the highest driving score and route complement

ratio. This is mainly due to adaptive cruise control, obsta-

cle avoidance and overtaking capability provided by safety

controller.

D. Ablation Study

The effectiveness of each module is studied in this section.

In Table II, FusionAssurance(histogram) PID uses histogram

for lidar feature extraction and rule-based PID for vehicle

motion control. PointPillars preserves more 3D point cloud

features compared to the 2d lidar histogram. This helps

the network to understand the surroundings, especially the

detection of small-sized objects and the differentiation of

objects with different heights. Under the same controller

setting, pointpillars feature extraction methods have up to

7.5% driving score increase.

With the replacement of PID controller by the MPC

controller, the method is able to achieve a higher overall

driving score and higher route complement rate both by

1%. The MPC controller optimizes not only the nearest

waypoints, but also a horizon of future waypoints under the

specified vehicle dynamics. This indicates MPC controller

exhibits better performance in trajectory tracking and thus

achieves a higher route completion ratio.

TABLE II

ABLATION STUDY ON THE NETWORK STRUCTURE AND SAFETY

CONTROLLER.

Method
Route

Comple↑
Infraction

Rate↑
Driving
Score↑

FusionAssur(histogram) PID 93.827 0.865 81.084
FusionAssur(histogram) MPC+PF 97.177 0.857 83.184
FusionAssur(pointpillar) PID 96.970 0.840 81.435
FusionAssur(pointpillar) MPC 97.839 0.844 82.576
FusionAssur(pointpillar) MPC+PF 99.966 0.907 90.683

By replacing the controller from PID to our proposed

physics-informed safety controller(MPC+PF), FusionAssur-

ance(histogram) and FusionAssurance(pointpillars) gain an

increase in driving score by 2.1% and 9.2% repectively.

The full version FusionAssurance which deploys pointpillars,

MPC and PF has a significant performance boost on all three

metrics.

E. Discussions

The CARLA infraction rate does not take travelled dis-

tance into account. Agents which travel short distance and

get into Deadlock situation can still get high infraction rate.

Driving score which is the product of route complement

and infraction rate is therefore a more comprehensive metric

for measuring infraction rate per unit distance. Therefore

FusionAssurance achieves the best performance on infraction

per unit distance.

V. CONCLUSIONS

In this paper, we propose FusionAssurance, an integrated

end-to-end autonomous driving framework with safety con-

troller. This framework employs a neural network for percep-

tion and trajectory planning, and Model Predictive Control

with Potential Field for enhanced safety control. The safety

of the neural network planning task is ensured by the low-

level control with the assistance of designed Potential Func-

tions. The overall framework also makes integrated over-

taking decisions to compensate for the suboptimal network

planning results and to circumvent potential deadlock. With

same training dataset, FusionAssurance outperforms baseline

- InterFuser by 9.6% on CARLA 42 routes benchmark. Ad-

ditionally, the physics-informed safety controller can adapt

any trajectory-based end-to-end neural network to boost the

overall performance.

Potential future work includes adding lane detection to the

neural network and using lane information as Potential Field

to reduce the out-of-lane rate. Another future improvement

is to develop static obstacle detection ability for the network

to further prevent infraction.
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