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Abstract— LiDAR-based object detection is a challenging task
for autonomous navigation systems, especially in pedestrian-
rich environments. Recently, the integration of deep learning
techniques with lidar-generated point cloud data has advanced
object detection and segmentation in many scenarios. However,
current lidar-based methods usually struggle to accurately
detect small-sized objects, such as pedestrian and cyclist,
causing severe safety and reliability concerns for autonomous
vehicles. This study refines structural design of lidar based
neural networks to enhance precision and recall metrics for
the identification of small entities. Specifically, we introduce CP-
RCNN, a novel lidar object detection framework that combines
state of the art voxelization and feature extraction techniques.
Extensive ablation experiments demonstrate that our method
has improved performance in the detection of pedestrians
and cyclists. Furthermore, this paper also proposes a novel
neural network structure named Centerpoint-RCNN, which not
only maintains high precision in vehicle classification but also
achieves an impressive inference speed of 15Hz on the NVIDIA
RTX 4090 graphics processing unit.

I. INTRODUCTION

In contrast to image-based deep neural network architec-
tures, point cloud data also imposes challenges for the direct
application of Convolution Neural Networks (CNNs) [1]
due to its unstructured nature. Furthermore, the challenge
of detecting small objects like pedestrians and cyclists is
magnified by the sparse representation of these entities in the
point cloud data. Typically, a pedestrian may be represented
by as few as 20 points, a number that can decrease to
less than five in scenarios involving significant distance
(over 50 meters) or occlusion, complicating the Lidar-based
detection of small objects. Current algorithms face challenges
in achieving a balance between high accuracy and efficient
inference speeds in detecting these entities.

Based on their prepossessing approaches, deep neural net-
work methods for processing point cloud data can be roughly
categorized as: Voxelization [2] [3], Point-based [4] [5],
Depth View methods [6] [7], and Transformer [8]. Re-
cent research efforts have concentrated on integrating these
strategies to create more comprehensive feature maps. For
example, PV-RCNN [9] merges voxel-based and point-based
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Fig. 1. General Articture of CP-RCNN that refines headtmap with region-
of-interest pooling. The proposed methods is able to distinguish pedestrian
from its similar-shaped true-negative neighbor.

methods, with the latter providing multi-scale semantic fea-
ture maps and object proposals for the detection process of
the former. Despite its slower inference speed, PV-RCNN has
shown unmatched accuracy. In contrast, Voxel R-CNN [10]
improves inference speeds significantly by eliminating the
point-based feature extractor found in PV-RCNN and directly
sampling features from the 3D voxel feature map.

Detecting small objects like pedestrians and cyclists us-
ing LiDAR technology poses distinct challenges, mainly
stemming from the sparse nature of the generated point
cloud data. Lidar sensors emit laser beams that bounce off
surfaces to calculate distances, but when it comes to smaller
objects, fewer points of reflection result in less data. This
sparsity becomes more prominent as the distance grows,
complicating the precise capture of details for smaller objects
in the surroundings. As a result, pedestrians and cyclists,
being significantly smaller than vehicles and structures, are
frequently underrepresented in point cloud data, leading to
challenges in their accurate detection and classification.

Furthermore, the difficulty in distinguishing small objects
like pedestrians and cyclists from other urban fixtures such
as poles, trees, and bins complicates their detection. These
objects can share similar sizes and shapes, leading to con-
fusion in the LiDAR-generated point cloud where they may
appear indistinguishable. This similarity poses a significant
challenge for algorithms tasked with interpreting the data, as
accurately distinguishing between a pedestrian and a nearby
pole becomes a complex task. Improvements in LiDAR
resolution and sophisticated data processing techniques are
crucial for enhancing the detection and classification of these
small, yet critical, elements in urban environments. Despite
recent algorithms [11] [9] [12] significantly improves small-
size object detection, the overall accuracy and recall rate are

2024 18th International Conference on
Control, Automation, Robotics and Vision (ICARCV)
December 12-15, 2024. Dubai

979-8-3315-1849-3/24/$31.00 ©2024 IEEE 821



still significantly lower than vehicle class.
To address the aforementioned challenges, we introduce

a lidar-based neural network framework for object detection
called CP-RCNN that fulfills joint feature pooling and ab-
straction. The main contributions of this work are as follows:

• Our method applies a voxel-based lidar detection archi-
tecture which adds heatmap and ROI pooling to sample
3D structures from the feature map to improve the
performance for small object detection.

• Our network uses a heatmap structure to enhance the
detection of small objects, while maintaining a balance
between detection accuracy and speed.

II. RELATED WORK

In the growing field of point cloud processing, Deep
Neural Network related methods are typically categorized
into three main groups: Voxelization [2], [13], Point-based
methods [4], [14], [15], and Depth View methods s [6].

The Voxelization approach, exemplified by VoxNet [2] and
VoxelNet [16], divides the spatial domain into a grid of vox-
els and assigns point cloud data to these grids. This technique
was improved by Yan et al. [3] with the introduction of
SECOND, which used a Sparse Convolution Library to boost
accuracy and computational efficiency and has become a key
framework for voxel-based point cloud processing.

Simultaneously, the Point-based method saw significant
progress with the introduction of PointNet by Qi et al [4].
This novel framework used 1x1 convolution and max pooling
operations to directly process raw point cloud data within a
neural network. PointNet++ [5] later extended the method to
foster the extraction of regional features on different scales
by employing the farthest point sampling, enhancing the
fidelity of point sampling representations.

The Depth View method, as demonstrated by RangeNet
[7], introduces a unique strategy of converting point cloud
data into depth images. This conversion enables semantic
segmentation, followed by point-cloud reconstruction and
post-processing, which successfully transfers segmentation
outcomes from depth images back to the point cloud domain.

In the domain of voxel-based detection methods, SEC-
OND [3] is a fundamental framework that includes vox-
elization, voxel feature extraction, sparse convolution, and
the utilization of a Regional Proposal Network (RPN) [17].

As for anchor-free Lidar detection methods, CenterPoint
[11] is inspired by CenterNet [18], a method initially de-
signed for image detection. CenterPoint adapts the structure
of SECOND, specifically the RPN, to forecast object cen-
tral points and extract details on object size and category
through the regression head. In addition, Voxel R-CNN
[10] significantly contributes to the advancement of two-
stage, anchor-free, voxel-based methods. It simplifies the PV-
RCNN architecture by removing the PointNet feature extrac-
tion component. The introduction of Voxel ROI Pooling by
the authors of Voxel R-CNN is a novel concept that conducts
set abstraction on the 3D feature map within the region
proposed by the RPN, demonstrating a notable improvement

in the efficiency and accuracy of point cloud processing
techniques.

III. PRELIMINARY

The voxelization techniques transform raw and unstruc-
tured point cloud data into a structured grid-like representa-
tion called voxels. Similar to pixels in 2D imaging, voxels
represent values on a regular grid in a 3D space. This process
enables traditional neural network architectures, like Con-
volutional Neural Networks (CNNs), to efficiently process
point cloud data in a structured format. Key components in
voxelization include the Voxel Feature Extractor (VFE) and
the Pillar Feature Extractor (PFE) [19].

The Voxel Feature Extractor (VFE) is tasked with ag-
gregating and encoding point features within each voxel. It
groups points based on spatial locations into voxels and then
applies operations to extract relevant features from the points
within each voxel. These features may include the centroid
of points, maximum height, or mean intensity.

The Pillar Feature Extractor (PFE) is a specialized version
of VFE that streamlines voxelization by focusing on a
single grid in the z-dimension, treating the point cloud as
vertical ”pillars.” This method notably simplifies computa-
tional complexity by converting the three-dimensional data
structure into a pseudo-two-dimensional format. After PFE
processing, the data can be analyzed using 2D CNNs, known
for efficiently extracting features from structured data.

IV. METHODS

This section outlines the CP-RCNN architecture, a dual-
stage voxel-centric framework for detecting 3D objects. It
integrates 3D and 2D backbone networks, the latter paired
with a Region Proposal Network (RPN). It also employs
voxel Region of Interest (RoI) pooling alongside a detection
subnet for enhancing box precision. Finally, Centerhead is
designed for 2D features and RoI pooling aggreation.

A. Voxelization

Both voxelnet backbone and the pillar backbone are used
in visualization for different purposes. The voxelnet back-
bone is suited for handling data processed by the VFE,
accommodating the full three-dimensional structure of the
voxelized point cloud. In contrast, the pillar backbone is
tailored to work with data processed by the PFE, capitalizing
on the reduced complexity of the pillar-based representation
to facilitate efficient processing.

B. Backbone and RPN

The architectural foundation of the model adopts a struc-
ture analogous to that of SECOND, utilizing the Spconv
library to facilitate sparse convolution operations. Further-
more, the integration of skip connections, a concept pio-
neered by the ResNet framework [10], has been incorporated
into the backbone architecture to enhance the ease of op-
timization. This strategic incorporation of skip connections
aids in mitigating the vanishing gradient problem, thereby
streamlining the training process of deep neural networks.
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Fig. 2. The Overview of CP-RCNN for Lidar Object Detection. The first part is standard voxelization and 3D covolutional network. The extracted 3D
feature are forward to Hight Compression for 2D feature and ROI Pooling. ROI Pooling also takes object proposal from RPN to get richer regional features.
Finally, CenterHead takes 2D features to generate heatmap which is later combined with feature map from ROI pooling.

Upon the extraction of sparse point cloud features, the
data is subsequently relayed to the Voxel R-CNN module
and subjected to a process termed Height Compression. This
process is meticulously designed to transmute the sparse
point cloud features into a Bird’s Eye View (BEV) repre-
sentation. Initially, a voxel feature tensor, characterized by
its dimensions (batch, channel, Density, Height, Width), is
extracted from the sparse point cloud features. Following
this extraction, a dimensional reconfiguration is performed,
wherein the channel dimension is amalgamated with the
Density dimension. This manipulation effectively converts
the feature representation into a two-dimensional format
under the BEV perspective.

The resulting two-dimensional feature map is then expe-
diently utilized as input for subsequent processing stages,
namely the Region Proposal Network (RPN) and the Center-
Head module. These stages are integral to the model’s capa-
bility to delineate and identify objects within the point cloud
data, leveraging the structured BEV representation to achieve
heightened accuracy and efficiency in object detection tasks.
Through this sophisticated processing pipeline, the model
harnesses the intrinsic spatial information contained within
the point cloud data, enabling the precise localization and
classification of objects in autonomous navigation systems.

C. Voxel ROI Pooling
This module draws conceptual inspiration from the sem-

inal work presented in the Voxel R-CNN study. Upon the
generation of 3D object proposals by the Region Proposal
Network (RPN), the network undertakes a meticulous pro-
cess of feature aggregation applied to these proposals. This
involves a selective feature extraction process from each facet
of the 3D proposals. Initially, the proposals are segmented
into subvoxels, with each subvoxel functioning analogously
to a grid within the proposal structure.

In a departure from conventional methodologies that ag-
gregate voxel-wise features within the candidate frame in
a straightforward manner, this module employs a technique
known as Voxel Query. This technique is pivotal in sourcing
the adjacent K voxel features for each grid by leveraging the

set Manhattan distance. Consequently, the focal grid point
alongside its K neighboring voxels are aggregated into a
singular group, facilitating the utilization of the PointNet
architecture for the purpose of feature aggregation.

Under the assumption that the feature dimension for each
voxel is denoted as C, the module constructs relative position
information ((xp, yp, zp)) for each neighboring voxel in
relation to the grid. This relative positional data is then
concatenated with the original voxel-wise features, resulting
in an augmented feature dimension of (C+3). Following
this augmentation, the PointNet architecture proceeds to
aggregate these features, ultimately yielding an output feature
vector with a dimension of (C’).

The Voxel R-CNN module is instrumental in the extraction
of regional features across diverse scales, thereby engender-
ing a more enriched regional feature map. This sophisticated
approach to feature aggregation not only enhances the gran-
ularity of the feature representation but also significantly
contributes to the overall efficacy of the object detection
process within the point cloud domain.

D. CenterHead
This module adheres to the implementation framework es-

tablished by CenterPoint, integrating a bespoke CenterHead
that processes a feature map output from the Voxel R-CNN
alongside an ancillary 2-dimensional (2D) feature map. The
latter is instrumental in the generation of a heatmap, which
functions as a probabilistic indicator of object presence
within the scene. The CenterHead mechanism is designed
to accept a 3-channel input image of dimensions (W x
H), and it subsequently yields a (K)-channel heatmap with
reduced dimensions ((W/R) x (H/R)). Herein, (R) signifies
the output stride, effectively diminishing the spatial resolu-
tion to emphasize areas of interest, whilst (K) denotes the
quantified number of target classes designated for detection.
This heatmap embodies a binary schema, with potential
values of 0 and 1, where a value of 1 denotes the pixel’s
classification as the central point of a detection frame,
indicative of object localization. Conversely, a value of 0
designates pixels categorized as belonging to the background.
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Further, the regression head within this module is allocated
the responsibility of cataloging and refining object attributes
centered on the object’s core feature. This encompasses ad-
justments to sub-voxel positioning, the ascertainment of the
object’s altitude relative to the ground plane, the computation
of its three-dimensional (3D) extents, and the determination
of its yaw rotation angle. The refinement of sub-voxel
positioning endeavors to ameliorate the inaccuracies engen-
dered by voxelization and stride quantization endemic to the
backbone network. The incorporation of height above the
ground ((hg)) is paramount for the precise 3D positioning
of objects, counterbalancing the omission of elevation data
resultant from map-view projections. Orientation estimation
is approached through the predictive modeling of the yaw
angle, employing the sine and cosine of said angle as
continuous regression targets to ensure a comprehensive de-
piction of object heading. In conjunction with the parameters
delineating the bounding box dimensions, these regression
heads collectively furnish an exhaustive representation of
the 3D bounding box state, thereby enhancing the precision
of object detection and localization processes within the
analyzed point cloud dataset.

The loss during training calculates the loss of RPN and
loss of Centerhead and optimizer tries to optimize the sum
of those two loss.

La = LRPN + LCenterhead (1)

E. Data Augmentation
In the pursuit of enhancing the robustness and generaliz-

ability of the model, several sophisticated data augmentation
techniques have been meticulously employed. The initial
strategy involves the rotation of Light Detection and Ranging
(LiDAR) data by arbitrary degrees during each augmentation
iteration, thereby introducing rotational variability into the
dataset. Subsequently, to infuse the dataset with a broader
spectrum of variations, random perturbations are applied to
both the spatial positioning and orientation of the LiDAR
data points. This method ensures the model’s resilience to
slight deviations in object placement and alignment.

The third technique employed encompasses the modula-
tion of the scale of LiDAR data points through random
amplification or diminution. This approach is instrumental in
accustoming the model to variations in object sizes within
the LiDAR scans, thereby enhancing its scale invariance.
The fourth strategy, termed Data Set Flipping, entails the
duplication of the LiDAR dataset followed by its horizontal
or vertical inversion, effectively generating novel data con-
figurations from existing scans.

Furthermore, an additional layer of complexity is intro-
duced by superimposing random noise onto the LiDAR data,
a maneuver designed to mimic the real-world inaccuracies
inherent in LiDAR measurements. This particular augmen-
tation simulates the potential measurement variances and
sensor noise, thus preparing the model for effective operation
under realistic conditions.

Collectively, these data augmentation techniques are piv-
otal in cultivating a model that exhibits heightened adaptabil-

ity and improved predictive accuracy across a diverse array
of scenarios, thereby mitigating the risk of overfitting to the
nuances of the training dataset.

V. EXPERIMENTS

A. Implementation detail

The implementation, training and benchamrk are done on
OpenPCDet [21] for fast and fair comparison. The process
of voxelization, pivotal in the transformation of point clouds
into structured formats conducive to machine learning appli-
cations, can be effectuated through the utilization of either a
Voxel Feature Extractor (VFE) or a Pillar Feature Extractor
(PFE). The PFE operates on a principle akin to that of
the VFE, with the notable distinction being its confinement
to a singular grid along the z-dimension. This structural
simplification of PFE permits the subsequent application of
two-dimensional Convolutional Neural Networks (CNNs) for
feature processing. The architectural frameworks correspond-
ing to these extractors can be categorized into two paradigms:
the voxelnet backbone and the pillar backbone, respectively.

The dimension of the voxels or pillars is a critical pa-
rameter within network. The default configuration for voxel
dimensions is set at [0.1m, 0.1m, 0.15m]. It is observed
that an increase in the size of voxels or pillars results in a
reduction in the total number of voxels required to represent
the space, which typically correlates with a decrease in com-
putational complexity and, consequently, expedited inference
times. However, this efficiency gain is often counterbalanced
by a degradation in model performance due to the coarser
granularity of the spatial representation. Conversely, reducing
the voxel size enhances the model’s spatial resolution and,
potentially, its detection accuracy, at the cost of increased
computational demand. The spatial domain for detection
activities is delineated by a range of -75.2 meters to 75.2
meters along both the x and y axes, and -2 meters to 4
meters along the z-axis. This detection schema is uniformly
applied in the context of PFE, albeit with an adjusted voxel
dimension of [0.32m, 0.32m, 6.0m].

Regarding the architectural backbone utilized for pro-
cessing the voxelized data, two variants are predominantly
employed: the original voxelnet backbone and a modified
version incorporating residual connections, herein referred
to as the residual voxelnet backbone. These backbones serve
as the foundational computational structures upon which the
subsequent layers of the neural network are constructed, each
offering unique characteristics in terms of computational
efficiency and the ability to capture and propagate relevant
features through the network.

B. Evaluation Metric

The evaluation metric employed is delineated by the
authoritative Waymo Open Dataset [22] guidelines. The
principal metric under consideration is the Average Precision
Weighted by Heading (APH), mathematically represented as:
APH =

∫
h(r) ∗ dr.

where (h(r)) signifies the precision-recall curve, which is
subsequently weighted by heading accuracy. This metric is
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Performance @(train with 20% Data) Veh L1/% Veh L2/% Ped L2/% Ped L2/% Cyc L1/% Cyc L2/%
Pointpillar [19] 70.43/69.83 62.18/61.64 66.21/46.32 58.18/40.64 55.26/51.75 53.18/49.80
CenterPoint [11] 71.33/70.76 63.16/62.65 72.09/65.49 64.27/58.23 68.68/67.39 66.11/64.87
Part-A2-Anchor [20] 74.66/74.12 65.82/65.32 71.71/62.24 62.46/54.06 66.53/65.18 64.05/62.75
SECOND [3] 70.96/70.34 62.58/62.02 65.23/54.24 57.22/47.49 57.13/55.62 54.97/53.53
PV-RCNN [9] 77.61/77.14 69.18/68.75 79.42/73.31 70.88/65.21 72.50/71.39 69.84/68.77
CP-RCNN (ours) 74.38/74.23 65.68/64.76 80.46/74.87 72.37/67.09 74.82/73.13 70.80/69.68

TABLE I
COMPARISON WITH STATE OF THE ART

Fig. 3. Qualitative findings from the CP-RCNN analysis on Waymo validation. Where pointcloud are in white and green boxs are detection results.

mAPH L2
/%

Inference
Speed/Hz

2D CNN 50.69 28.8
3D CNN 54.35 23.2
3D CNN + Centerhead 61.92 18.9
3D CNN + ROI Pooling + Centerhead 65.82 16.7
3D CNN(Resnet) + ROI Pooling + Center-
head

67.17 15.0

TABLE II
ABLATION STUDY. WHERE 2D CONVOLUTION IS AN ALTERNATIVE

FEATURE EXTRACTOR TO 3D CONVOLUTION IN FIG3.

instrumental in quantifying the precision with which objects
are identified, encapsulating the consideration of both false
positives and false negatives within its assessment frame-
work.

C. Comparison with SOTA

The ablation study results highlights the numerical su-
periority of the CP-RCNN model over other state-of-the-
art counterparts with specifically focusing on pedestrian and
cyclist detection. When evaluating the performance metrics,
it is imperative to consider the precision in detection across
various levels (Level 1 and Level 2) for both pedestrians
and cyclists, which are critical categories for ensuring the
safety and efficacy of autonomous navigation systems. Where
Level 1 difficulty refers to objects that are easier to detect
and typically have fewer occlusions, while Level 2 difficulty
involves objects that are more challenging to detect, often
due to partial occlusion or obstacles are at greater distance.

D. Ablation Study

For pedestrian detection at Level 1 Ped, CP-RCNN
achieves an impressive score of 80.46%, surpassing the next
best model, PV-RCNN, which scores 79.42%. At Level
2 Ped, CP-RCNN further extends its lead with a score
of 74.87%, compared to PV-RCNN’s 73.31%. This indi-
cates CP-RCNN’s enhanced capability to accurately identify
pedestrians with a higher degree of precision, reducing the
likelihood of false positives and false negatives, which are
crucial for the reliable operation of autonomous systems
in pedestrian-rich environments. In the domain of cyclist
detection, the performance of CP-RCNN is equally com-
mendable. At Level 1 Cyc, CP-RCNN records a score of
74.82%, outperforming CenterPoint, which achieves a score
of 68.68%. At Level 2 Cyc, CP-RCNN maintains its supe-
riority with a score of 70.80%, compared to CenterPoint’s
66.11%. These results underscore CP-RCNN’s adeptness
at detecting cyclists, a challenging task given the cyclists’
smaller size and more dynamic movement patterns compared
to vehicles.

The numerical advantage of CP-RCNN in pedestrian and
cyclist detection can be attributed to its approach to shared
feature of multi-stage detection which allows for more nu-
anced and accurate representation of these smaller, dynamic
objects. Furthermore, CP-RCNN’s superior performance in
Level 2 metrics, which are more stringent in evaluating
detection precision, illustrates its robustness in complex
scenarios and its potential to significantly enhance the safety
measures of autonomous navigation systems.

The table presents a concise yet comprehensive ablation
study focusing on the performance of various convolution-
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based methods and their impact on the mean Average
Precision at Level 2 (mAPH L2/%) and inference speed
(measured in Hertz, Hz). Each row of the table delineates a
distinct configuration, starting from basic 2D convolution to
more complex arrangements incorporating 3D convolution,
Region of Interest (ROI) pooling, and a centerhead mech-
anism. From the simplest configuration, 2D convolution,
which yields an mAPH L2 of 50.69% and an inference
speed of 28.8 Hz, there is a clear trend of increasing
detection precision at the expense of reduced inference speed
as the complexity of the model architecture escalates. The
incorporation of 3D convolution enhances the mAPH L2 to
54.35%, albeit with a slower inference speed of 23.2 Hz. This
trend continues with the addition of a centerhead, boosting
the mAPH L2 significantly to 61.92% but further slowing
down the inference speed to 18.9 Hz.

The combination of 3D convolution, ROI pooling and cen-
terhead results in a further improved mAPH L2 of 65.82%,
with a corresponding decrease in inference speed to 16.7 Hz.
The most complex configuration, which includes Residual
3D Convolution alongside ROI Pooling and a centerhead,
achieves the highest mAPH L2 of 67.17%. However, this
configuration also exhibits the slowest inference speed of
15.0 Hz, underscoring the computational trade-offs inher-
ent in increasing model complexity for enhanced detection
accuracy. The results presented in this paper underscore
the potential of CP-RCNN as a leading solution in the
field of LiDAR-based object detection. Its high precision
in detecting pedestrians and cyclists, coupled with a prag-
matic approach to computational efficiency, positions CP-
RCNN as a significant advancement in the development
of autonomous driving technologies. Our future work will
focus on further optimizing the balance between detection
accuracy and inference speed, exploring new architectural
innovations and computational strategies to enhance the
practical applicability of CP-RCNN in real-world settings.

VI. CONCLUSIONS

In this study, we present CP-RCNN, an innovative LiDAR
object detection approach that combines advanced voxeliza-
tion techniques with refined feature extraction methods.
Our model excels in setting new benchmarks for detect-
ing pedestrians and cyclists, two challenging categories for
autonomous navigation systems due to their small size and
dynamic behavior.

Our comprehensive ablation study demonstrates that CP-
RCNN not only outperforms existing models in terms of
detection accuracy but also strikes an impressive balance
between precision and computational efficiency. It notably
enhances mean Average Precision at Level 2 (mAPH L2)
for pedestrian and cyclist detection, showcasing its superior
ability to accurately identify these critical object categories
across diverse scenarios. Despite the inevitable impact of
increased model complexity on inference speed, CP-RCNN
maintains competitive performance, positioning it as a viable
choice for real-time applications.
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