
IFAC PapersOnLine 53-4 (2020) 390–396

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.04.066

10.1016/j.ifacol.2021.04.066 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

	 Yiding Ji et al. / IFAC PapersOnLine 53-4 (2020) 390–396	 391

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

Local Mean Payoff Supervisory Control
under Partial Observation �

Yiding Ji ∗ Xiang Yin ∗∗ Wei Xiao ∗

∗ Division of Systems Engineering, Boston University, Boston, MA,
United States (e-mail: jiyiding@bu.edu, xiaowei@bu.edu).

∗∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, China (e-mail: yinxiang@sjtu.edu.cn).

Abstract: The problem under investigation in this work is local mean payoff supervisory control
of partially observed discrete event systems. The system is modeled as a weighted finite state
automaton and weight flows are generated with transitions. The local mean payoff over a finite
number of events may serve as a measure of stability or robustness of the weight flows. The range
of events to evaluate the local mean payoff is termed a window, which slides along transitions.
The window is called fuzzy due to the presence of unobservable events. A supervisor is designed
to ensure that the mean payoff within each fuzzy window always lies in certain interval. In
addition, qualitative properties like safety and liveness are also required. Then the partial
observation supervisory control problem is transformed to a two-player safety game on the
properly defined windowed bipartite transition system. By analyzing the game, we propose a
method to synthesize supervisors that provably solve the original supervisory control problem.

Keywords: Discrete event systems, supervisory control, partial observation, safety game

1. INTRODUCTION

Supervisory control in the context of discrete event sys-
tems (DES) is a classic topic. The plant under control is
usually modeled as a finite discrete structure and a speci-
fication is given as the desired behavior of the plant. The
supervisor restricts the behavior of the plant by disabling
some events so that the specification is achieved Cassan-
dras and Lafortune [2008], Wonham and Cai [2019].

When the system dynamics is not perfectly monitored, the
problem of supervisory control under partial observation
naturally arises. This topic has been thoroughly discussed
in the literature, see, e.g., Alves et al. [2019], Shu and
Lin [2015], Yin and Lafortune [2016a,b], Komenda and
Masopust [2017], Meira-Góes et al. [2017], Li and Takai
[2019], Ricker et al. [2017], Mohajerani et al. [2017], Ma
et al. [2018], Rashidinejad et al. [2018], Yin and Lafortune
[2017], Yin [2017], Lin et al. [2019], Wu et al. [2019], Wang
and Pajic [2019] for some recent results.

In many engineering applications, the system may gen-
erate or consume certain resources with its operation.
It is thus essential to maintain a stable rate of resource
generation/consumption. Under the framework of DES,
we model the system as a weighted automaton where
the mean weight/payoff of events over a finite number
of transitions reflect the rate of resource change. Sup-
pose two weight sequences are generated by the system:
6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 · · · (one 6 every 6 transitions)
and 1, 1, · · · (always 1). Asymptotically, they have the

� The second author is supported by the National Natural Science
Foundation of China under grants (61803259 and 61833012) and by
Shanghai Jiao Tong University Scientific and Technological Innova-
tion Funds.

same limit mean payoff 1. However, if the mean payoff is
evaluated every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. We say
that the second sequence is more stable since the weight
fluctuates less. It is also more robust against stealth packet
drop attacks as the local mean payoff changes less when
certain values are randomly excluded from calculation.

Intuitively, we imagine there is a “window” of certain
length, where the “local” mean payoff is calculated. The
window is sliding with new event occurrences and called
fuzzy due to unobservable events. Our goal is to guarantee
that mean payoffs within fuzzy windows of a fixed number
of observable events are always no less than a given
threshold. Additionally, the system should keep operating
while avoid certain bad states. Motivated by this, we
discuss local mean payoff supervisory control under partial
observation for the first time in DES and formulate the
supervisory control problem under desirable fuzzy windows.

To tackle the challenge of partial observation, windowed
information states are introduced to incorporate sufficient
information on state estimate and local mean payoff. With
the supervisor’s decisions and event occurrences, win-
dowed information states are updated and the information
flow is formed. Then we introduce the windowed bipartite
transition system (WBTS) and transform the supervisory
control problem to a two-player safety game. After that,
an algorithm is developed to build the “largest” WBTS
which contains candidate supervisors to solve our proposed
supervisory control problem. Finally, supervisors are syn-
thesized from the WBTS and they are shown to be sound.

Our work leverages some results from algorithmic game
theory in computer science Apt and Grädel [2011], espe-

cially mean payoff games, see, e.g., Hunter et al. [2018].
Different from reactive synthesis, we discuss a supervisory
control problem where there is a plant to be controlled,
while the supervisor may choose to enable multiple events
at one time. Several works study DES related problems
under quantitative game frameworks, like Pruekprasert
et al. [2016], Pruekprasert and Ushio [2017], Ji et al. [2018,
2019a,b]. However, our problem setting is significantly dif-
ferent: Pruekprasert et al. [2016] and Ji et al. [2018] focus
on supervisory control with a limit (global) mean payoff
objective; Ji et al. [2019b] deals with local mean payoff
supervisory control under full observation; Ji et al. [2019a]
and Pruekprasert and Ushio [2017] solve corresponding
problems under the setting of energy games. Besides, our
solution methodology is also incomparable with theirs.

The rest of the work is organized as follows. Section 2
introduces the system model. Section 3 formulates the key
problem of this work. Section 4 presents the information-
flow analysis and solves the proposed problem under the
framework of safety game. Finally, Section 5 concludes the
paper and mentions potential future research directions.

2. SYSTEM MODEL

We model a quantitative discrete event system as a
weighted finite-state automaton: G = (X,E, f, x0, ω)
where X is the finite state space, E is the finite set of
events, f : X × E → X is the partial transition function,
x0 ∈ X is the initial state and ω : E → Z is the weight
function and the weight may be interpreted as the amount
of resource associated with the event. A positive number
indicates increase of resource while a negative number
indicates decrease. The domain of f can be extended to
X × E∗ in the standard manner described in Cassandras
and Lafortune [2008] and we still denote the extended
function by f . The language generated by G is defined
as L(G) = {s ∈ E∗ : f(x0, s)!} where ! means “is defined”.
The function ω is additive and its domain is extended to
E∗ by letting ω(ε) = 0, ω(seo) = ω(s)+ω(eo) for all s ∈ E∗

and e ∈ E. We denote by W the maximum absolute value
of event weights in G, i.e., W = maxe∈E |ω(e)|.
Given s = e1e2 · · · en ∈ E∗, for some 1 ≤ j < m < n, we
call ej · · · em+1 a substring of s and denote it by s(j,m).
We also call ej · · · en a suffix, and e1 · · · ej a prefix of s.
Given s, t ∈ E∗, we write s � u if string s is a prefix of u.

With the occurrence of events, we may imagine some
weight flows are generated. For string s ∈ L(G), its
(accumulative) weight/payoff is ω(s) while its mean
weight/payoff is 1

nω(s). The range of events (horizon) to
evaluate the mean payoff may be viewed as a “window”,
which is sliding when new events occur. When the win-
dow’s length approaches infinity, the limit mean payoff
characterizes asymptotic performance of the weight flows.
The “local” mean weight may serve as a measure of sta-
bility or robustness for the weight flows. It should remain
relatively “smooth”. Given s = e1e2 · · · en and some in-
teger v ∈ Z, it is desirable to have 1

n

∑n
i=1 ω(ei) ≥ v.

In addition, we may subtract vector v from every ω(ei)
and equivalently evaluate whether 1

n

∑n
i=1(ω(ei)− v) ≥ 0

holds. Thus, we assume v = 0 without loss of generality.

The event set E is partitioned as E = Ec ∪ Euc, where
Ec is the set of controllable events and Euc is the set of

uncontrollable events. Furthermore, the system is partially
observed. To this end, E is also partitioned as E = Eo ∪
Euo where Eo is the set of observable events and Euo is
the set of unobservable events. Additionally, the natural
projection P : E∗ → E∗

o is recursively defined as: ∀t′ ∈ E∗,
e ∈ E, P (ε) = ε, P (t) = P (t′e) = P (t′)P (e) where
P (e) = e if e ∈ Eo and P (e) = ε if e ∈ Euo ∪ {ε}. The
domain of P can be extended to 2E

∗
naturally.

Given G, for x1, x2 ∈ X and e ∈ E, we write x1
e−→ x2

if f(x1, e) = x2, for simplicity. A run in G is a sequence

of states and events: r = x1
e1−→ x2

e2−→ · · · en−1−−−→ xn and
we denote the set of runs in G by Run(G). We call a run
initial if its initial state is the initial state of the system. In

addition, we also write x1
s−→ x2 for s ∈ E∗ if f(x1, s) = x2.

By the way, r = x1
e1−→ x2

e2−→ · · · en−1−−−→ xn forms a
cycle if x1 = xn. If r is a cycle, the corresponding string
e1e2 · · · en−1 forms a loop. In this work, we assume that no
loops are purely composed of unobservable events in G.

We consider safety in terms of the state space of G and
let Xus ⊂ X be the set of unsafe states to be avoided.
We also consider the (weak) liveness property while do
not involve marked states in this work. G is live if its
generated language L(G) is live, i.e., ∀s ∈ L(G), ∃u ∈ E,
s.t. su ∈ L(G). Thus, a transition is always defined out of
a state in G. This requirement is without loss of generality
as it can be relaxed by adding observable self-loops at
terminal states where no active events are defined.

The system is controlled by a supervisor which dynam-
ically enables and disables events while only has partial
observation of the system. Formally, a supervisor is a
function S : P (L(G)) → Γ and we denote by S the set of
supervisors. A control decision γ ∈ 2E is the set of events
enabled by the supervisor. It is further called admissible
if Euc ⊆ γ, i.e., no uncontrollable event is disabled. We
denote by Γ the set of admissible control decisions and
only consider them in this work. We use S/G to represent
the controlled system under S. Accordingly, we denote by
L(S/G) the language generated in S/G and Run(S/G) the
set of runs in S/G, respectively. A supervisor is called safe
and live if its supervised system is safe and live.

Given G and a set of states q ⊆ X, the unobservable reach,
denoted by UR(q), is defined as: UR(q) = {x′ ∈ X : ∃x ∈
q, s ∈ E∗

uo, s.t. f(x, s) = x′}. Specifically, the unobservable
reach under a control decision γ ⊆ E, denoted by URγ(q),
is defined as: URγ(q) = {x′ ∈ X : ∃x ∈ q, s ∈ (Euo ∩
γ)∗, s.t. f(x, s) = x′}. The observable reach under event
eo ∈ Eo, denoted by Nexteo(q), is defined as: Nexteo(q) =
{x′ ∈ X : ∃x ∈ q s.t. f(x, eo) = x′}.
The observer of G is a tuple: Obs(G) = (Xobs, Eo, δ, xobs,0)
where Xobs ⊆ 2X is the state space; xobs,0 = UR({x0})
is the initial state and δ is the transition function where
∀xobs ∈ Xobs, ∀eo ∈ Eo: δ(xobs, eo) = UR(Nexteo(xobs)).
The weight function is omitted here. An observer state is
also termed a (current) state estimate of the system.

3. PROBLEM FORMULATION

In this section, we introduce some concepts and formulate
the supervisory control problem under desirable fuzzy win-
dows. The goal is to design a supervisor to achieve both

392	 Yiding Ji et al. / IFAC PapersOnLine 53-4 (2020) 390–396

the qualitative objectives, i.e., safety and liveness, as well
as the quantitative objective of local mean payoff.

The supervisor only monitors observable events, thus
evaluates the local mean payoff based on the length of
observed events. Intuitively, the window becomes “fuzzy”
due to the presence of unobservable events. Here we let | · |
be the length of a string and have the following definition.

Definition 1. (Desirable Fuzzy Window). Given system G
and maximum fuzzy window size N ∈ N+, a string s =
ξ1e

o
1ξ2e

o
2 · · · ξNeoN ∈ L(G) where ∀i ≤ N s.t. eoi ∈ Eo and

ξi ∈ E∗
uo forms a desirable fuzzy window if there exists

1 ≤ � ≤ N such that for t = ξ1e
o
1ξ2e

o
2 · · · ξleo� � s, ω(t)

|t| ≥ 0.

A fuzzy window is desirable if the local mean payoff is
above 0 within at most N observable events. Since the
system is partially observed, we only count the number of
observable events to evaluate a fuzzy window. That is, we
view the number of observable events as the “length” of a
fuzzy window whose maximum length is fixed. The string
in Definition 1 ends with an observable event by our con-
vention. On the other hand, string s = ξ1e

o
1ξ2e

o
2 · · · ξNeoN

forms an undesirable fuzzy window if ω(s)
|s| < 0.

When the fuzzy window is sliding with new event occur-
rences, we subsequently check the local mean payoff within
each window. Some strings in the open-loop system may
not form desirable fuzzy windows, while some others may
lead to unsafe states. In those cases, supervisory control
is employed and we formulate the supervisory control
problem under desirable fuzzy windows as follows.

Problem 1. Given system G with the set of unsafe states
Xus, maximum fuzzy window size N ∈ N+, design a
supervisor S ∈ S such that: (1) S/G is both safe and live;
(2) for all s ∈ L(S/G), i ≥ 1 and M ≥ N , if s(i, i + M)
ends with an observable event and |P (s(i, i + M))| = N ,
then s(i, i+M) forms a desirable fuzzy window.

From the problem statement, safety and liveness are re-
quired first; then for every string in the supervised system,
whenever a substring ends with an observable event and
contains N observable events, it should form a desirable
fuzzy window. The major challenge of Problem 1 is the
supervisor’s partial observation. To this end, we need to
properly estimate the current state and track the local
mean payoff within the fuzzy windows for the supervisor’s
decision making. These issues will be resolved in the next
section and we end this section with an example.

Example 1. Consider automaton G in Figure 1, with
Ec = {c1, c2}, Euc = {u1, u2, u3, o1, o2, o3}, Euo =
{c1, c2, u1, u2, u3} and Eo = {o1, o2, o3}. The unsafe state
is x6 and the event weight is shown on each transition. Here
we let the maximum fuzzy window size be N = 3. Clearly,
string s = c1o1c2o2u2o3 does not form a desirable fuzzy
window since ω(c1o1) < 0, ω(c1o1c2o2) < 0 and ω(s) < 0.
Later on, a supervisor will be employed to solve Problem 1
on G and this example will be used through the work.

Fig. 1. The system G

4. SOLUTION TO SUPERVISORY CONTROL
PROBLEM UNDER FUZZY WINDOWS

Due to the potential challenges of directly solving Prob-
lem 1, we transfer it to a two-player game, where the
supervisor plays against the antagonistic environment.
For this purpose, windowed information states are de-
fined which incorporate sufficient information on both the
state estimate and the payoffs within windows. Then we
introduce a novel information structure called windowed
bipartite transition system as the game graph and discuss
its relevant properties. After some analysis, it turns out
that we are tackling a safety game and Problem 1 is solved
by locating the supervisor’s winning strategies in the game.

4.1 Information-Flow Analysis

Before introducing windowed information states, we give
a generic definition of windowed belief functions.

Definition 2. (Windowed Belief Functions). Given G and
maximum window size N , a N-dimensional windowed
belief function is defined as h : X → (Z∪ {⊥})N+1, where
the symbol ⊥ means “value unspecified”.

Let h(i)(x) stand for the i-th element in h(x) for some
0 ≤ i ≤ N . We just leave a generic definition here and the
formula of specifying values is discussed in detail later.

Definition 3. (Windowed Information States). ConsiderG
and maximum fuzzy window size N , a windowed infor-
mation state is qw = ((x1, · · · , xm), [h(x1), · · · , h(xm)]) ∈
2X × (Z ∪ {⊥})(N+1)×m for some m ∈ N+. Denote by
E(qw) and M(qw) the state estimate and the matrix in
qw, respectively, thus we write qw = (E(qw),M(qw)).

We denote by QW the set of windowed information states.
By definition, E(qw) is the state estimate of G and may
contain m states where m is a positive integer. The matrix
M(qw) contains m vectors (windowed belief functions),
tracking the accumulative payoff within the last N ob-
servable events. Specifically, we denote by M(qw, x) the
vector in M(qw) that is associated with x ∈ E(qw), i.e.,
M(qw, x) = h(x). In other words, we say a windowed infor-
mation state induces a series of windowed belief functions.

We call qaw ∈ QW×Γ an augmented windowed information
state, i.e., a windowed information state augmented with
a control action. Let IW (qaw) and Γ(qaw) denote the
windowed information state and the control decision in
qaw, respectively. qaw is safe if E(IW (qaw))∩Xus = ∅, i.e.,
no unsafe state of G is included in the estimate of qaw.

For qw = (E(qw),M(qw)) ∈ QW and x ∈ E(qw), we use no-
tations hqw(x) and h

(i)
qw(x) to represent the windowed belief

function associated with x and the i-th element in hqw(x),
respectively. Similarly for qaw = (IW (qas),Γ(qas)) ∈ QW×
Γ and x ∈ E(IW (qas)), we write the windowed belief
function associated with x and the i-th element of the
function as hqaw(x) and h

(i)
qaw(x), respectively. Windowed

information states are updated with control decisions and
event occurrences, thus the information flow is formed.
Then we have the following two concepts.

Definition 4. (γ-successor). For γ ∈ Γ, qaw = (q′w, γ) ∈
QW × Γ is a γ-successor of qw ∈ QW if (i) E(q′w) =
URγ(E(qw)); (ii) ∀x′ ∈ E(q′w), ∀0 ≤ i ≤ N , we have:

h
(i)
qaw(x′) = min

x,ξ
{ω(ξ) : ∃ξ ∈ (Euo ∩ γ)∗, x ∈ E(qw), s.t.

f(x, ξ) = x′} if i = 0

h
(i)
qaw(x′) = min

x,ξ
{h(i)

qw(x) + ω(ξ) : ∃ξ ∈ (Euo ∩ γ)∗, x ∈ E(qw),

s.t. f(x, ξ) = x′} if i ≥ 1, h
(i)
qw(x) �= 0, h

(i)
qw(x) �=⊥

h
(i)
qaw(x′) = 0 if i ≥ 1, ∀x ∈ E(qw), ∀ξ ∈ (Euo ∩ γ)∗,

[f(x, ξ) = x′] ⇒ [h
(i)
qaw(x) = 0]

h
(i)
qaw(x′) =⊥ if i ≥ 1, ∀x ∈ E(qw), ∀ξ ∈ (Euo ∩ γ)∗,

[f(x, ξ) = x′] ⇒ [h
(i)
qw(x) =⊥] (1)

The γ-successor characterizes how the information flow
proceeds with control decisions. First the state estimate is
updated to the unobservable reach under γ. Then for every
state in the estimate, we update the accumulative weight
within the fuzzy window, under the enabled unobserable
events in γ. Specifically, there are four cases involved in
Definition 4, depending on the index i and the values of
the windowed belief functions of the predecessor state.

In general, we use the windowed belief functions as a
“counter” to track the minimum accumulative weight in-
curred by the unobservable reach under γ. Since we only
evaluate the mean payoff within fuzzy windows after an
observable event occurs, the index i remains the same on
both sides of the equations in Definition 4. The index indi-
cates the number of observable events that have occurred
and i = 0 means that the first observable event has not be
counted. The third equation implies that the accumulative
payoff has turned nonnegative before or upon the last
observable event. Here we briefly explain the role of symbol
⊥. If only 1 ≤ m < N observable events have occurred
currently, we simply set h(j)(x) =⊥ for j ∈ {m+1, · · · , N}.
Definition 5. (eo-successor). For eo ∈ Eo, qw ∈ QW is
an eo-successor of qaw = (q′w, γ) if (i) eo ∈ γ, E(qw) =
Nexteo(E(q′w)); (ii) ∀x ∈ E(qw), ∀0 ≤ i ≤ N , we have:

h
(i)
qw(x) = 0 if i = 0

h
(i)
qw(x) = min{0,min

ξ
{ω(ξ) + ω(eo) : ∃x′ ∈ E(q′w),

ξ ∈ (Euo ∩ γ)∗, s.t. f(x′, ξeo) = x}} if i = 1

h
(i)
qw(x) = min{0,min

x′
{h(i−1)

qaw (x′) + ω(eo) : ∃x′ ∈ E(q′w),

s.t. f(x′, eo) = x}} if i ≥ 2, h
(i−1)
qw (x) �= 0, h

(i−1)
qw (x) �=⊥

h
(i)
qw(x) = 0 if i ≥ 2, ∀x′ ∈ E(q′w), [f(x′, eo) = x] ⇒

[h
(i−1)
qaw (x′) = 0]

h
(i)
qw(x) =⊥ if i ≥ 2, ∀x′ ∈ E(q′w), [f(x′, eo) = x] ⇒

[h
(i−1)
qaw (x′) =⊥] (2)

After a control decision is made, the enabled observable
events (if any) occur and trigger the supervisor to issue
another command, which leads to an eo-successor. Here
the state estimate is updated to the observable reach under
eo. We also calculate the values of windowed belief func-
tions associated with each state in the estimate. Similarly
with γ-successor, we count the minimum accumulative
weight upon the occurrence of eo. In essence, whenever
the accumulative weight becomes nonnegative at certain
dimension by some string reaching a state of the estimate,

the local mean payoff also becomes nonnegative and a de-
sirable fuzzy window is formed before the window reaches
the maximum length N . Then we immediately reset the
counter to 0 and start tracking the weight of a new string,
as illustrated by the equations in Definition 5. Otherwise,
if the current weight sum is still negative and the fuzzy
window has not reached length N , we keep tracking the
minimum accumulative weight incurred by eo.

Intuitively speaking, this is because by Definition 1, when
the local mean payoff within a fuzzy window becomes non-
negative before the window reaches its maximum length
N , then we do not need to further consider the mean payoff
within “longer windows” before N . Notice that the index i
increases by one since a new observable event has occurred.

Definition 6. (Control-observation sequence). We define a
control-observation sequence as a sequence of alternating

states, events and control decisions of the form: ρ = qw1
γ1−→

qaw1
eo1−→ qw2 · · · γn−→ qawn

eon−→ qwn+1 or ρ′ = qw1
γ1−→ qaw1

eo1−→

qw2
γ2−→ qaw2 · · · eon−→ qwn+1

γn+1−−−→ qawn+1 where qwi ∈ QW ,

qawi ∈ QW × Γ, γi ∈ Γ, eoi ∈ Eo, q
aw
i is a γi-successor

of qwi and qwi+1 is an eoi -successor of q
aw
i for all 1 ≤ i ≤ n.

Given ρ or ρ′ in Definition 6, we write ρk = qw1
γ1−→ qaw1

eo1−→

qw2 · · · γk−1−−−→ qawk−1

eok−1−−−→ qwk and ρ′k = qw1
γ1−→ qaw1

eo1−→

qw2
γ2−→ qaw2 · · ·

eok−1−−−→ qwk
γk−→ qawk , for 1 ≤ k ≤ n. Then the

set of strings generated by ρ or ρ′ is defined recursively as:

Str(ρ1) ={ε}
Str(ρ′1) ={ξ1 ∈ E∗

uo : ∃x ∈ E(qw1), x′ ∈ E(IW (qaw1)),

ξ1 ∈ (γ1 ∩ Euo)
∗ s.t. f(x, ξ1) = x′}

Str(ρk+1) ={s′keok : ∃x ∈ E(qw1), x′ ∈ E(IW (qawk)), x′′ ∈
E(qwk+1), s

′
k ∈ Str(ρ′k), s.t. f(x, s′k) = x′,

f(x′, eok) = x′′}
Str(ρ′k+1) ={sk+1ξk+1 : ∃x ∈ E(qw1), x′ ∈ E(qawk+1), x

′′ ∈
E(IW (qawk+1)), sk+1 ∈ Str(ρk+1), ξk+1 ∈
(γk+1 ∩ Euo)

∗, s.t. f(x, sk+1) = x′,

f(x′, ξk+1) = x′′}
Remark 1. Consider a control-observation sequence ρ =

qw1
γ1−→ qaw1

eo1−→ qw2
γ2−→ qaw2 · · · γn−→ qawn

eon−→ qwn+1, we say
a fuzzy window of observed length � (� ≤ n and � ≤ N)

is bad at qwn+1 if ∃s ∈ Str(qwn−�+1

γn−�+1−−−−−→ qawn−�+1

eon−�+1−−−−→

qwn−� · · ·
γn−→ qawn

eon−→ qwn+1) such that ω(s) < 0. Otherwise,

we say it is good at qwn+1 if ∀s ∈ Str(qwn−�+1

γn−�+1−−−−−→

qawn−�+1

eon−�+1−−−−→ qwn−� · · ·
γn−→ qawn

eon−→ qwn+1), ω(s) ≥ 0.

Theorem 1. Given a control-observation sequence ρ =

qw1
γ1−→ qaw1

eo1−→ qw2
γ2−→ qaw2 · · · γn−→ qawn

eon−→ qwn+1, a fuzzy
window of observed length � where � ≤ n and � ≤ N is bad

at qwn+1 if ∃xn+1 ∈ E(qwn+1) such that h
(�)
qw
n+1

(xn+1) < 0.

We may prove Theorem 1 by induction, while the proof is
omitted here due to space limitations. Theorem 1 implies
that given ρ, a fuzzy window of observed lengthN (N ≤ n)

is bad at qwn+1 if ∃x ∈ E(qwn+1) such that h
(N)
qw
n+1

(x) < 0,

	 Yiding Ji et al. / IFAC PapersOnLine 53-4 (2020) 390–396	 393

the qualitative objectives, i.e., safety and liveness, as well
as the quantitative objective of local mean payoff.

The supervisor only monitors observable events, thus
evaluates the local mean payoff based on the length of
observed events. Intuitively, the window becomes “fuzzy”
due to the presence of unobservable events. Here we let | · |
be the length of a string and have the following definition.

Definition 1. (Desirable Fuzzy Window). Given system G
and maximum fuzzy window size N ∈ N+, a string s =
ξ1e

o
1ξ2e

o
2 · · · ξNeoN ∈ L(G) where ∀i ≤ N s.t. eoi ∈ Eo and

ξi ∈ E∗
uo forms a desirable fuzzy window if there exists

1 ≤ � ≤ N such that for t = ξ1e
o
1ξ2e

o
2 · · · ξleo� � s, ω(t)

|t| ≥ 0.

A fuzzy window is desirable if the local mean payoff is
above 0 within at most N observable events. Since the
system is partially observed, we only count the number of
observable events to evaluate a fuzzy window. That is, we
view the number of observable events as the “length” of a
fuzzy window whose maximum length is fixed. The string
in Definition 1 ends with an observable event by our con-
vention. On the other hand, string s = ξ1e

o
1ξ2e

o
2 · · · ξNeoN

forms an undesirable fuzzy window if ω(s)
|s| < 0.

When the fuzzy window is sliding with new event occur-
rences, we subsequently check the local mean payoff within
each window. Some strings in the open-loop system may
not form desirable fuzzy windows, while some others may
lead to unsafe states. In those cases, supervisory control
is employed and we formulate the supervisory control
problem under desirable fuzzy windows as follows.

Problem 1. Given system G with the set of unsafe states
Xus, maximum fuzzy window size N ∈ N+, design a
supervisor S ∈ S such that: (1) S/G is both safe and live;
(2) for all s ∈ L(S/G), i ≥ 1 and M ≥ N , if s(i, i + M)
ends with an observable event and |P (s(i, i + M))| = N ,
then s(i, i+M) forms a desirable fuzzy window.

From the problem statement, safety and liveness are re-
quired first; then for every string in the supervised system,
whenever a substring ends with an observable event and
contains N observable events, it should form a desirable
fuzzy window. The major challenge of Problem 1 is the
supervisor’s partial observation. To this end, we need to
properly estimate the current state and track the local
mean payoff within the fuzzy windows for the supervisor’s
decision making. These issues will be resolved in the next
section and we end this section with an example.

Example 1. Consider automaton G in Figure 1, with
Ec = {c1, c2}, Euc = {u1, u2, u3, o1, o2, o3}, Euo =
{c1, c2, u1, u2, u3} and Eo = {o1, o2, o3}. The unsafe state
is x6 and the event weight is shown on each transition. Here
we let the maximum fuzzy window size be N = 3. Clearly,
string s = c1o1c2o2u2o3 does not form a desirable fuzzy
window since ω(c1o1) < 0, ω(c1o1c2o2) < 0 and ω(s) < 0.
Later on, a supervisor will be employed to solve Problem 1
on G and this example will be used through the work.

Fig. 1. The system G

4. SOLUTION TO SUPERVISORY CONTROL
PROBLEM UNDER FUZZY WINDOWS

Due to the potential challenges of directly solving Prob-
lem 1, we transfer it to a two-player game, where the
supervisor plays against the antagonistic environment.
For this purpose, windowed information states are de-
fined which incorporate sufficient information on both the
state estimate and the payoffs within windows. Then we
introduce a novel information structure called windowed
bipartite transition system as the game graph and discuss
its relevant properties. After some analysis, it turns out
that we are tackling a safety game and Problem 1 is solved
by locating the supervisor’s winning strategies in the game.

4.1 Information-Flow Analysis

Before introducing windowed information states, we give
a generic definition of windowed belief functions.

Definition 2. (Windowed Belief Functions). Given G and
maximum window size N , a N-dimensional windowed
belief function is defined as h : X → (Z∪ {⊥})N+1, where
the symbol ⊥ means “value unspecified”.

Let h(i)(x) stand for the i-th element in h(x) for some
0 ≤ i ≤ N . We just leave a generic definition here and the
formula of specifying values is discussed in detail later.

Definition 3. (Windowed Information States). ConsiderG
and maximum fuzzy window size N , a windowed infor-
mation state is qw = ((x1, · · · , xm), [h(x1), · · · , h(xm)]) ∈
2X × (Z ∪ {⊥})(N+1)×m for some m ∈ N+. Denote by
E(qw) and M(qw) the state estimate and the matrix in
qw, respectively, thus we write qw = (E(qw),M(qw)).

We denote by QW the set of windowed information states.
By definition, E(qw) is the state estimate of G and may
contain m states where m is a positive integer. The matrix
M(qw) contains m vectors (windowed belief functions),
tracking the accumulative payoff within the last N ob-
servable events. Specifically, we denote by M(qw, x) the
vector in M(qw) that is associated with x ∈ E(qw), i.e.,
M(qw, x) = h(x). In other words, we say a windowed infor-
mation state induces a series of windowed belief functions.

We call qaw ∈ QW×Γ an augmented windowed information
state, i.e., a windowed information state augmented with
a control action. Let IW (qaw) and Γ(qaw) denote the
windowed information state and the control decision in
qaw, respectively. qaw is safe if E(IW (qaw))∩Xus = ∅, i.e.,
no unsafe state of G is included in the estimate of qaw.

For qw = (E(qw),M(qw)) ∈ QW and x ∈ E(qw), we use no-
tations hqw(x) and h

(i)
qw(x) to represent the windowed belief

function associated with x and the i-th element in hqw(x),
respectively. Similarly for qaw = (IW (qas),Γ(qas)) ∈ QW×
Γ and x ∈ E(IW (qas)), we write the windowed belief
function associated with x and the i-th element of the
function as hqaw(x) and h

(i)
qaw(x), respectively. Windowed

information states are updated with control decisions and
event occurrences, thus the information flow is formed.
Then we have the following two concepts.

Definition 4. (γ-successor). For γ ∈ Γ, qaw = (q′w, γ) ∈
QW × Γ is a γ-successor of qw ∈ QW if (i) E(q′w) =
URγ(E(qw)); (ii) ∀x′ ∈ E(q′w), ∀0 ≤ i ≤ N , we have:

h
(i)
qaw(x′) = min

x,ξ
{ω(ξ) : ∃ξ ∈ (Euo ∩ γ)∗, x ∈ E(qw), s.t.

f(x, ξ) = x′} if i = 0

h
(i)
qaw(x′) = min

x,ξ
{h(i)

qw(x) + ω(ξ) : ∃ξ ∈ (Euo ∩ γ)∗, x ∈ E(qw),

s.t. f(x, ξ) = x′} if i ≥ 1, h
(i)
qw(x) �= 0, h

(i)
qw(x) �=⊥

h
(i)
qaw(x′) = 0 if i ≥ 1, ∀x ∈ E(qw), ∀ξ ∈ (Euo ∩ γ)∗,

[f(x, ξ) = x′] ⇒ [h
(i)
qaw(x) = 0]

h
(i)
qaw(x′) =⊥ if i ≥ 1, ∀x ∈ E(qw), ∀ξ ∈ (Euo ∩ γ)∗,

[f(x, ξ) = x′] ⇒ [h
(i)
qw(x) =⊥] (1)

The γ-successor characterizes how the information flow
proceeds with control decisions. First the state estimate is
updated to the unobservable reach under γ. Then for every
state in the estimate, we update the accumulative weight
within the fuzzy window, under the enabled unobserable
events in γ. Specifically, there are four cases involved in
Definition 4, depending on the index i and the values of
the windowed belief functions of the predecessor state.

In general, we use the windowed belief functions as a
“counter” to track the minimum accumulative weight in-
curred by the unobservable reach under γ. Since we only
evaluate the mean payoff within fuzzy windows after an
observable event occurs, the index i remains the same on
both sides of the equations in Definition 4. The index indi-
cates the number of observable events that have occurred
and i = 0 means that the first observable event has not be
counted. The third equation implies that the accumulative
payoff has turned nonnegative before or upon the last
observable event. Here we briefly explain the role of symbol
⊥. If only 1 ≤ m < N observable events have occurred
currently, we simply set h(j)(x) =⊥ for j ∈ {m+1, · · · , N}.
Definition 5. (eo-successor). For eo ∈ Eo, qw ∈ QW is
an eo-successor of qaw = (q′w, γ) if (i) eo ∈ γ, E(qw) =
Nexteo(E(q′w)); (ii) ∀x ∈ E(qw), ∀0 ≤ i ≤ N , we have:

h
(i)
qw(x) = 0 if i = 0

h
(i)
qw(x) = min{0,min

ξ
{ω(ξ) + ω(eo) : ∃x′ ∈ E(q′w),

ξ ∈ (Euo ∩ γ)∗, s.t. f(x′, ξeo) = x}} if i = 1

h
(i)
qw(x) = min{0,min

x′
{h(i−1)

qaw (x′) + ω(eo) : ∃x′ ∈ E(q′w),

s.t. f(x′, eo) = x}} if i ≥ 2, h
(i−1)
qw (x) �= 0, h

(i−1)
qw (x) �=⊥

h
(i)
qw(x) = 0 if i ≥ 2, ∀x′ ∈ E(q′w), [f(x′, eo) = x] ⇒

[h
(i−1)
qaw (x′) = 0]

h
(i)
qw(x) =⊥ if i ≥ 2, ∀x′ ∈ E(q′w), [f(x′, eo) = x] ⇒

[h
(i−1)
qaw (x′) =⊥] (2)

After a control decision is made, the enabled observable
events (if any) occur and trigger the supervisor to issue
another command, which leads to an eo-successor. Here
the state estimate is updated to the observable reach under
eo. We also calculate the values of windowed belief func-
tions associated with each state in the estimate. Similarly
with γ-successor, we count the minimum accumulative
weight upon the occurrence of eo. In essence, whenever
the accumulative weight becomes nonnegative at certain
dimension by some string reaching a state of the estimate,

the local mean payoff also becomes nonnegative and a de-
sirable fuzzy window is formed before the window reaches
the maximum length N . Then we immediately reset the
counter to 0 and start tracking the weight of a new string,
as illustrated by the equations in Definition 5. Otherwise,
if the current weight sum is still negative and the fuzzy
window has not reached length N , we keep tracking the
minimum accumulative weight incurred by eo.

Intuitively speaking, this is because by Definition 1, when
the local mean payoff within a fuzzy window becomes non-
negative before the window reaches its maximum length
N , then we do not need to further consider the mean payoff
within “longer windows” before N . Notice that the index i
increases by one since a new observable event has occurred.

Definition 6. (Control-observation sequence). We define a
control-observation sequence as a sequence of alternating

states, events and control decisions of the form: ρ = qw1
γ1−→

qaw1
eo1−→ qw2 · · · γn−→ qawn

eon−→ qwn+1 or ρ′ = qw1
γ1−→ qaw1

eo1−→

qw2
γ2−→ qaw2 · · · eon−→ qwn+1

γn+1−−−→ qawn+1 where qwi ∈ QW ,

qawi ∈ QW × Γ, γi ∈ Γ, eoi ∈ Eo, q
aw
i is a γi-successor

of qwi and qwi+1 is an eoi -successor of q
aw
i for all 1 ≤ i ≤ n.

Given ρ or ρ′ in Definition 6, we write ρk = qw1
γ1−→ qaw1

eo1−→

qw2 · · · γk−1−−−→ qawk−1

eok−1−−−→ qwk and ρ′k = qw1
γ1−→ qaw1

eo1−→

qw2
γ2−→ qaw2 · · ·

eok−1−−−→ qwk
γk−→ qawk , for 1 ≤ k ≤ n. Then the

set of strings generated by ρ or ρ′ is defined recursively as:

Str(ρ1) ={ε}
Str(ρ′1) ={ξ1 ∈ E∗

uo : ∃x ∈ E(qw1), x′ ∈ E(IW (qaw1)),

ξ1 ∈ (γ1 ∩ Euo)
∗ s.t. f(x, ξ1) = x′}

Str(ρk+1) ={s′keok : ∃x ∈ E(qw1), x′ ∈ E(IW (qawk)), x′′ ∈
E(qwk+1), s

′
k ∈ Str(ρ′k), s.t. f(x, s′k) = x′,

f(x′, eok) = x′′}
Str(ρ′k+1) ={sk+1ξk+1 : ∃x ∈ E(qw1), x′ ∈ E(qawk+1), x

′′ ∈
E(IW (qawk+1)), sk+1 ∈ Str(ρk+1), ξk+1 ∈
(γk+1 ∩ Euo)

∗, s.t. f(x, sk+1) = x′,

f(x′, ξk+1) = x′′}
Remark 1. Consider a control-observation sequence ρ =

qw1
γ1−→ qaw1

eo1−→ qw2
γ2−→ qaw2 · · · γn−→ qawn

eon−→ qwn+1, we say
a fuzzy window of observed length � (� ≤ n and � ≤ N)

is bad at qwn+1 if ∃s ∈ Str(qwn−�+1

γn−�+1−−−−−→ qawn−�+1

eon−�+1−−−−→

qwn−� · · ·
γn−→ qawn

eon−→ qwn+1) such that ω(s) < 0. Otherwise,

we say it is good at qwn+1 if ∀s ∈ Str(qwn−�+1

γn−�+1−−−−−→

qawn−�+1

eon−�+1−−−−→ qwn−� · · ·
γn−→ qawn

eon−→ qwn+1), ω(s) ≥ 0.

Theorem 1. Given a control-observation sequence ρ =

qw1
γ1−→ qaw1

eo1−→ qw2
γ2−→ qaw2 · · · γn−→ qawn

eon−→ qwn+1, a fuzzy
window of observed length � where � ≤ n and � ≤ N is bad

at qwn+1 if ∃xn+1 ∈ E(qwn+1) such that h
(�)
qw
n+1

(xn+1) < 0.

We may prove Theorem 1 by induction, while the proof is
omitted here due to space limitations. Theorem 1 implies
that given ρ, a fuzzy window of observed lengthN (N ≤ n)

is bad at qwn+1 if ∃x ∈ E(qwn+1) such that h
(N)
qw
n+1

(x) < 0,

394	 Yiding Ji et al. / IFAC PapersOnLine 53-4 (2020) 390–396

which further indicates that an undesirable fuzzy window
is formed. As there is no unobservable loop in G, the values
of windowed belief functions in ρ remain bounded.

4.2 Synthesize Supervisors

We proceed to introduce the two-player game structure
called windowed bipartite transition system, which essen-
tially captures the information flow under control.

Definition 7. (Windowed Bipartite Transition System). A
WBTS with respect to G and maximum window size N is
a tuple T = (QY , QZ , E,Γ, fyz, fzy, y0) where QY ⊆ QW

is the set of windowed information states; QZ ⊆ QW × Γ
is the set of augmented windowed information states; E
is the set of events; Γ is the set of control decisions;
fyz : QY × Γ → QZ is the transition function from QY

to QZ where for y ∈ QY , γ ∈ Γ and z ∈ QZ , we have
[fyz(y, γ) = z]⇒[z is a γ successor of y]; fzy : QY ×
Eo → QZ is the transition function from QZ to QY where
for z = (y, γ) ∈ QZ , eo ∈ Eo and y′ ∈ QY , we have
[fzy(z, eo) = y′]⇔[y′ is an eo successor of z]; y0 ∈ QY is
the initial state and we set y0 = {x0, (⊥, · · · ,⊥)}.

The supervisor makes control decisions at QY -states (Y -
states) and the game moves to QZ-states (Z-states) where
the environment lets the enabled observable events oc-
cur. They take turns to play. Accordingly, fyz and fzy
are defined following the definition of γ-successor and eo-
successor, respectively. Definition 7 is consistent with the
mechanism of supervisory control under partial observa-
tion where the supervisor’s decisions get updated after
the occurrence of observable events. The initial state is
set to be {x0, (⊥, · · · ,⊥)}, which means no fuzzy window
is formed before the first observable event occurs.

In a WBTS T , the supervisor should form desirable fuzzy
windows and avoid such states by Theorem 1:

U(T) ={y ∈ QY : ∃x ∈ E(y) s.t. h(N)
y (x) < 0}

We call a state in U(T) as an undesired state, which
indicates that a undesirable fuzzy window is formed by
certain string. Since the supervisor should only reach safe
Z-states and QY \ U(T) in T , we have a safety game.

Given a WBTS T , for a Y -state y, we define CT (y) = {γ ∈
Γ : fyz(y, γ)!} as the set of control decisions defined at y.
Also a Y -state y is called complete if CT (y) �= ∅ and a
Z-state z is called complete if ∀eo ∈ Eo, fzy(z, eo)! ⇔
[Nexteo(E(IW (z))) �= ∅] ∧ [eo ∈ Γ(z)]. That is to say,
a Y -state is complete if there is at least one control
decision defined and a Z-state is complete if all enabled
observable events are defined. Being complete is necessary
for supervisor synthesis since the supervisor should always
be able to make decisions and no enabled event is blocked.
We call T complete if all states in T are complete.

A run in T is a control-observation sequence of the form

r = y1
γ1−→ z1

e1−→ y2 · · ·
γn−→ zn

en−→ yn+1. Here we denote
by Runy(T) (respectively Runz(T)) the set of runs whose
last states are Y -states (respectively Z-states).

Both players have strategies in the game. Generally, they
make decisions based on their history of observation cap-
tured by the runs. In a WBTS T , we define the supervisor’s
strategy (control strategy) as πs : Runy(T) → Γ and the
environment’s strategy as πe : Runz(T) → Eo. A player

selects a transition at its position following its strategy. It
turns out that a control strategy works in the same way as
a standard supervisor Cassandras and Lafortune [2008]. In
the following discussion, we use the terms “supervisor” and
“supervisor’s strategy (control strategy)” interchangeably.
Since the supervisor’s decisions are updated on the occur-
rence of observable events executed by the environment,
the control strategies are called observation based.

If the supervisor plays πs while the environment plays
πe from the initial state y0, then a unique initial run,

is generated. We also define Run(πs, y) = {y γ1−→ z1
e1−→

y2 · · ·
γn−1−−−→ zn−1

en−1−−−→ yn : ∀i < n, γi = πs(y
γ1−→ z1

e1−→
y2 · · ·

γi−1−−−→ zi−1
ei−1−−−→ yi)} as the set of runs starting

from y and consistent with the control strategy πs, i.e.,
the control decisions in the run are specified by πs.

A strategy πi ∈ Πi for player i ∈ {s, e} in a WBTS T
is positional if the decisions only depend on the current
windowed or augmented windowed information state. It is
known that positional strategies are sufficient for a player
to win safety games, see, e.g. Apt and Grädel [2011],
thus we will restrict our attention to positional control
strategies in the remainder of the work.

Given a WBTS T , we call it deterministic if ∀y ∈ QY ,
CT (y) is a singleton, i.e., the control decision at each Y -
state is unique, which is denoted by cT (y). Thus there
exists a unique control strategy (supervisor) in T and we
denote the supervisor by ST . Furthermore, ST may be
realized by an automaton GT = (QY , E, ξ, q0) where QY

is the set of Y -states in deterministic T ; ξ : QY ×E → QY

is the (partial) transition function defined as: ∀q ∈ QY ,
∀e ∈ E, we have (i) ξ(q, e) = q if e ∈ cT (y) ∩ Euo (ii)
ξ(q, e) = fzy(fyz(y, cT (y)), e) if e ∈ cT (y) ∩ Eo. Then we
may compute the language of the supervised system as
L(ST /G) = L(GT ×G) where × is the product operation
between automata, see Cassandras and Lafortune [2008].

Then we compare the “size” of WBTSs in the sense of
graph merging. Given T1 = (Q1

Y , Q
1
Z , E,Γ, f1

yz, f
1
zy, y

1
0)

and T2 = (Q2
Y , Q

2
Z , E,Γ, f2

yz, f
2
zy, y

2
0), we say T1 is a

subgame of T2, denoted by T1
 T2, ifQ
1
Y ⊆ Q2

Y ,Q
1
Z ⊆ Q2

Z
and for all y ∈ Q1

Y , z ∈ Q1
Z , γ ∈ Γ, e ∈ E, we have

f1
yz(y, γ) = z ⇒ f2

yz(y, γ) = z and f1
zy(z, e) = y ⇒

f2
zy(z, e) = y. Given a WBTS T and a set of states
Q ⊆ QY ∪QZ , we denote by T ′ = T � Q if T ′
 T and Q
is the state space of T ′, i.e., the game on T is restricted to
a subgame with states in Q. Intuitively we may imagine
that all states in QY ∪QZ \Q are deleted from T and the
game is played on the remaining structure.

Now we conjecture that given system G and maximum
length N of fuzzy windows, if we construct a complete
WBTS T that is “as large as possible”, only contains safe
Z-states and has U(T) = ∅, then the control strategies in
the resulting structure should solve Problem 1. Formally,
we denote it by Tm = (Qm

Y , Qm
Z , E,Γ, fm

yz, f
m
zy, y0) where

(i) it is complete; (ii) ∀z ∈ Qm
Z : z is safe; (iii) U(Tm) = ∅;

(iv) for all WBTSs T satisfying (i), (ii) and U(T) = ∅,
T
 Tm holds. Algorithm 1 is presented to build Tm.

Algorithm 1 follows Definition 1 to constructs Tm in two
steps. First, DoDFS performs a depth-first search from

	 Yiding Ji et al. / IFAC PapersOnLine 53-4 (2020) 390–396	 395

Algorithm 1 Build Tm

Input: G, N
Output: Tm = (Qm

Y , Qm
Z , Eo,Γ, f

m
yz, f

m
zy, y0)

1: Qm
Y = {y0} = {x0,0}, Qm

Z = ∅;
2: T pre

m = DoDFS(y0, G);
3: while there exist Y -states or Z-states that have no

successors do
4: if ∃y ∈ Qm

Y that has no successors then
5: remove y and all its predecessor Z-states;

6: if ∃z ∈ Qm
Z that has no successors then

7: remove z;

8: return Tm;
9: procedure DoDFS(y,G)

10: for γ ∈ Γ do
11: z = fyz(y, γ) by Definition 7;
12: if z is safe then
13: add transition y

γ−→ z to fm
yz;

14: if z /∈ Qm
Z then

15: Qm
Z = Qm

Z ∪ {z};
16: for eo ∈ γ ∩ Eo do
17: y′ = fzy(z, e) by Definition 7;

18: if �x ∈ E(y′) s.t. h(N)
y′ (x) < 0 then

19: add transition z
eo−→ y′ to fm

zy;
20: if y′ /∈ Qm

Y then
21: Qm

Y = Qm
Y ∪ {y′};

22: DoDFS(y′, G);

the initial state y0 to build a WBTS that enumerates
all potential states and control decisions. Line 12 checks
whether a new Z-state (augmented windowed information
state) is safe and desirable. If so, we continue to add all
successor Y -states and check whether they are desirable in
line 18. Then we make a recursive call ofDoDFS in line 22,
which allows us to traverse the whole state space. The
resulting structure is denoted by T pre

m and it is a WBTS.

In T pre
m , there may be Y -states and Z-states without

successors, which requires an iterative pruning at line 3.
Notice that when a Y -state is removed, all its predecessor
Z-states are removed as well, since enabled observable
events should not be blocked from occurring. This process
may be interpreted as calculating the supremal control-
lable sublanguage in supervisory control theory if we view
states without successors as undesired, transitions for fyz
as controllable and transitions for fzy as uncontrollable.

Theorem 2. A control strategy in Tm solves Problem 1.

Proof. Consider a control strategy πs in Tm. First it is
safe following Algorithm 1 since every Z-state in Tm is
safe. It is also live as every state in Tm has successors so
the supervisor is always able to make decisions perpetual
and every enabled event occurs. Then consider a run
r ∈ Run(πs, y0) consistent with πs. For any Y -state y in

r, we know �x ∈ E(y) s.t. h
(N)
y (x) < 0 since U(Tm) = ∅.

By negation of Theorem 1, the supervisor only forms
desirable fuzzy windows along r and it is the case for any
r ∈ Run(πs, y0). Therefore, πs solves Problem 1. �

Thus, we may select a supervisor by our preference. For
example, we choose γ∗

y at every y ∈ Qm
Y in Tm where

�γy ∈ CTm(y) such that γ∗
y ⊂ γy. This leads to a (locally)

maximal permissive supervisor in terms of enabling events.

Remark 2. Denote by Nu = max{|ξ| : ξ ∈ E∗
uo, ∃x ∈

X s.t. f(x, ξ)!} the maximum length of unobservable string
between two observable events in G. It is finite as there
is no unobservable loop in G. The state space of Tm is

bounded by [W · (N +Nu)]
2|X|·(N+1) due to constructing

state estimates and calculating windowed belief functions.

Example 2. We continue Example 1 and solve Problem 1.
First we follow Algorithm 1 to build Tm. After DoDFS,
the resulting T pre

m is shown in Figure 2. For simplicity,
we only draw state estimates and control decisions in
Figure 2, where square states represent Y -states and oval
states represent Z-states. The construction is initiated
from y0, where the supervisor may choose to issue γ0 or
γ′
0. However, if event c1 is disabled, then Z-state z′0 does

not have successors. If the supervisor issues γ0, then we
reach y1 after observable event o1 occurs. The supervisor
and the environment take turns to play until T pre

m is built.

The state estimates of the four red Z-states z′3, z
′
4, z

′
7, z

′
8

contain the unsafe state x6. Thus they are not included in
T pre
m . Next we calculate the values of windowed belief func-

tions. For example, at y8, we have h
(0)
y8 (x2) = 0, h

(1)
y8 (x2) =

0, h
(2)
y8 (x2) = −1, h

(3)
y8 (x2) = 0. Since z9 is a γ1-successor

of y8, we have h
(0)
z9 (x2) = 0, h

(1)
z9 (x2) = 0, h

(2)
z9 (x2) = −1,

h
(3)
z9 (x2) = 0 and h

(0)
z9 (x3) = min{ω(u1), ω(c2)} = −5,

h
(1)
z9 (x3) = 0, h

(2)
z9 (x3) = h

(2)
z9 (x2)+ω(u2) = −6, h

(3)
z9 (x3) =

0. Furthermore, since y9 is an o2-successor of z9, we

have h
(0)
y9 (x4) = 0, h

(1)
y9 (x4) = h

(0)
z9 (x3) + ω(o2) = −3,

h
(2)
y9 (x4) = 0, h

(3)
y9 (x4) = h

(2)
z9 (x3) + ω(o2) = −4. It turns

out that h
(3)
y9 (x4) < 0 and h

(3)
y4 (x2) < 0, so y9 and y4 are

not included in T pre
m . The calculation of windowed belief

functions for other states is similar and omitted here.

Then the While loop in Algorithm 1 recursively prunes
away states, resulting in Tm in Figure 4. Finally we choose
γ1 (γ2 ⊂ γ1) at y5 and the resulting supervisor S is in
Figure 4. S has “memory” as it alternatively enables and
disables c2 at x2. We may verify that S solves Problem 1.

5. CONCLUSION

This work discussed local mean payoff supervisory control
under partial observation for the first time in DES. The
mean payoff within the fuzzy windows should always stay
nonnegative. By introducing windowed information states,
we transformed the partial observation supervisory control
problem to a two-player game and defined the windowed
bipartite transition system. Further analysis revealed that
it is a safety game. We presented how to synthesize
supervisors from the game and showed they are sound
solutions to the original problem. For future extension, it
is interesting to study whether our method is complete and
explore efficient implementation of supervisor synthesis.

REFERENCES

Alves, M.V.S., Basilio, J.C., da Cunha, A.E.C., Carvalho,
L.K., and Moreira, M.V. (2019). Robust supervisory
control of discrete event systems against intermittent
loss of observations. International Journal of Control.

Apt, K.R. and Grädel, E. (2011). Lectures in game theory
for computer scientists. Cambridge University Press.

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to discrete event systems – 2nd Edition. Springer.

396	 Yiding Ji et al. / IFAC PapersOnLine 53-4 (2020) 390–396

Fig. 2. T pre
m after DoDFS (without the red states)

Fig. 3. Tm in Example 2

Fig. 4. A synthesized supervisor S that solves Problem 1

Hunter, P., Pérez, G.A., and Raskin, J.F. (2018). Looking
at mean payoff through foggy windows. Acta Informat-
ica, 55(8), 627–647.

Ji, Y., Yin, X., and Lafortune, S. (2018). Mean payoff
supervisory control under partial observation. In 57th
IEEE Conference on Decision and Control, 3981–3987.

Ji, Y., Yin, X., and Lafortune, S. (2019a). Enforcing
opacity by insertion functions under multiple energy
constraints. Automatica, 108, 108476.

Ji, Y., Yin, X., and Lafortune, S. (2019b). Supervisory
control under local mean payoff constraints. In 58th
IEEE Conference on Decision and Control, 1043–1049.

Komenda, J. and Masopust, T. (2017). Computation of
controllable and coobservable sublanguages in decen-

tralized supervisory control via communication. Disc.
Event Dyn. Systems: Theory and App., 27(4), 585–608.

Li, J. and Takai, S. (2019). Maximally permissive similar-
ity enforcing supervisors for nondeterministic discrete
event systems under partial observation. In 58th IEEE
Conference on Decision and Control, 1037–1042.

Lin, L., Thuijsman, S., Zhu, Y., Ware, S., Su, R., and
Reniers, M. (2019). Synthesis of supremal successful
normal actuator attackers on normal supervisors. In
American Control Conference, 5614–5619.

Ma, Z., He, Z., Li, Z., and Giua, A. (2018). Design of
monitor-based supervisors in labelled Petri nets. In 14th
Intl. Workshop on Discrete Event Systems, 374–380.

Meira-Góes, R., Kang, E., Kwong, R., and Lafortune, S.
(2017). Stealthy deception attacks for cyber-physical
systems. In 56th IEEE Conference on Decision and
Control, 4224–4230.

Mohajerani, S., Malik, R., and Fabian, M. (2017). Com-
positional synthesis of supervisors in the form of state
machines and state maps. Automatica, 76, 277–281.

Pruekprasert, S. and Ushio, T. (2017). Supervisory control
of partially observed quantitative discrete event systems
for fixed-initial-credit energy problem. IEICE Transac-
tions on Information and Systems, 100(6), 1166–1171.

Pruekprasert, S., Ushio, T., and Kanazawa, T. (2016).
Quantitative supervisory control game for discrete event
systems. IEEE Transactions on Automatic Control,
61(10), 2987–3000.

Rashidinejad, A., Reniers, M., and Feng, L. (2018). Super-
visory control of timed discrete-event systems subject to
communication delays and non-FIFO observations. In
14th Intl. Workshop on Discrete Event Syst., 456–463.

Ricker, S.L., Lidbetter, T., and Marchand, H. (2017).
Inferencing and beyond: further adventures with parity-
based architectures for decentralized discrete-event sys-
tems. In 20th IFAC World Congress, 13447–13452.

Shu, S. and Lin, F. (2015). Supervisor synthesis for
networked discrete event systems with communication
delays. IEEE Trans. on Auto. Contr., 60(8), 2183–2188.

Wang, Y. and Pajic, M. (2019). Supervisory control of
discrete event systems in the presence of sensor and
actuator attacks. In 58th IEEE Conference on Decision
and Control, 5350–5355.

Wonham, W.M. and Cai, K. (2019). Supervisory control
of discrete-event systems. Springer.

Wu, B., Zhang, X., and Lin, H. (2019). Permissive super-
visor synthesis for Markov decision processes through
learning. IEEE Transactions on Automatic Control,
64(8), 3332 – 3338.

Yin, X. and Lafortune, S. (2016a). Synthesis of maximally
permissive supervisors for partially-observed discrete-
event systems. IEEE Transactions on Automatic Con-
trol, 61(5), 1239–1254.

Yin, X. and Lafortune, S. (2016b). A uniform ap-
proach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEE
Trans. on Automatic Control, 61(8), 2140–2154.

Yin, X. and Lafortune, S. (2017). Synthesis of maximally-
permissive supervisors for the range control problem.
IEEE Trans. on Automatic Control, 62(8), 3914–3929.

Yin, X. (2017). Supervisor synthesis for Mealy automata
with output functions: A model transformation ap-
proach. IEEE Trans. on Auto. Cont., 62(5), 2576–2581.

